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Abstract: Nonnegative matrix factorization (NMF) is a blind source separation (BSS) method often
used in hyperspectral unmixing. However, it tends to converge to a local optimum. To overcome this
limitation, we present a simple, but effective endmember initialization scheme for NMF, which is
realized by improving initial values through the application of the automatic target generation process
(ATGP) algorithm. The initial spectra and abundances of target endmembers are first obtained using
the ATGP algorithm and nonnegative least squares (NNLS) method, respectively. The preliminary
results are then optimized through iterative application of NMF. To validate the applicability and
effectiveness of the proposed method, we analyzed the improvement of NMF by the ATGP algorithm,
using the synthetic hyperspectral data and real hyperspectral images. The results from the proposed
method are compared with those of the vertex component analysis (VCA)-NMF algorithm, which
uses the VCA algorithm to perform initialization for NMF, the minimum volume constrained
NMF (MVC-NMF) algorithm, the traditional two-step VCA-fully-constrained least squares (FCLS)
algorithm, which uses the VCA to extract the endmember matrix, and the FCLS algorithm to estimate
the abundance matrix. The comparison results prove that proper endmember initialization can help
the NMF algorithm yield better estimation results. Through the optimization of target endmembers’
initial values, the proposed ATGP-NMF algorithm can consistently produce good results at a lower
computational cost, especially in the case of a real hyperspectral image for which pure pixels do not
exist and there is little prior knowledge. With its high applicability and effectiveness, the ATGP-NMF
algorithm has a great potential to solve hyperspectral unmixing problems.

Keywords: hyperspectral remote sensing; blind unmixing; automatic target generation process
(ATGP); nonnegative matrix factorization (NMF)

1. Introduction

Hyperspectral imagery can provide abundant spatial and spectral information for observed
ground objects. It has attracted increasingly more attention and has been widely used. However, due
to the low spatial resolution of hyperspectral sensors, mixed pixels prevail in hyperspectral images.
The mixed pixel problem severely influences the precision of object recognition and classification;
therefore, it has become an obstacle to quantification analysis of hyperspectral images. Hence, spectral
unmixing has always been an important subject in hyperspectral data analysis [1]. Traditional spectral
unmixing models are usually developed based on endmember spectra and involve two steps, i.e.,
endmember extraction and spectral unmixing [2–5]. These methods depend heavily on the precision
of endmember extraction and require certain prior knowledge [6]. Their effectiveness is greatly limited
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when there is insufficient prior information. Therefore, it is greatly important and necessary to develop
data-driven blind unmixing methods for hyperspectral images.

Over the past decade, the development of a new technique in the signal processing field,
blind source separation (BSS) [7], has offered novel methods for spectral unmixing. Different from
traditional two-stage methods, the BSS method can simultaneously obtain the endmembers and
their corresponding abundances. The current blind unmixing methods mainly include independent
component analysis (ICA) [8], nonnegative matrix factorization (NMF) [9], complexity-based BSS
methods [10] and sparse component analysis (SCA) [11,12].

Different from other methods, NMF can obtain nonnegative results with physical significance.
Therefore, NMF and its extensions have been widely used for spectral unmixing. However, these NMF
algorithms often provide only “local best” solutions due to the non-convexity of objective functions [13].
Most NMF-based algorithms deal with this problem by adding different constraints, such as the
smoothness constraint, the minimum volume constraint, the sparseness constraint and the regularized
constraint. Representative algorithms of the smoothness constraint have been reported in [14,15]. Miao
et al. developed the minimum volume constrained nonnegative matrix factorization (MVC-NMF) [16],
and Li et al. introduced the sparseness constraint of abundance matrix into MVC-NMF [17]. Various
sparse regression-based unmixing methods have been introduced by incorporating the sparseness
constraints into spectral unmixing [18–21]. Representative research on the sparseness constraints
include the coupled nonnegative matrix factorization (CNMF) [22], the substance dependence
constrained sparse nonnegative matrix factorization (SDSNMF) [23], the total variation regularized
reweighted sparse NMF (TV-RSNMF) [24] and the simultaneously sparse and low-rank constrained
NMF (DSPLR-NMF) [25]. Recent research has also considered regularized constraints, such as
the sparsity-constrained NMF with L1/2 regularization [26], the sparsity-regularized robust NMF
(RNMF) [27], the Arctan-NMF with smooth and sparse regularization [28], the robust collaborative
nonnegative matrix factorization (R-CoNMF) [29] and the graph regularized nonnegative matrix
factorization (GNMF) [13]. These methods are mainly proposed to get rid of the local minima of NMF
by adding constraints to the endmembers or the abundances. However, most statistical-based blind
unmixing methods can still be trapped in local minima if the initial values are not properly provided.

Researchers have also tried to solve the local optimization problem by providing reasonable
initialization and have found that the proper initialization of NMF and its extensions can help them
to avoid the “local best” problem and refine their solutions [30,31]. Several methods have been
proposed to improve the initialization, such as singular value decomposition (SVD) [32], clustering-based
initialization approaches [33] and vertex component analysis (VCA) [3,34]. Although great progress
has been made in improving the local optimization problem of the NMF algorithm, these studies
have mainly focused on signal processing and related areas. Further studies still need to be done to
verify their applicability in solving the mixed pixel problem of a hyperspectral image. Compared to
traditional supervised endmember extraction methods, such as the pixel purity index (PPI), ATGP
requires less prior information to extract pure pixel vectors as the endmember spectrum from the target
image [35]. Moreover, most of the ATGP-generated target pixels turn out to be endmembers [36]. In other
words, ATGP can provide more accurate initial points to identify endmembers. When it was used to
generate initial values for another BSS method, ICA, ICA showed a better performance [37]. Therefore,
we endeavored to use the ATGP algorithm to extract better initial endmembers for the NMF algorithm.

