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Abstract: To help users discover the most relevant spatial datasets in the ever-growing global spatial
data infrastructures (SDIs), a number of similarity measures of geospatial data based on metadata
have been proposed. Researchers have assessed the similarity of geospatial data according to one or
more characteristics of the geospatial data. They created different similarity algorithms for each of
the selected characteristics and then combined these elementary similarities to the overall similarity
of the geospatial data. The existing combination methods are mainly linear and may not be the
most accurate. This paper reports our experiences in attempting to learn the optimal non-linear
similarity integration functions, from the knowledge of experts, using an artificial neural network.
First, a multiple-layer feed forward neural network (MLFFN) was created. Then, the intrinsic
characteristics were used to represent the metadata of geospatial data and the similarity algorithms
for each of the intrinsic characteristics were built. The training and evaluation data of MLFFN were
derived from the knowledge of domain experts. Finally, the MLFFN was trained, evaluated, and
compared with traditional linear combination methods, which was mainly a weighted sum. The
results show that our method outperformed the existing methods in terms of precision. Moreover, we
found that the combination of elementary similarities of experts to the overall similarity of geospatial
data was not linear.

Keywords: artificial neural networks; geospatial data; similarity; metadata; intrinsic characteristics;
combination

1. Introduction

Geospatial data play an important role in enhancing the capability of humans to monitor and
understand society and nature [1]. They are widely used for decision making, Earth system science
research, and so on [2]. In the past decades, billions of gigabytes of geospatial data have been produced
from multiple Earth orbit missions, ground surveys, and in situ measurements and made available to
the public through the spatial data infrastructures (SDIs, e.g., catalogs and portals) by government
agencies and other stakeholders [3]. A major challenge has become how to help the user find the most
relevant datasets in the ever-growing global SDIs.

Metadata is ‘data about data’ [4]. It is a structured description of the necessary properties of an
object [5]. Most existing SDIs adopt metadata to describe, manage, discover, and exchange data [6,7].
To help users discover the relevant spatial datasets in SDIs, some solutions that are based on metadata
of geospatial data have been proposed, such as linked geospatial data [8,9], data recommendation
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systems [10], and so on. Among them, assessing the similarity of metadata of geospatial data and then
recommending or linking geospatial data according to the similarity is demonstrated to be an attractive
approach [10–13]. For example, for the geospatial data ‘2005 land use dataset of San Francisco Bay
Area on 1:100,000’ (a), ‘2000 land use dataset of Texas on 1:100,000’ (b), and ’2005 land use dataset of
California on 1:100,000’ (c), the existing method [10–13] can compute a quantitative similarity between
(a) and (c) that is higher than that of (a) and (b) based on the metadata information: the thematic
contents of (a), (b), and (c) are the same but the spatial coverage of (c) contains that of (a) and the time
coverage of (a) and (c) is the same. Then, the relevant data to (a) can be recommended and ranked
by similarity.

Geospatial data have many characteristics, such as thematic context, spatial coverage, temporal
coverage, topic category, data type, spatiotemporal precision, provenance, and so on. According to the
roles of these characteristics in data discovery, the characteristics of geospatial data can be divided into
two types: intrinsic and morphologic characteristics. Intrinsic characteristics refer to the basic ‘what,
where, when’ triple features of geospatial data, namely, the thematic content, spatial and temporal
coverage. These characteristics make geospatial data distinguishable from one another. Morphologic
characteristics represent the structural and shape features of geospatial data, such as data type, format,
and spatiotemporal precision. Morphologic characteristics can be transformed with more or less
information loss without affecting the nature of geospatial data [9]. Both the intrinsic and morphologic
characteristics are generally described by metadata formally [14,15]. Researchers have assessed the
similarity of metadata of geospatial data based on one or several data characteristics [9,12,13]. They
built different similarity measures for each of the selected characteristics and then combined these
elementary similarities to the overall similarity of geospatial datasets. (The similarity of geospatial
data refers to the similarity of metadata of geospatial data hereafter.) For example, for the geospatial
data (a) and (b), the similarity of (a) and (b) can be computed by integrating the elementary similarities
of their characteristics of thematic content, spatial and temporal coverage. The main issue in the
integration of several similarity approaches into one similarity function is how different measures
can be combined. Many integration schemes have been proposed in the literature. These schemes
can be divided into three categories: standard combinations, linear combinations, and non-linear
combinations. Standard combinations calculate the maximal, minimal, or median values of elementary
similarities of characteristics of geospatial data [16]. Linear combinations assign a weight value to
each of the elementary similarities and then take the sum of the weighted similarity scores as the
final results [17]. The performances of standard combinations and linear combinations have been
studied extensively [10,12,13,18–20]. In contrast to standard and linear combinations, non-linear
combinations allow elementary similarities to be combined in more complex manners. Artificial
neural network is an important approach to the learning of non-linear similarity functions [21,22].
Many experimental results have shown that significant improvements in similarity measures could be
achieved by combining multiple similarities non-linearly [16,17]. However, there is no previous work
on the non-linear integration of elementary similarities of characteristics of geospatial data, which is
the main focus of this paper.

This paper reports our experiences in attempting to learn optimal similarity integration functions
of geospatial data from the knowledge of experts using an artificial neural network. The performance
of our approach has been compared with the traditional linear combination method. The results show
that our method can achieve a higher precision than the existing methods and demonstrate that the
integration of elementary similarities of experts to the overall similarity of geospatial data is not linear.

The remainder of this article is organized as follows. Section 2 surveys relevant literature on
geospatial data similarity. Section 3 details the artificial neural network algorithms and different
similarity measures for each of the selected characteristics of geospatial data. The artificial neural
network is trained and evaluated in Section 4. We conclude with a summary and discussion of
directions for future research in Sections 5 and 6.
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2. Background

Advances in linked geospatial data [9], geographic information retrieval (GIR), and the uptake of
the spatial data infrastructure initiative have led to urgent requirements on assessing the similarity of
geospatial data. Some similarity measures about geospatial data have been proposed. These measures
can be classified into two main families: similarity measures of user’s query to geospatial data and
geospatial data to geospatial data.

