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Abstract: In high-resolution image data, multilevel cloud detection is a key task for remote sensing
data processing. Generally, it is difficult to obtain high accuracy for multilevel cloud detection when
using satellite imagery which only contains visible and near-infrared spectral bands. So, multilevel
cloud detection for high-resolution remote sensing imagery is challenging. In this paper, a new
multilevel cloud detection technique is proposed based on the multiple convolutional neural networks
for high-resolution remote sensing imagery. In order to avoid input the entire image into the network
for cloud detection, the adaptive simple linear iterative clustering (A-SCLI) algorithm was applied to
the segmentation of the satellite image to obtain good-quality superpixels. After that, a new multiple
convolutional neural networks (MCNNs) architecture is designed to extract multiscale features
from each superpixel, and the superpixels are marked as thin cloud, thick cloud, cloud shadow,
and non-cloud. The results suggest that the proposed method can detect multilevel clouds and obtain
a high accuracy for high-resolution remote sensing imagery.

Keywords: multiple convolutional neural networks; cloud detection; superpixel; high-resolution
remote sensing imagery

1. Introduction

With the advancement in remote sensing technology, high-resolution satellite imagery is widely
used in various fields such as resource surveying, environmental monitoring, and geographical
mapping [1]. However, according to the International Satellite Cloud Climatology Project-Flux Data
(ISCCP-FD), the global annual mean cloud cover is approximately 66% [2]. Cloud often appears and
covers objects on the surface in high-resolution remote sensing images, which not only leads to missing
information and spectral distortion, but also can affect the processing of remote sensing imagery [3].
Therefore, cloud detection in high-resolution satellite imagery is of great significance.

Up to now, a series of cloud detection methods have been proposed [4], and these methods can be
divided into two categories: (i) threshold-based methods and (ii) machine learning-based methods.
The threshold-based methods are practical and fast in calculation, so are widely used in practical
applications. Threshold-based methods, including the International Satellite Cloud Climatology
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Project (ISCC) [5], the NOAA Cloud Advanced Very High Resolution Radiometer (CLAVR) [6], and the
MODIS cloud mask method [7], have established a series of direct thresholds using the apparent
reflectance or brightness temperatures through single or multiple channels for different satellite
imageries. Zhang et al. [8] obtained a coarse cloud detection result relying on the significance map and
the proposed optimal threshold setting.

Many other methods have also used thermal infrared (TIR) bands for cloud detection,
but high-resolution images have a lack of thermal infrared (TIR) bands. So, the threshold-based
methods are generally difficult to apply to the high-resolution images due to the limited
spectral resolution.

However, machine learning algorithms such as support vector machine (SVM) have been
widely used in image classification [9]. Machine learning-based methods extract a range of manual
characteristics pixel by pixel, followed by learning a binary classifier to determine whether this pixel
belongs to cloud area or not [10]. Hughes et al. [11] developed a neural network approach to detect
clouds in Landsat images using spectral and spatial information. Başeski and Cenaras [12] trained an
SVM classifier using texture characteristics to detect cloud in RGB images. These methods are manually
designed features which rely on prior knowledge and have difficulty in accurately representing the
cloud features in the complex environment [13]. In high-resolution imagery, ground objects are
complex and shapes of the cloud are varied, and many other objects such as ice, white buildings, snow,
and so forth can cause confusion. Therefore, cloud detection in high-resolution images is a challenging
task. By summarizing the existing cloud detection methods, it can be found that most of the methods
are only concerned with the cloud-covered area. However, a few other methods showed interest in the
identification of cloud types. Thus, multilevel cloud detection is of significance for thin cloud removal
and image analysis tasks.

Deep learning is the learning process of simulating the human brain, which automatically extracts
high-level features from the low-level features of the input image [14,15]. The deep convolutional
neural network (CNN), which is one of the deep learning methods, has its unique advantage, especially
for processing visual-related problems [16].