For example, in the context of geographic information retrieval, Lacasta et al. [23] aggregated
users’ search results of geospatial datasets by identifying the implicit spatial and thematic relations
between the metadata records of geospatial datasets as similarity to offer complete answers for a
user’s query. Martins et al. [16] ranked geospatial data retrieval results according to a combination
of thematic and geographical similarity between a user’s query and the geospatial datasets. They
proposed four combination methods (a standard, two linear, and a non-linear combination). Hu and
Ge [17] presented an approach that learned GIR ranking functions using genetic programming (GP)
methods based on textual statistics and geographic properties derived from the metadata of geospatial
data and user queries. These three methods were used for geographic information retrieval and are not
suitable for assessing the similarity between geospatial data and geospatial data. Andrade et al. [18]
proposed several similarity metrics to solve spatial, semantic, and temporal queries and combined
them by a weighted sum method. Al-Bakri and Fairbairn [24] measured semantic, structural, and data
type similarities between categories of formal data and volunteered geographic information (VGI) and
obtained the overall similarity based on a weighted sum combination of these three measures. Besides
being used for GIR, these two methods combined elementary similarities by a linear method.

In the context of linked geospatial data, Zhao et al. [12,13] used the intrinsic characteristics of
geospatial datasets to link geospatial datasets and quantified the overall interlinking as similarity
that considered all data characteristics. Zhu et al. [9] proposed a multidimensional and quantitative
interlinking approach for geospatial datasets that considered the characteristics of theme, category,
spatial coverage, temporal coverage, spatial precision, temporal granularity, type, and format of
geospatial datasets. For these two methods, the elementary similarities of selected characteristics are
combined to the overall similarity of geospatial data by a weighted sum method.

Since these similarity integration functions were intuitively and empirically derived, they
might not be the true integration function. If the true integration function is found or simulated,
significant improvements in the precision of similarity measure can be achieved [25]. One way
to obtain the optimal function is to learn it from the knowledge of experts [25]. Artificial neural
networks (ANNs) have a remarkable ability to learn any linear or non-linear function from input and
output data. Therefore, they are widely used in domains of search engines [26], power systems [27],
transportation [28], agriculture [29], meteorology [30], and so on. In this article, we use the artificial
neural network to learn the optimal functions from the knowledge of experts and combine the
elementary similarities of selected characteristics to the overall similarity of geospatial data, aiming to
improve the precision of the similarity measures of geospatial data.

In the next section, we will detail the artificial neural network algorithms and the similarity
measures for intrinsic characteristics of geospatial data.

3. Methodology

3.1. Basic Idea

The proposed approach aims to integrate the elementary similarities of characteristics of geospatial
data to overall similarity by using artificial neural networks. Artificial neural networks or neural
networks are general terms for computer algorithms built as imitations of biological neural networks
interconnected by a number of artificial neuron nodes (‘neurons’ hereafter). Artificial neural networks
have remarkable capabilities in pattern recognition and trend predictions. They can learn laws from
data that is complicated or imprecise and, thus, they have been widely used in various domains [31].
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Before an artificial neural network can work, the prior knowledge that is used to train the network is
required. The prior knowledge consists of the input data and output data.

The details of the proposed method are as follows: First, the intrinsic characteristics are selected
to represent geospatial data for the sake of simplicity and generalization. Then, the quantitative
similarity algorithms for each of the selected characteristics are built to obtain the input data for the
ANN. To obtain the output data of the prior knowledge, some geospatial data experts are asked to
rate the similarity for the designed geospatial data pairs according to the intrinsic characteristics.
A multiple-layer feedforward neural network (MLFFN) is then created and trained by using the
overall similarity of geospatial data as the desired correct output value, which is given by experts,
and the elementary similarities of intrinsic characteristics as the input values, which is calculated by
corresponding algorithms. The trained artificial neural network will be evaluated and compared with
existing methods in terms of precision. After the evaluation, the trained artificial neural networks can
be used to calculate the overall similarity of inter-geospatial data. The basic idea is shown in Figure 1.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  4 of 19 

 

various domains [31]. Before an artificial neural network can work, the prior knowledge that is used 
to train the network is required. The prior knowledge consists of the input data and output data. 

The details of the proposed method are as follows: First, the intrinsic characteristics are selected 
to represent geospatial data for the sake of simplicity and generalization. Then, the quantitative 
similarity algorithms for each of the selected characteristics are built to obtain the input data for the 
ANN. To obtain the output data of the prior knowledge, some geospatial data experts are asked to 
rate the similarity for the designed geospatial data pairs according to the intrinsic characteristics. A 
multiple-layer feedforward neural network (MLFFN) is then created and trained by using the overall 
similarity of geospatial data as the desired correct output value, which is given by experts, and the 
elementary similarities of intrinsic characteristics as the input values, which is calculated by 
corresponding algorithms. The trained artificial neural network will be evaluated and compared with 
existing methods in terms of precision. After the evaluation, the trained artificial neural networks can 
be used to calculate the overall similarity of inter-geospatial data. The basic idea is shown in Figure 1. 

 
Figure 1. The basic ideal of our approach. 

3.2. Artificial Neural Network Algorithm 

Of the family of ANN algorithms, multiple-layer feedforward neural networks (MLFFNs) are 
quite popular because of their ability to model complex relationships between output and input data. 
Adding more hidden units to a network makes it possible for a MLFFN to represent any continuous, 
or even discontinuous, function of the input parameters. Moreover, compared to deep neural 
networks, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the 
MLFFN requires less training samples, less training time, and lower computational and processing 
ability of the computer. It is a lightweight neural network [32]. Hence, a MLFFN is the best choice for 
our research. The structure of a MLFFN can be designed based on the problem to be solved. Figure 2 
shows one structure of an MLFFN. 

Figure 1. The basic ideal of our approach.

3.2. Artificial Neural Network Algorithm

Of the family of ANN algorithms, multiple-layer feedforward neural networks (MLFFNs) are
quite popular because of their ability to model complex relationships between output and input data.
Adding more hidden units to a network makes it possible for a MLFFN to represent any continuous, or
even discontinuous, function of the input parameters. Moreover, compared to deep neural networks,
such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the MLFFN
requires less training samples, less training time, and lower computational and processing ability
of the computer. It is a lightweight neural network [32]. Hence, a MLFFN is the best choice for our
research. The structure of a MLFFN can be designed based on the problem to be solved. Figure 2
shows one structure of an MLFFN.
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Figure 2. One structure of a multiple-layer feedforward neural network (MLFFN) (adapted from [33]).

The core of the algorithm is backpropagation and forward propagation, where backpropagation
is used to train the neural net to get a stable transition matrix V, which transmits information from the
input nodes to the hidden nodes, and W, which transmits information from the hidden nodes to the
output nodes. Forward propagation is used to measure the difference between predicted output and
the desired output using current V and W. The MLFFN uses the mean square error (MSE) as the error
metric between the output Ok and the desired correct output Ck [33,34]:

E =
1
p

p

∑
k=1

(Ck −Ok)
2 (1)

where p is the number of neurons in the output layer O. The detailed algorithm is as follows:

(1) Initialize V and W with the given boundaries
(2) Input data D (a set of input vectors)
(3) For each element in D,

a. Perform forward propagation as follows:

Hi = Φ(
n

∑
j=1

Vij Ij − θi) (i = 1, 2, . . . , m) (2)

Ok = Φ(
m

∑
j=1

WkjHj − θk) (k = 1, 2, . . . , p) (3)

where Φ(x) is the transfer function; I is the input value; Hi is the output value of the
hidden layer H; θ is the bias; Ok is the output of layer O.

b. Calculate the mean square error (MSE) between each neuron’s output and its desired
correct output in layer O. If the MSE is lower than the given good-minimum-error, then the
network has completed the training, returning V and W as two transition matrices. If the
MSE is not lower than the given good-minimum-error, perform backpropagation.

∆Wkj =
δE

δWkj
=

2
p
(Ok − Ck)Ok(1−Ok)Hj (k = 1, 2, . . . , p; j = 1, 2, . . . , m) (4)

∆θk =
δE
δθk

; ∆Vij =
δE

δVij
; ∆θi =

δE
δθi

(5)
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
W = W −ω× ∆W
θk = θk −ω× ∆θk
V = V −ω× ∆V
θi = θi −ω× ∆θi

(6)

where ω is the learning rate of the MLFFN.
c. Repeat a and b until the MSE is lower than the given good-minimum-error.

Neuroph [35] is a lightweight Java neural network framework to develop common neural network
architectures. It contains a well-designed, open-source Java library with a small number of basic classes
that correspond to the basic neural network concepts. In this article, we use the Neuroph open-source
Java library to create MLFFNs based on the Eclipse Kepler 2 Integrated Development Environment.
The experiment was performed on a computer with 8 G memory, 4 CPU, and a Windows 7 64-bit
operating system (Dell (China) Co. Ltd., Kunshan, China).

3.3. Similarity for Intrinsic Characteristics of Geospatial Data

Because an artificial neural network is a numerical algorithm, its input and output are all
numerical. It is necessary to build the similarity algorithms for the intrinsic characteristics of geospatial
data to obtain the elementary similarities. Then, the MLFFN integrates these similarities by learning
from the knowledge by which data experts assess the similarity of the geospatial data according
to data’s intrinsic characteristics. In this article, the intrinsic characteristics refer to the theme,
category, spatial coverage, and temporal coverage of geospatial data that can be derived from the
metadata [14,15].

3.3.1. Theme Similarity

The theme of geospatial data is represented by thematic keywords. Geospatial data generally have
a few thematic keywords. Each of the thematic keywords can be seen as a word vector. We proposed
the following method to compute the similarity of thematic keywords.

Set the keyword set of geospatial data A to be ( fA1, fA2, . . . , fAm) and geospatial data B to be
( fB1, fB2, . . . , fBn). The thematic keyword similarity between A and B is SimK(A, B). The keywords
in keyword sets ( fA1, fA2, . . . , fAm) and ( fB1, fB2, . . . , fBn) are segmented to be word vector sets

(
→
fA1,

→
fA2, . . . ,

→
fAm) and (

→
fB1,

→
fB2, . . . ,

→
fBn). If a keyword fAx in ( fA1, fA2, . . . , fAm) is segmented into the

word vector
→
fAx = (a1, a2, . . . , ak)(x = 1, 2, 3, . . . , m), a keyword fBy in ( fB1, fB2, . . . , fBn) is segmented

into the vector
→
fBy = (b1, b2, . . . , bs)(y = 1, 2, 3, . . . , n), and the similarity between

→
fAx and

→
fBy is

sim(
→
fAx →

→
fBy) . Then, according to the algorithm presented by Corley and Mihalcea [36],

SimK(A, B) =


m
∑

x=1
Max(sim(

→
fAx→

→
fB1),sim(

→
fAx→

→
fB2),...,sim(

→
fAx→

→
fBn) )

m (m ≥ n)
n
∑

y=1
Max(sim(

→
fBy→

→
fA1),sim(

→
fBy→

→
fA2),...,sim(

→
fBy→

→
fAn))

n (n > m)

(7)

where

sim(
→
fAx →

→
fBy) =


k
∑

i=1
Max(sim(ai ,b1), sim(ai ,b2), ..., sim(ai ,bs))

k (k ≥ s)
s
∑

i=1
Max(sim(bi ,a1), sim(bi ,a2), ...., sim(bi ,ak))

s (s > k)