Generally, it is difficult to obtain good results for multilevel cloud detection when using imagery
which only includes visible and near-infrared spectral bands. In this study, we propose multilevel
cloud detection (thin cloud, thick cloud, and cloud shadow) from Chinese high-resolution satellite
imagery based on MCNNs. In order to avoid the entire image into the network for cloud detection,
first, we extend simple linear iterative clustering (SLIC) [17] to generate superpixels, and the superpixel
is taken as the basic unit of cloud detection. We propose a novel MCNNs architecture consisting of
three different patch-based CNN models. Each different patch-based CNN replaces fully connected
layers with global self-adaptive pooling (GSAP). The results indicate that the MCNNs architecture
performs well in typical land-cover types, and it can also accurately detect multilevel cloud using only
the four optical bands.

The major contributions of this paper are:

(1) In order to reduce the loss of image features during the process of pooling, we propose
self-adaptive pooling (SAP).

(2) A novel MCNNs architecture is designed for multilevel cloud detection.
(3) Adaptive simple linear iterative clustering (A-SLIC) algorithm is proposed through affinity

propagation clustering and expanding the searching space. The A-SLIC algorithm was applied to
obtain segmentation of the image into good-quality superpixels.

2. Datasets

In this study, three categories of different spatial resolutions satellite imagery, GaoFen-1 (GF-1),
GaoFen-2 (GF-2), and ZiYun-3 (ZY-3), were used for multilevel cloud detection. The information of
Chinese high-resolution satellite imagery is given in Table 1. Experimental imageries contain various
cloud types such as small thin cloud, medium-sized thin cloud, large thick cloud, cloud shadow, and so
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forth. These satellite imageries contain many underlying surface environments such as building, sand,
ice, sea, vegetation, snow, and so forth. In general, it is difficult to distinguish between the thin cloud
and the thick cloud. In addition, it also very difficult to distinguish snow and white buildings from
cloud pixels based on their spectral features.

Table 1. Summary of the dataset used in this study.

Image
Name

Image Size
(Pixels)

Spatial
Resolution (m) Cloud Types Surface Types True Color

Multispectral Image

ZY-3 2900 × 3000 5.8
medium thin cloud;
medium thick cloud;

cloud shadow

water;
mountain;
bare rock

ZY-3 3000 × 3000 5.8
small thin cloud;

medium thick cloud;
cloud shadow

building;
river;

city road

GF-1 2100 × 2399 8 non-cloud

lake;
mountain;
bare rock;
ice; snow

GF-2 3000 × 3000 4
medium thick cloud;

small thin cloud;
cloud shadow

vegetation;
building;

road;
lake

Our training dataset is collected from ten ZY-3 multispectral images, seven Gaofeng-1
multispectral images, and nine Gaofeng-2 multispectral images. Our testing dataset is collected
from two ZY-3 multispectral images, one Gaofeng-1 multispectral image, and one Gaofeng-2
multispectral image.

3. Methods

In this section, the proposed framework used for cloud detection is shown in Figure 1. First,
the A-SCLI algorithm is proposed for application to the segmentation of the remote sensing image,
which can obtain adjacent SLIC regions. The A-SCLI algorithm is used to enhance CNN outputs.
Second, the MCNNs architecture and learning framework are discussed.
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Figure 1. Proposed cloud detection framework. A-SLIC: adaptive simple linear iterative clustering;
MCNNs: multiple convolutional neural networks.

3.1. Preprocessing

For cloud detection in high-resolution remote sensing images, many cloud detection methods are
based on the pixel level [18], and a few cloud detection methods are based on the superpixel level [19].
In this study, the MCNNs model is adopted to extract multiscale features from high-resolution satellite
imagery. Therefore, if pixels have been used as the basic unit of cloud detection, then the efficiency
of the cloud detection method is very low. The term superpixel refers to the adjacent image blocks
with similar color and brightness characteristics [20,21]. It groups the pixels based on the similarities
of features and obtains the redundant information of the image, which greatly reduces the complexity
of subsequent image processing tasks.

As a widely used superpixel algorithm [17], the SLIC algorithm can output good-quality
superpixels which are compact and roughly equally sized, but some problems still exist such as
the fact that the number of separations should be designed artificially and the ultrapixel edges are
divided vaguely. As SLIC obtains initial cluster centers through dividing the image into several equally
sized grids and the search space is limited to a local region, the produced superpixels cannot adhere
to weak cloud boundaries well and the cloud will be oversegmented [22]. In this paper, the SLIC
algorithm has improved from affinity propagation clustering and expanding the searching space.

Generally, the color of the cloud is white, with low reflectivity and high saturation. Similarly
to the RGB color model, the color space transformation to the hue, saturation, and intensity (HSI)
color model is first performed [23]. The transformation from RGB to the HSI color model is expressed
as follows:

H =

{
θ

360− θ

B ≤ G
B > G

(1)

S = 1− 3×min(R, G, B)
R + G + B

(2)

I =
R + G + B

3
(3)



ISPRS Int. J. Geo-Inf. 2018, 7, 181 5 of 16

θ = cos−1

 1
2 [(R− G) + (R− B)]√

(R− G)2 + (R− B)(G− B)

}
(4)

where R, G, and B are the values of band one, band two, and band three channels of input for the
remote sensing image. H, S, and I are the values of hue, saturation, and intensity components in the
HSI space.

Figure 2 shows an example of the HSI color space. Figure 2a is an original RGB color image.
Figure 2b–d shows an intensity component image, hue component image, and saturation component
image, respectively. It can be seen that the cloud region is prominent in I and S components. So, I and
S components are used in our proposed SLIC method.

Figure 2. (a) Original RGB color image; (b) Intensity component image; (c) Hue component image;
(d) Saturation component image.

Generally, a weighted similarity measure combining color and spatial proximity is needed in the
simple linear iterative clustering algorithm [24]. In this paper, the similarity measure between the ith
pixel and jth cluster center cj is expressed as follows:

d(i, j) = dc +
α

S
dxy (5)

dc =
√
(Ii − ICj)

2 + (Si − SCj)
2 (6)

dxy =
√
(xi − xcj)

2 + (yi − ycj)
2 (7)

where dc is ith pixel and jth pixel color difference dc, dxy is ith pixel and jth pixel space distance,
and S is the area of the jth cluster in the current loop. The α parameter is used to control the relative
importance of color similarity and spatial proximity.

The attraction function reflects the possibility of the jth pixel attracting the ith pixel as its
cluster [25]. The attraction function is expressed as:

α(i, j) = s(i, j)−max
j′ 6=j

{
β(i, j′) + s(i, j′)

}
(8)

where s(i, j) = −d(i, j) is the similarity between the ith pixel and the jth pixel and s(i, j′) = −d(i, j′) is
the similarity between the ith pixel and the non-jth pixel.

The iterative relationship of the attraction function is expressed as:

αt(i, j) = s(i, j)−max
j′ 6=j

{
βt−1(i, j′) + s(i, j′)

}
(9)

where t is the number of iterations.
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The attribution function reflects the possibility that the ith pixel attracts the jth pixel as its
cluster [26]. The attribution function is expressed as:

β(i, j) =


min
i 6=j

{
0, α(j, j) + ∑

i′ 6=i,j
max[0, α(i′, j)]} i 6= j

∑
i′ 6=j

max[0, α(i′, j)] i = j
(10)

The iterative relationship of the attribution function is expressed as:

βt(i, j) =


min
i 6=j

{
0, αt−1(j, j) + ∑

i′ 6=i,j
max[0, αt−1(i′, j)]

}
i 6= j

∑
i′ 6=j

max[0, αt−1(i′, j)] i = j
(11)

where t is the number of iterations.
Using both attraction and attribution functions, two types of messages are continuously

transmitted to possible clustering centers to increase their likelihood of becoming cluster centers.
So, the larger the sum of α(i, j) and β(i, j), the more likely the jth pixel is a cluster center. In this case,
the greater the probability that the ith pixel belongs to this class, the more likely that the point is
updated as a new cluster center. In order to reduce the computation complexity, this paper firstly
divided the segmentation images, and α(i, j) and β(i, j) were calculated in the local area. In this study,
the main processes of the A-SLIC algorithm are as follows:

• Step 1. For an image containing M pixels, the size of the predivided region in this algorithm is N,
and the number of regions is n. Each predivided area is labeled as η. α(i, j) and β(i, j) is defined
as zero, and t is defined as one.

• Step 2. HIS transformation is performed on the image of the marked area. In the ηth region,
according to Equation (5), the similarity between two pixels is calculated in turn.

• Step 3. According to Equations (9) and (11), the sum of βt(i, j) and αt(i, j) is calculated and the
iteration begins.