(8)

The similarity sim(ai, bj) can be computed by a WordNet-based method. In this article, the
Patwardhan and Pedersen’s vector method is used to get sim(ai, bj), because this measure outperforms
other measures in terms of precision according to [37].
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3.3.2. Category Similarity

Geospatial dataset A and B generally have several categories from different classification systems.
Their categories must be consistently converted to the designated category system. Global Change
Master Directory [38] is considered the unified topic category in this work. The category similarity
between A and B is set to be SimC(A, B). According to the latest research [9], the category similarity
SimC(A, B) is computed by Equation (9):

SimC(A, B) =
1
n

n

∑
i=1

m
Max
j=1

(sim(CAi, CBj)) (9)

where sim(CAi, CBj) is computed by Equation (10), which was given by Wu and Palmer [39] :

sim(CAi, CBj) =
2× N(CAB)

N(CAi) + N(CBj) + 2N(CAB)
(10)

where CAi and CBj refer to the categories in a classification system, CAB is the closest parent node of
CAi and CBj, N(CAi) is the number of edges from CAi to CAB, N(CBj) is the number of edges from CBj
to CAB, and N(CAB) is the number of edges from CAB to the root node of the classification system.

For example, geospatial data ‘Dar es Salaam Land Use and Informal Settlement Dataset’ (A) has
two categories: ‘Global Change Master Directory > Human Dimensions > Human settlements > Urban
areas’ (CA1) and ‘Global Change Master Directory > Land Surface > Land Use/Land Cover > Land Use
Classes’ (CA2). ‘ISLSCP II Global Population of the World’ (B) has three categories: ‘Global Change
Master Directory > Human Dimensions > Population > Population Distribution’ (CB1), ‘Global Change
Master Directory > Human Dimensions > Population > Population Size’ (CB2), and ‘Global Change
Master Directory > Land Surface > Land Use/Land Cover > Land Use/Land Cover Classification’ (CB3).
The sim(CA1, CB1) =

2×1
2+2+2×1 = 0.333, sim(CA1, CB2) = 0.333, sim(CA1, CB3) = 0, sim(CA2, CB1) = 0,

sim(CA2, CB2) = 0, sim(CA2, CB3) = 0.667, and SimC(A, B) = 1
2 × (0.333 + 0.667) = 0.5.

3.3.3. Spatial Coverage Similarity

The spatial coverage of geospatial data is usually represented by the minimum enclosing rectangle
of the dataset [9]. The minimum enclosing rectangle extent can be regarded as a geospatial polygon.
Therefore, how to compute the similarity of geospatial polygons is the key to computing the spatial
coverage similarity. In this article, we use the topological and metric relations of inter-geospatial
polygons to compute the similarity [40]. The similarity of geospatial coverages is calculated by
Equation (11):

SimP(A, B) = Wt0 + Wt × C(A, B) (11)

where SimP(A, B) refers to the similarity of spatial coverage; Wt0 refers to the minimum similarity of
geospatial coverages under a specified topology relation; Wt is the weight of the metric relationship of
the geospatial coverages under the corresponding topology relation; and C(A, B) is the function of the
metric relationship between two spatial coverages.

In this study, the topology relations between geospatial polygons are grouped into six categories,
as shown in Table 1.

Table 1. The topology relations of geospatial polygons (adapted from [40]).

Topo. Relation Equals Contains Within Overlaps Touches Disjoints

Diagram
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Using the weight measurement method (WMM) of the analytical hierarchy process (AHP)
(hereafter referred to as AHP-WMM) [41], we obtain the values of Wt0 and Wt. The detailed steps of
AHP-WMM are as follows. First, we establish a pairwise comparison matrix of the relative importance
of all factors that affect the same upper-level goal. Then, domain experts establish pairwise comparison
scores using a 1–9 preference scale. The normalized feature vector of the pairwise comparison matrix
is regarded as the weight of the factors. If the number of factors is more than two, a consistency check
is required. The standard to pass the consistency check is that the consistency ratio (CR) is less than
0.1. The weights of Wt0 and Wt calculated by AHP-WMM are shown in Table 2.

Table 2. The values of Wt0 and Wt in different spatial topology relations.

No. Topology Wt0 Wt

1 Equals 1 0
2 Within 0.667 0.333
3 Contains 0.667 0.333
4 Overlaps 0.5 0.167
5 Touches 0.333 0.167
6 Disjoint 0 0.333

We define the spatial distance as the Euclid distance between the geometric centers of the
geospatial polygons. C(A, B) is calculated by Equation (12).

C(A, B) =



Area(EA∩EB)
Area(EB)

, EA within EB

Area(EA∩EB)
Area(EA)

, EA contains or overlaps EB

Len(EA∩EB)
Len(EA)

, EA touches EB

1
1+D(EA ,EB)

, EA disjoints EB

(12)

where EA and EB refer to two geospatial polygons, Area(EA) and Area(EB) are the areas of EA and
EB; Area(EA ∩ EB) is the overlapping area of EA and EB; Len(EA) is the perimeter length of EA;
Len(EA ∩ EB) is the length of the intersection of EA and EB; and D(EA, EB) is the spatial distance
between EA and EB.

3.3.4. Temporal Coverage Similarity

Temporal coverage consists of a textual time description, such as “the fifties of the twentieth
century” and “September 2009.” Temporal coverage generally has two aspects: the beginning date and
the ending date. However, sometimes the ending date is null, which means that the temporal coverage
of geospatial dataset is an instant. An instant and an interval are relative and convertible to each other
under different timescales; thus, we change an instant to an interval through time downscaling and
unify the two intervals to the minimum timescale. For example, if the timescale of one geospatial data is
“year” (for example, 2010) and the other data’s timescale is “month” (for example, September 2009–July
2012), the “year” timescale should be transferred to “month” (January 2010–December 2010) to maintain
a consistent timescale between the two datasets to calculate their temporal coverage similarity.