• Step 4. If βt(i, j) and αt(i, j) no longer change or reach the maximum number of iterations,
the iteration is terminated. The point where the sum of βt(i, j) and αt(i, j) is maximum is regarded
as the cluster center Rη

i .
• Step 5. Repeat steps 3 to 4 until the entire image is traversed, and adaptively determine the

number of superpixels (R′ =
n
∑

η=1
Wη). Finally, complete the superpixel segmentation.

The results of A-SLIC and SLIC segmentation are shown in Figure 3c,d. The experimental results
indicate that the superpixels segmented by the A-SLIC algorithm were compact and regular shape and
adhered well to the cloud region boundaries.

Figure 3. Segmentation results. (a) Original image; (b) A-SLIC segmentation results; (c) SLIC
segmentation results.
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3.2. Proposed Convolutional Neural Network Architecture

CNN architecture has become a hot topic in the field of deep learning [27]. The CNN architecture
provides a new method for remote sensing image high-level feature extraction. Generally, the CNN
architecture consists of the input layer, convolution layer, pooling layer, full connection layer,
and output layer, as shown in Figure 4.

Figure 4. The standard architecture of the CNN.

The input image is convoluted in the convolutional and filtering layers. Generally, convolutional
and filtering layers require an activation function to connect [28]. We use Gi to represent the feature
map of the ith layer of the convolutional neural network. The convolution process can be described as:

Gi = f (Gi−1 ⊗Wi + bi) (12)

where Wi represents the weight feature vector of the ith convolution kernel, the operation symbol ⊗
represents a convolution operation of the ith layer of the image and the i− 1th layer of the image,
and bi is the offset vector. Finally, the feature map Gi of the ith layer is obtained by a linear activation
function f (•).

There are two kinds of activation functions: one is a linear activation function and the other is
a nonlinear activation function. There are three common nonlinear activation functions: hyperbolic
function, sigmoid, and soft plus [29]. The hyperbolic function is a variant of the sigmoid function.
The range of the hyperbolic function is [−1, 1], and the range of the sigmoid function is [0, 1].
The activation state of the linear correction function and biological neurons after stimulation is relatively
close. The linear correction function is commonly used as the activation function of convolution neural
networks because of its sparsity and simple calculation [30]. In this paper, we use f (x) = max(0, x) as
an activation function.

After the convolution layer is the pooling layer, and the convolution layer and the pooling layer
are linked by an activation function. There are two main models of pooling layer: one is the max
pooling model as shown in Equation (13) and the other is an average pooling model as shown in
Equation (14).

The feature map obtained by the convolution layer is Gij, the size of the pooling area is c× c,
the pooling step length is c, and bi is the offset. The max pooling model can be expressed as:

Fij =
c

max
i=1,j=1

(Gij) + bi (13)

The average pooling model can be expressed as:

Fij =
1
c2 (

c

∑
i=1

c

∑
j=1

Gij) + bi (14)

where
c

max
i=1,j=1

(Gij) represents the max element from the feature map G in the pooled region of size c× c.
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Due to the complexity of the objects in high-resolution images, the traditional pooling model
cannot extract the image features very well. Therefore, this research takes two kinds of pooling areas in
the pooling layer, as shown in Figure 5. The blank space indicates that the pixel value is 0 the shaded
area is composed of different pixel values, and a represents the maximum value area. The features of
the whole feature map are mainly concentrated at A as shown in Figure 5a. If pooling is done with the
average pooling model, the features of the entire feature map will be weakened. The features of the
feature map are mainly distributed in A, B, and C, as shown in Figure 5b. In the case of the unknown
relationship between A, B, and C, the features of the entire feature map will be weakened by using the
maximum pooling model. This will eventually affect the detection accuracy of the cloud in remote
sensing images.

Figure 5. Different pooling areas. (a) one Feature mapping; (b) other feature mapping.

In order to reduce the loss of image features during the process of pooling, this paper presents
a SAP according to the principle of interpolation, based on the maximum pool model and the average
model. The model can adaptively adjust the pooling process through the pooling factors u in the
complex pooled area. The expression is:

Fij =
u
c2 (

c

∑
i=1

c

∑
j=1

Gij) + (1− u)
c

max
i=1,j=1

(Gij) + bi (15)

where u indicates the pooling factor. The role of u is to dynamically optimize the traditional pooling
model based on different pooled areas. The expression is:

u =
a(bmax − a)

b2
max

(16)

where a is the average of all elements, except for the max element in the pooled area, and bmax is the
max element in the pooled area. The range of u is [0, 1]. The model takes into account advantages
of both the max pooling model and the average model. According to the characteristics of different
pooling regions, the adaptive optimization model can be used to extract the features of the map as
much as possible, so as to improve the removal accuracy of the convolution neural network.