The similarity of two time intervals can also be calculated according to the time topology and
metric relation. The topology relation of two time intervals is the relation of containing, within,
overlapping, touching, and disjointing [42], and their metric relation refers to the length of the overlap,
the distance of the interval between them. The time topology relations are shown in Table 3. We propose
using Equation (13) to calculate the temporal similarity SimT(A, B).
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SimT(A, B) =



1 TA Equal TB

WT0 + Wt0 × Len(TA∩TB)
Max(Len(TA),Len(TB))

TA Contains or Within TB

WT1 + Wt1 × Len(TA∩TB)
Max(Len(TA),Len(TB))

TA Overlaps TB

WT2 + Wt2 × 2
Len(TA)+Len(TB)

TA Touches TB

Wt3 × 1
Dis(TA ,TB)

TA Disjoints TB

(13)

where TA and TB are two time intervals; Len(TA) and Len(TB) are the lengths of TA and TB;
Len(TA ∩ TB) is the overlapping length of TA and TB; Dis(TA, TB) is the time distance between TA
and TB, which is equal to the middle of TA minus the middle of TB; WT0, WT1, and WT2 are the
topology weights when the topology relation between TA and TB is “Contains/Within,” “Overlaps,”
and “Touches,” respectively; and Wt0, Wt1, Wt2, and Wt3 are the metric relation weights when the
topology relation between TA and TB is “Contains/Within,” “Overlaps,” “Touches,” and “Disjoints,”
respectively. Using AHP-WMM, we get the values of WT0, WT1, and WT2, which are equal to 0.667, 0.5,
and 0.333, respectively, and the values of Wt0, Wt1, Wt2, and Wt3, which are equal to 0.333, 0.167, 0.167,
and 0.333, respectively.

Table 3. The topology relations among time intervals.
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4. Experiment and Results 

4.1. Materials 

The National Earth System Science Data Sharing Infrastructure (NESSDSI, 
http://www.geodata.cn) is one of the national science and technology infrastructures in China. It 
provides one-stop data sharing and open service. As of 15 November 2017, NESSDSI has shared 
15,142 multi-disciplinary datasets, including geography, geology, hydrology, geophysics, ecology, 
and astronomy and the page view of the website has exceeded 21,539,917. 

NESSDSI utilizes the ISO19115-based metadata to describe geospatial datasets. The metadata of 
NESSDSI includes the dataset title, dataset language, a set of thematic keywords, abstract, category, 
spatial coverage, temporal coverage, format, provenance, and so on. All the metadata and datasets 
can be openly accessed. We selected 1700 geospatial datasets and their metadata from NESSDSI 
whose contents were about basic geographic information, land use/cover, population, social 
economy, regionalization, landform, terrain, soil, desert, body of water, wetland, vegetation, 
environment, disaster, and natural resources. The intrinsic characteristics of these datasets, which 
were the thematic keywords, category, spatial coverage and temporal coverage, were extracted to 
build an intrinsic characteristic database of geospatial data (ICGDatabase for short). We used these 
selected datasets to create geospatial data pairs and asked geoscience experts to determine the 
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4. Experiment and Results

4.1. Materials

The National Earth System Science Data Sharing Infrastructure (NESSDSI, http://www.geodata.
cn) is one of the national science and technology infrastructures in China. It provides one-stop data
sharing and open service. As of 15 November 2017, NESSDSI has shared 15,142 multi-disciplinary
datasets, including geography, geology, hydrology, geophysics, ecology, and astronomy and the page
view of the website has exceeded 21,539,917.

NESSDSI utilizes the ISO19115-based metadata to describe geospatial datasets. The metadata of
NESSDSI includes the dataset title, dataset language, a set of thematic keywords, abstract, category,
spatial coverage, temporal coverage, format, provenance, and so on. All the metadata and datasets
can be openly accessed. We selected 1700 geospatial datasets and their metadata from NESSDSI
whose contents were about basic geographic information, land use/cover, population, social economy,
regionalization, landform, terrain, soil, desert, body of water, wetland, vegetation, environment,
disaster, and natural resources. The intrinsic characteristics of these datasets, which were the thematic
keywords, category, spatial coverage and temporal coverage, were extracted to build an intrinsic
characteristic database of geospatial data (ICGDatabase for short). We used these selected datasets
to create geospatial data pairs and asked geoscience experts to determine the similarity of these data
pairs, which will be the prior knowledge of the artificial neural networks and the evaluation baseline
for different similarity combination methods.
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4.2. The Acquisition of Prior Knowledge

Prior knowledge acts as the training dataset for the artificial neural networks. It determines how
well the transition matrices can be built into the machine learning process. Although a neural net
is highly tolerant of noisy data, completeness and representativeness of the prior knowledge is still
significant for the accuracy of the similarity computation of geospatial data. The training of a neural
network is the process by which the neural net learns the laws and features contained in the prior
knowledge (or sample data); if the sample data can represent the population excellently, the trained
neural net will be accurate when it is used to make predictions.

4.2.1. The Features of Geospatial Data

As mentioned before, in this article, we use the thematic content, geospatial coverage, temporal
coverage to represent the geospatial data. The detailed intrinsic characteristics of geospatial data
include theme keywords, category, spatial coverage, and temporal coverage, which can be directly
derived from the metadata of geospatial data. For each of the detailed intrinsic characteristics of
geospatial data, different features between them will affect the similarity of the geospatial data.
For example, compared with the “2000 land use dataset of San Francisco Bay“ (A), the “2000 land use
dataset of California” (B) is more similar to it than the “2000 land use dataset of Nevada” (C) because
the feature between A and B in terms of spatial coverage is “within” while that between A and C
is “disjoint.” There are five features between two spatial coverages: “same,” “contains or within,”
“overlaps,” “touches,” and “disjoint.” There are also five features between two temporal coverages:
“same,” “contains or within,” “overlaps,” “touches,” and “disjoint.” There are three features between
the theme keywords of two geospatial datasets: same, similar, and non-similar. There are three features
between two categories: same, parent and child, and sibling and other. The features of each detailed
intrinsic characteristic are shown in Table 4. There are 3 × 3 × 5 × 5 = 225 combined features between
two geospatial datasets.

Table 4. Features of each detailed intrinsic characteristic.

Overall Characteristics Intrinsic Characteristics Detailed Intrinsic
Characteristics Features

Geospatial data overall
characteristic

Thematic content

Theme keywords
Same Theme

Similar
None-Similar

Category
Same

Parent and Child
Sibling and Other

Spatial coverage Spatial topology

Same
Contains or Within

Overlaps
Touches
Disjoint

Temporal coverage Temporal topology

Same
Contains or Within

Overlaps
Touches
Disjoint

4.2.2. Survey Design and Results

Given the features that affect the similarity of geospatial datasets, the following experiment was
designed to obtain prior knowledge for the similarity computation of geospatial data. We selected
geospatial datasets and their detailed intrinsic characteristics from the ICGDatabase and created
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geospatial data pairs. All the geospatial data pairs with different feature combinations of four detailed
intrinsic characteristics formed the prior knowledge samples. Thus, there are 3 × 3 × 5 × 5 = 225
data pairs in the similarity rating questionnaire, which are called sample pairs. In order to evaluate
the geospatial data similarity measures, another 20 pairs of geospatial data with different feature
combinations (called evaluation pairs) were also added to the similarity rating questionnaire. We asked
the geospatial data experts to rate the similarity for each pair of geospatial data in the similarity rating
questionnaire on a 100-point scale from 0 to 100: 0 represents no relevance at all and 100 the same data
pair. The ordering of the 245 pairs was randomly determined for each subject.

We received 37 complete responses. Intra-rater reliability (IRR) refers to the relative consistency
in ratings provided by multiple judges of multiple targets [43]. In contrast, intra-rater agreement (IRA)
refers to the absolute consensus in scores furnished by multiple judges for one or more targets [44].
Pearson’s r is usually the index for IRR [45]. Kendall’s W is usually for IRA [46]. Table 5 shows the
plausible indices of IRR and IRA for our similarity ratings from experts.

Table 5. The indices of intra-rater reliability (IRR) and intra-rater agreement (IRA) for our
similarity ratings.

Index Type Index Name Minimum Median Max. Means Value

IRR Pearson’s r 0.86 0.942 0.96 0.945
IRA Kendall’s W 0.812

The indices of IRR and IRA in Table 5 indicate that the responses of experts possess a high
reliability and are in agreement. The correlation is satisfactory and is better than analogous surveys [47].

For each pair of geographic datasets, we computed the mean ratings of the 37 experts and
normalized them in the interval [0, 1] as similarity scores. Among them, 225 similarity scores of the
sample pairs were used to train the MLFFN and the other 20 scores of the evaluation pairs were used
to evaluate the similarity measures. Given the small size of the evaluation pairs, an inspection about
whether there was a distribution difference between the sample pairs and the evaluation pairs needed
to be done. The Mann-Whitney U test [48] is the most commonly used nonparametric procedure
in comparing two distributions based on independent samples. It is especially useful when the
assumption of normality is not met. Using a Mann-Whitney U test, we obtained a p-value of 0.101
and concluded that there is no evidence to suggest that the error distributions in the two groups
are different.

The training dataset was derived by the following method: for every pair of geospatial datasets
in sample pairs, we used Equations (7), (9), (11) and (13) to compute the similarities of theme, category,
spatial coverage, and temporal coverage. The four values were the input data of the training dataset.
The overall similarity score of this pair of geospatial datasets, which was given by experts, was the
output data of the training dataset. By the input and output data in the training dataset, an MLFFN
can be trained to compute the similarity of inter-geospatial data based on the elementary similarities
of intrinsic characteristics.

4.3. The Creating and Training of MLFFN

Once the training datasets had been collected, an MLFFN could be created and trained. To create
an MLFFN with the best performance, two important factors must be considered: the architecture and
the learning rate of the MLFFN.

4.3.1. Prediction Accuracy vs. the Architecture of MLFFN

The architecture of an MLFFN determines the number of connection weights (free parameters)
and the way information flows through the network. Determination of an appropriate network
architecture is one of the most important, but also one of the most difficult, tasks in the ANN model
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building process. This is generally done by fixing the number of hidden layers and choosing the
number of nodes in each of these layers [49]. The number of nodes in the input layer is fixed by the
number of model inputs, whereas the number of nodes in the output layer equals the number of
model outputs. Therefore, the input and output nodes of our MLFFN are 4 and 1, respectively, as
listed in Tables 6 and 7. It has been shown that MLFFNs with one hidden layer can approximate any
function [50]. However, in practice, many functions are difficult to approximate with one hidden
layer, requiring a prohibitive number of hidden layers [51]. The use of more than one hidden layer
provides greater flexibility and enables approximation of complex functions with fewer connection
weights in many situations [51,52]. Flood and Kartam [51] suggested using two hidden layers as a
starting point. Moreover, the rule of thumb says that the number of connections between neurons
should not exceed the number of training samples [53] and larger networks (more than two hidden
layers) generally require a large number of training samples to achieve good generalization ability [54].
There are 225 pairs of training data in our research, which is not a very large size; hence, two hidden
layers were enough for our MLFFN. The number of nodes in the hidden layers was determined by
the following method: MLFFNs with a different number of hidden layer nodes were evaluated and
then the Pearson product-moment correlation coefficient r and root mean squared error (RMSE) were
used [55,56] to determine the optimum network topology.