Figure 6b–d shows three feature maps from the different pooling models. It can be seen that the
feature map obtained from the adaptive pooling model has obvious features, while the max pooling
model and the average pooling model weaken the thin cloud and cloud shadow features.

Figure 7 shows the proposed CNN architecture. In this study, we designed a multiple CNN
model, which use three different-sized patches (128 × 128, 64 × 64, and 32 × 32) as the input data
to extract features from remote sensing imagery. The output is a 1024-dimensional vector, which is
reshaped into four 16 × 16 channels (thin cloud, thick cloud, cloud shadow, and background).
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Figure 6. The feature map from the different pooling models. (a) Original image; (b) the feature map
obtained from the self-adaptive pooling (SAP) model; (c) the feature map obtained from the average
pooling model; (d) the feature map obtained from the max pooling model.

Figure 7. The architecture of our designed multiple CNN.

We propose a MCNNs architecture consisting of three different patch-based CNN models. A fully
connected layer causes overfitting because of parameters [31,32]. GSAP simply self-adapts the feature
maps where similar results are expected in a patch. So, each different patch-based CNN works by
replacing fully connected layers with GSAP. Each different patch-based CNN contains two convolution
layers, two self-adaptive pooling, and one global self-adaptive pooling.

3.3. Accuracy Assessment Method

The ground truths of multilevel cloud areas were manually extracted. We evaluate the algorithm
performance for multilevel cloud detection. So, five metrics are used, including the overall accuracy
(OA), the kappa, the edge overall accuracy (EOA), the edge omission error (EOE), and edge commission
error (ECE). This paper designed the evaluation algorithm as follows: (i) firstly, obtain the boundary of
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the cloud by artificial visual interpretation; (ii) the morphological expansion is performed in the cloud
boundary obtained in step 1 to create a buffer zone centered on the boundary line and having a radius
of four pixels; and (iii) finally, the pixels in the buffer area are judged. Suppose that the total number
of pixels in the buffer area is N, the number of correctly classified cloud pixels is NR, the number
of missing pixels is NO, and the number of false alarm pixels is Nc. Then, EOA, EOE, and ECE are
defined as:

EOA =
NR
N
× 100%, EOE =

NO
N
× 100%, ECE =

NC
N
× 100% (17)

The OA and kappa are defined as [33,34]:

OA =
TN + TP

T
× 100% (18)

Kappa =
T × (TN + TP)− [(TP + FP)× (TP + FN) + (FN + TN)× (FN + TN)]

T × T − [(TP + FP)× (TP + FN) + (FN + TN)× (FN + TN)]
(19)

where, T is the total number of pixels in the experimental remote sensing image and TP, FN,
FP, and TN are the pixels categorized by comparing the extracted cloud pixels with the ground
truth reference:

• TP: true positives, i.e., the number of correct extractions;
• FN: false negatives, i.e., the number of cloud pixels not detected;
• FP: false positives, i.e., the number of incorrect extractions;
• TN: true negatives, i.e., the number of non-cloud pixels that were correctly rejected.

4. Experiments and Discussion

The proposed algorithm is implemented by using Python on a PC with CPU Intel(R) Xeon(R)
E5-2630 and GPU NVidia Tesla M40 12 G memory, and the designed SAPCNN is implemented through
the software library Tensor flow. The multiclass training dataset of 30,000 couples of patches is
obtained from the training set, where the number of thin cloud, thick cloud, and cloud shadow events
and patches are 9000, 6000, 9000, and 6000, respectively. For testing a remote sensing image, first,
superpixels are obtained by the adaptive simple linear iterative clustering algorithm. Then, three
different-sized patches (128 × 128, 64 × 64, and 32 × 32) centered at its geometric center pixel are
extracted from each superpixel and inputted into the trained multiple CNN model to predict the class
of this superpixel. Finally, the multilevel cloud detection resulting from the testing of the remote
sensing image is achieved by using the predictions of all its superpixels. In this paper, we initialized
the weights in each layer with a random number drawn from a zero-mean Gaussian distribution with
standard deviation of 0.01. The learning rate started from 0.005 and was divided by 10 when the error
reached a plateau and with initial bias set to the constant of 0.1.

4.1. Impact of the Superpixel Segmentation on the Performance of Multilevel Cloud Detection

In order to verify the effectiveness of the A-SLIC method, we compared the cloud detection
accuracy using A-SLIC + MCNNs, SLIC + MCNNs, and Pixel + MCNNs.

Figure 8b,c shows some superpixel segmentation results using different superpixel segmentation
methods. Visual inspection of Figure 8a,b indicated that our improved SLIC method and SLIC can
obtain compact superpixels, but our improved method can obtain more regular superpixels than the
SLIC method. Our A-SLIC method can not only void oversegmentation in large homogeneous regions,
but can also obtain regular superpixels.
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Figure 8. Multilevel cloud detection results using different superpixel segmentation methods:
(a–c) Original image, A-SLIC segmentation map, and SLIC segmentation map, respectively; A and B
are the magnified area corresponding to the red line regions of the segmentation map. (d–g) Ground
truth reference, A-SLIC + MCNNs, SLIC + MCNNs, and Pixel + MCNNs, respectively.

From Figure 8b,c, it is obvious that all methods can extract most of the clouds; but for the blurry
cloud boundaries and thin cloud regions, our improved superpixel method can achieve more accurate
results because of our method through leading affinity propagation clustering and expanding the
searching space, and the produced superpixels are easier to adhere to blurry cloud boundaries.

Eight metrics (OA, kappa, EOA, EOE, ECE, superpixel segmentation times, MCNNs prediction
times, and total time) are used to evaluate the performance of entire cloud detection using different
superpixel segmentation methods. Table 2 shows the statistical results.

Table 2. Statistics of different superpixel algorithms.

Parameter A-SLIC + MCNNs SLIC + MCNNs Pixel + MCNNs

OA (%) 98.27 94.34 92.14
Kappa (%) 92.34 88.31 87.31
EOA (%) 97.36 93.13 90.38
EOE (%) 0.94 2.61 4.24
ECE (%) 1.70 4.26 5.38

Superpixel segmentation (s) 6.81 5.63 0
MCNNs prediction (s) 2.37 5.91 481

Total time (s) 9.18 11.54 481
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From Table 2, it can be seen that the proposed method produced in this paper yields the best OA
and EOA, and its EOE was lower than that of the other methods. Because the superpixel segmentation
method introduced the idea of affinity propagation, adaptively determining the number of superpixels
and the center of clustering, the superpixel can contain the cloud boundary well. From Table 1, our cloud
detection architecture has the fastest speed, with 9.18 s per remote sensing image. So, superpixel
preprocessing can effectively improve the cloud detection accuracy and efficiency.

4.2. Comparison Between Different CNN Architectures

In this paper, the MCNNs is designed to extract cloud and mine multi-scale features of the
cloud. We compared the cloud detection accuracy using our proposed approach, and SAP + MCNNs,
max pooling (MP) + MCNNs, and average pooling (AP) + MCNNs approaches

Figure 9 shows the multilevel detection results of images containing different underlying surfaces
with different methods. From Figure 9c–f, it can be seen that the multilevel cloud detection can be
achieved by the proposed MCNNs algorithm. However, the traditional pooling (max pooling and
average pooling) + MCNNs method mistakenly highlighted some thin cloud as non-cloud (in the
white box). In addition, the proposed method has shown better performance than SAP + MCNNs
for multilevel cloud detection because MCNNs are integrated with A-SLIC segmentation in the
preprocessing stage to improve the performance of the MCNNs.

Figure 9. Multilevel cloud detection results using different CNN architectures: (a) original image;
(b) ground-truth image; (c–f) our proposed approach, SAP + MCNNs, MP + MCNNs, and
AP + MCNNs, respectively.

Five metrics (OA, kappa, EOA, EOE, and ECE) are used to evaluate the performance of entire
cloud detection using different CNN architectures. Table 3 shows the statistical results.