Table 6. Input parameters for our MLFFN and their ranges.

Input Parameter Range

Theme similarity 0–1
Category similarity 0–1

Spatial coverage similarity 0–1
Temporal similarity 0–1

Table 7. Output parameters for our MLFFN and their ranges.

Output Parameter Range

Overall similarity of inter-geospatial datasets 0–1

The goal of training an MLFFN is to maximize the coefficient r and minimize the RMSE and the
iteration times. The initial parameters used for training the network are shown in Table 8. The tested
architectures and evaluation results of the MLFFNs are listed in Table 9.

Table 8. Initial training parameters.

No. Parameter Value

1 Max. iterations 300,000
2 Max. error 10−4

3 Initial learning rate 0.1
4 Momentum coefficient 0.25

In Table 8, parameter 1 is the largest number of steps that the MLFFN can run. Parameter 2
is measured by the mean square error (MSE), and a value of 10−4 means that the MLFFN will stop
iterating if MSE < 10−4. Parameter 3 is the initial learning rate, and the learning rate was set to different
values in each training process in the next experiment. The introduction of parameter 4 cuts down the
learning time and efficiently prevents the networks from remaining at local optima.

Evaluation of different MLFFNs resulted in a 4-10-5-1 network topology (Table 9). The Pearson’s
r and RMSE are equal to 0.958 and 0.0143, respectively.
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Table 9. Evaluation results of different MLFFNs.

No. Architecture RMSE Pearson’s r Iteration Times

1 4-25-2-1 0.0159 0.957 115,517
2 4-20-2-1 – – Over 300,000
3 4-17-3-1 – – Over 300,000
4 4-15-3-1 0.0149 0.957 74,479
5 4-13-4-1 0.0144 0.957 58,642
6 4-10-4-1 0.0144 0.957 71,596
7 4-10-5-1 0.0143 0.957 72,251
8 4-9-5-1 0.0146 0.957 70,996
9 4-8-6-1 0.0147 0.957 134,707

10 4-8-7-1 0.0153 0.957 234,536
11 4-7-7-1 – – Over 300,000
12 4-8-3-1 – – Over 300,000

Note: an architecture of 4-25-2-1 means two hidden layers for the MLFFN. The first hidden layer has 25 neurons
and the second has 2 neurons. The number of connection weights is less than 225.

4.3.2. Quickness of Convergence vs. Learning Rate

The learning rate controls the speed of MLFFN learning by affecting the changes being made
to the weights of transition matrices at each step. The performance of the ANN algorithm is very
sensitive to proper setting of the learning rate [57]. If the learning rate is too low, the algorithm will
take too long to converge. If the value is too large, the ANN becomes unstable and oscillates around
the error surface. When we tried to get the optimal network topology, we set the learning rate to be 0.1,
which is a small number. It may not be the optimal value. In the study, we need to adjust the learning
rate to test the number of iterations and measure the prediction accuracy so that the optimal learning
rate can be found.

By gradually increasing the learning rate, we recorded the number of iterations when the MLFFN
with the network topology of 4-10-5-1 completed training. Then, the correlation coefficient r and RMSE
between the prediction values of MLFFN and the desired correct output value given by experts were
computed on the sample pairs. Figure 3 shows the experimental results of the learning rate by the
number of iterations, Pearson’s r and RMSE. The X-axis indicates a learning rate ranging from 0.1 to 0.9
with intervals of 0.1, whereas the Y-axis (left side) indicates the number of iterations when the MLFFN
converges and the Y-axis (right side) indicates the values of the correlation coefficient r and the RMSE.

By analyzing Figure 3, we find that as the learning rate continually increases, the RMSE increases.
The correlation coefficient between the prediction values of MLFFN and the desired correct output
values given by experts on sample pairs keeps quite stable, ranging from 0.956 to 0.957. The number of
iterations decreases first and then increases, although there is an abnormal value when the learning
rate is equal to 0.4. This can be interpreted as follows: when the learning rate increases, the MLFFN
can learn more quickly, but when the learning rate is increased to some degree, the algorithm becomes
unstable, oscillates around the error surface, and takes more time to converge. When the learning rate
is equal to 0.9, the MLFFN cannot converge at all. To ensure that our MLFFN has a high accuracy,
we choose 0.1 as the optimal learning rate when r is 0.957 and the number of iterations is 72,251
(the number of iterations will vary depending on different computation conditions).
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4.4. Comparison and Evaluation

Given the trained MLFFN, we now compared it with the existing methods to demonstrate the
advances of it in improving the precision of similarity measure of geospatial data. The existing methods
are mainly the weighted sum of the elementary similarities of the characteristics of geospatial data,
for example, the methods of [9,10,13]. In this article, we use Equation (14) as the representative of the
traditional methods:

S =
n

∑
i=1

(Wsubi × Ssubi) (14)

where S is the overall similarity of geospatial data; Ssubi denotes the similarity of ith detailed intrinsic
characteristic of the geospatial data and Wsubi is the corresponding weight; and n is the number of
detailed intrinsic characteristics.

In this article, four detailed intrinsic characteristics were selected to represent geospatial data.
According to [13], the weights of Wsubi are 0.2378, 0.1722, 0.35, and 0.24 for theme, category, spatial
coverage, and temporal coverage similarity, respectively.

The Pearson product-moment correlation coefficient r and RMSE of our trained MLFFN and
traditional method on 20 pairs of geospatial data of evaluation pairs were computed, as shown in
Table 10.

Table 10. The comparison of precision for our MLFFN and weighted sum methods.

Index Name MLFFN Weighted Sum

Pearson’s r 0.943 0.929
RMSE 0.015 0.075
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We find that our MLFFN outperforms the traditional linear method in terms of combining
elementary similarities of characteristics of geospatial data to overall similarity, though the precision
of traditional weighted sum method is also high.