The overall accuracy and kappa of the proposed approach was more than 95% (Table 3), and the
overall edge accuracy was more than 97.37%, indicating that self-adaptive pooling and superpixel
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combinations are effective in multilevel cloud detection. The overall accuracy of AP + MCNNs was
the lowest, which indicates that more thin cloud regions were misjudged as non-cloud regions than
the others. Our results demonstrate that SAP + MCNNs is more effective at extracting cloud features
compared with two traditional pooling MCNNs and detects thin and thick cloud effectively on different
underlying surfaces.

Table 3. Statistics of different CNN architectures.

Parameter Proposed Approach SAP + MCNNs MP + MCNNs AP + MCNNs

OA (%) 98.64 96.17 89.07 84.13
Kappa (%) 95.27 88.34 89.34 87.81
EOA (%) 97.37 94.01 87.34 82.41
EOE (%) 1.02 2.28 4.81 8.17
ECE (%) 1.61 3.71 7.85 9.42

4.3. Comparison with Other Methods

In order to verify the effectiveness of the proposed method, we compared the proposed cloud
detection architecture with SVM [12], neural network [11], and K-means [32] approaches.

Non-cloud and cloud images are considered in this experiment, as illustrated in Table 1.
We display only two groups of cloud detection results with different methods. Figure 10 shows
some example cloud detection results using different methods. The first row in Figure 10a is a variety
of tested cloud images covering various underlying surface environments, in which there is a bright
background, mountain, bare rock, thin cloud, thick cloud, and/or cloud shadow. The second row
in Figure 10a is a non-cloud image, in which there is a bright background, mountain, snow, and ice.
The comparative results are shown in Figure 10c–f; it can be seen that our method in this paper
produces the best results, and especially, can distinguish the thin cloud from the thick cloud. As can
be seen from the second row in Figure 10d–f, some ice was identified as cloud by the SVM, neural
network, and K-means.

Figure 10. Cloud detection results using different methods. (a) Original image; (b) ground-truth image;
(c) our proposed method; (d) SVM; (e) neural network; (f) K-means.

Five metrics (OA, kappa, EOA, EOE, and ECE) are used to evaluate the performance of entire
cloud detection using different cloud detection methods. A good cloud detection algorithm has high
values of OA and EOA and low values of EOE and ECE. Table 4 presents the average values of four



ISPRS Int. J. Geo-Inf. 2018, 7, 181 14 of 16

metrics for the five test images. The metric precision is not given here because the compared methods
cannot be separated from thin cloud, thick cloud, and cloud shadow.

Table 4. Statistics of different cloud detection algorithms.

Parameter Proposed Approach SVM Neural Network K-Means

OA (%) 98.53 81.34 78.07 65.27
Kappa (%) 94.37 78.34 70.34 60.74
EOA (%) 96.17 79.51 76.39 62.37
EOE (%) 1.14 8.12 10.39 16.18
ECE (%) 2.69 12.37 13.22 21.45

From Table 3, it can be seen that the proposed method has high values of OA and kappa and
low values of EOE and ECE. The compared methods misjudged the bright background (snow, ice,
bare rock, and so on) for cloud pixels, and were also weak in detecting the thin cloud pixels. So, their
average overall accuracies were lower than that of the proposed method. The results show that the
proposed method has good accuracy and can achieve the multilevel detection of cloud.

5. Conclusions

Generally, it is difficult to obtain good results for multilevel cloud detection when using
high-resolution remote sensing imagery which only includes visible and near-infrared spectral bands.
This paper presents a cloud detection for high-resolution remote sensing imagery using and improved
convolutional neural network model. The advantages of the proposed CNN model is that it can
automatically extract multi-scale features. It is based on patch-based MCNNs, which consists of three
different patch-based CNN models; each different patch-based CNN contains two convolution layers,
two self-adaptive pooling, and one global self-adaptive pooling.

In our cloud detection architecture, the SLIC method was improved through affinity propagation
clustering and expanding the searching space. The A-SLIC method was applied to segment the image
into adjacent superpixels, which were used to enhance CNN outputs. The experiments proved that
the proposed method can achieve multilevel cloud detection and obtained the best cloud detection
accuracy compared to other methods. In a future study, our research will consider automatic training
sample selection methods, design powerful MCNNs, and apply multisource remote sensing images
for multilevel cloud detection.
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