In order to give precise indications of the practical applicability of our proposed method, it
was necessary to analyze the spatiotemporal computational complexity of the approach. For both
our ANN-based method and the weighted sum method, the four elementary similarities of intrinsic
characteristics must be computed first. The computational complexity of the step is equal for the
two methods. We do not compare them here. After obtaining the four elementary similarities of
the intrinsic characteristics of a pair of geospatial data, the weighted sum method gives the overall
similarity at once. For n pairs of geospatial data, the weighted sum method has a linear complexity
O(n). For our trained MLFFN, the computational complexity is equal to that of forward propagation.
As the network topology of our MLFFN is 4-10-5-1, for the worst case the computational complexity is
O(n(4 · 10 + 10 · 5 + 5 · 1)) = O(95n), which is still a linear complexity. Space or memory complexity
of our MLFFN is negligible since there are only 4 + 10 + 5 + 1 = 20 neurons and 4·10 + 10·5 + 5·1 = 95
weights of connections that require memory space allocation. Although our MLFFN increased the
computational complexity and memory cost, it does not constitute an obstacle for the practical usage
of the technique.

5. Discussion

5.1. Interpretation of the Performance of Our Method

Why can the non-linear combination methods of elementary similarities of intrinsic characteristics
of geospatial data, which is represented by our MLFFN, improve the precision of similarity
computation of geospatial data? We ranked the 20 pairs of datasets from the evaluation pairs by
the similarity scores generated by our MLFFN and the traditional weighted sum method, respectively.
We found that most orders of the two groups of geospatial data are the same, but some are different.
The different pairs are shown in Table 11.

Table 11. The data pairs in different orders ranked by MLFFN and weighted sum methods.

No. Dataset A Dataset B MLFFN Similarity Weighted Sum Similarity

1 2000 Tibet Plateau
land use data

2000 Tibet Plateau
sub-regional climate data 0.57 0.67

2 1980 Tibet Plateau
land use data 2015 ShangHai land use data 0.59 0.43

3
1952–1993 Tibet
Plateau weather
and climate data

1951–2000 China average
wind velocity data on a

1 km grid
0.66 0.73

4
1952–1993 Tibet
Plateau weather
and climate data

1980–1981 China
agricultural phenology data 0.83 0.71

By analyzing dataset pairs 1 and 2 in Table 11, we found that our MLFFN deems that a pair of
geospatial data is more similar when their theme contents are the same, even though their spatial
coverage and time coverage are completely different. The weighted sum method gives a relatively high
similarity score for two datasets with the same spatial coverage and temporal coverage even though
their theme content is thoroughly different, which is in contrast to the expert’s knowledge. Therefore,
we could infer that the combination of elementary similarities of intrinsic characteristics of geospatial
data to overall similarity must not be linear, although we cannot derive the functions explicitly.
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5.2. Factors Affecting the Precision of Similarity Computation of Geospatial Data

Although our non-linear combination of elementary similarities of intrinsic characteristics
of geospatial data achieved higher precision, there are still limitations that affect the similarity
computation precision of geospatial data.

For example, for the theme similarity, our proposed method is incapable of computing all
geospatial dataset’s theme similarities because some geographic terminologies, such as “phenology,”
“foredune,” “regionalization,” “semi-arid climate,” “periglacial landform,” are not recorded in the
WordNet database. How to build a geographic semantic web large enough and realize similarity
computation of terms is still an urgent issue to tackle. Moreover, for the spatial coverage similarity
algorithm when the topology relations gradually change, the corresponding similarities of spatial
coverage change discontinuously. Table 12 shows the similarities of geospatial coverages computed
by our method in Section 3.3.3, whose topology relations are ranging for “same,” “contains/within,“
“overlaps,” “touches,” to “disjoint,” but the similarities are ranging from 1, 0.82, 0.53, 0.34, to
1.03 × 10−6. We know that an ANN has a better performance in fitting continuous functions than
discontinuous ones of the input parameters. Therefore, we should create new algorithms for geospatial
coverage similarity to get continuous results and further improve the performance of the MLFFN.

Table 12. Spatial coverage pairs with different topology relations and similarities.

Spatial Cover One Spatial Cover Two Topology Relation Similarity

Jiang Su Province Jiang Su Province Same 1
Jiang Su Province Yangtze River Delta Within/Contains 0.82
Jiang Su Province Taihu Basin Overlaps 0.53
Jiang Su Province Zhe Jiang Province Touches 0.34
Jiang Su Province Fu Jian Province Disjoint 1.03 × 10−6

Jiang Su, Zhe Jiang, and Fu Jian are provinces of China; Zhe Jiang is between Jiang Su and Fu Jian.

6. Conclusions

In this study, we built an artificial neural network and the similarity algorithms for intrinsic
characteristics of geospatial data to combine the elementary similarities to overall similarity
non-linearly. The prior knowledge was obtained from domain experts. The MLFFN was trained
and evaluated. The results show that our proposed method achieves a high precision in terms of
similarity computation of geospatial data and outperforms the traditional combination method of the
weighted sum.

We first integrated the elementary similarities of intrinsic characteristics of geospatial data to an
overall similarity by using an artificial neural network and demonstrated that the combination pattern
in human rating process is not linear. Our method can be used as an accurate measure to assess the
similarity of geospatial data.

As the study involves numerous research domains, there are still some problems that need to be
solved. (1) Due to limited vocabularies of WordNet, particularly in the domain of geosciences, a new
similarity measure of keywords should be proposed. (2) A new similarity algorithm for geospatial
coverage must be presented to achieve continuous similarity results. (3) In this research, we considered
only the intrinsic characteristics of geospatial data. If more characteristics are considered, the similarity
of geospatial data can be assessed more comprehensively. (4) As the training of neural networks is
a time-consuming process, we should take parallel computation into consideration to accelerate the
training speed.
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