In this paper, we propose a new method that utilizes the ATGP algorithm to perform endmember
initialization for NMF, with the purpose of solving the NMF’s local optimum problem. First, the ATGP
algorithm is used to find initial target endmembers from a hyperspectral image, which are used to
initialize the endmember matrices of NMF. The initial abundance matrices of NMF are extracted
by using NNLS. Second, the endmember spectrum matrices and abundance matrices are iteratively
updated by the multiplicative update algorithm until the optimization goal is achieved. Finally,
the effectiveness and efficiency of the proposed method (ATGP-NMF) are verified by comparing its
experimental results in different situations with the results of other methods.
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The remainder of this paper is organized as follows. Section 2 briefly describes the linear mixture
model (LMM), NMF and ATGP and introduces the proposed endmember initialization scheme for NMF.
Section 3 presents experimental results and evaluates the performances of the proposed method and
the other three algorithms on synthetic hyperspectral data and real hyperspectral images. A summary
of this study and the conclusions are presented in Section 4.

2. Methodology

2.1. Linear Mixture Model

LMM assumes that the observed pixel is a linear combination of all the endmembers weighted
by their corresponding abundance fractions [38,39]. In addition, LMM has been widely used for
hyperspectral unmixing due to its physical effectiveness and mathematical simplicity. The LMM can
be expressed as

X = AS + E (1)

where X = [x1, x2, · · · , xN] ∈ RL×N represents the observation matrix with L bands and N pixels, and
A = [a1, a2, · · · , aP] ∈ RL×P and S = [s1, s2, · · · , sN ] ∈ RP×N represent the endmember matrix and the
abundance matrix, respectively. P denotes the number of endmembers and E ∈ RL×N is the additive
noise. In LMM, the abundance vectors are subjected to the abundance nonnegative constraint (ANC)
and abundance sum-to-one constraint (ASC).

2.2. Nonnegative Matrix Factorization

NMF is a general matrix decomposition method, which decomposes the data matrix X as a
product of two nonnegative matrices A and S. Note that L denotes the number of bands, N denotes
the number of pixels, P denotes the number of endmembers, and P < min (L, N). In essence, NMF is
an optimization problem. An objective function based on Euclidean distance is presently the most
widely used method; in this case the goal of the NMF model is to find the minimum reconstruction
error by two nonnegative matrices A and S:

minimize : Eus(X, AS) =
1
2
‖X−AS‖2 =

1
2 ∑

ij
(Xij−(AS)ij)

2 (2)

where aij ≥ 0, and sij ≥ 0, 1
2‖·‖

2
F represents the Frobenius norm.

For the objective function 1
2‖X−AS‖2

F, many learning algorithms, such as the multiplicative
update algorithm, alternating least squares algorithm and gradient descent algorithm, are presently
often used to solve the optimization problem of NMF. Among these algorithms, the multiplicative
update algorithm can guarantee the non-negativity of both the calculation process and the final
results [40]. It also adopts an auto-adjusted step size in the iteration, rather than the traditional manual
setting, which reduces the impacts of parameter selection. In this paper, we used the general iterative
expression formula of the multiplicative update algorithm to solve the objective function.

For each matrix of A and S, the objective function 1
2‖X−AS‖2

F is a convex function, but if matrices
A and S are considered as a whole, the objective function is no longer convex. This makes it difficult to
converge to a global optimum. Tao et al. found that the NMF algorithm can determine the optimum
and physically significant solution more quickly and easily if a better starting point is provided [41].

2.3. Automatic Target Generation Process

The selection of an initial target endmember has a great impact on spectral unmixing [42].
Based on unsupervised and unconstrained orthogonal subspace projection (OSP) theory, the ATGP
algorithm searches for the candidate endmembers with the maximal orthogonal projection in a
sequence of orthogonal projection subspaces [43]. ATGP is an unsupervised target detection technique.
It implements an orthogonal subspace projector to find a set of potential targets with the maximal
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orthogonal projections (OPs) from the image. The orthogonal subspace projector of ATGP can be
defined as:

P⊥U = I−U(UTU)
−1

UT (3)

where the subspace U is composed of the targets previously generated by the ATGP algorithm.
It should be noted that before the ATGP algorithm is applied, the number of spectral endmembers

should be determined, especially in cases for which there is not sufficient prior information.
The Harsanyi-Farrand-Chang (HFC) method based on the Neyman-Pearson detection theory has
recently been widely used to determine the number of spectral endmembers [44]. Therefore, in this
study, the HFC algorithm is used to determine the virtual dimensionality (VD), which is representative
of the number of endmembers.

Detailed steps of the ATGP algorithm are described as follows:

1. The observed pixel of the hyperspectral image is set to a vector x, and the VD determined by the
HFC algorithm is q.

2. Based on the convex geometry theory, we choose a target pixel with the maximum vector length,
which corresponds to the brightest pixel in the image, as the initial target pixel vector denoted by
t0 = arg

{
max

x

[
xTx
]}

.

3. Based on the orthogonal subspace projection theory, the ATGP algorithm begins with the initial
target pixel vector t0 by applying an orthogonal subspace projector P⊥t0

to all pixel vectors in
the image and finds the first target pixel vector denoted by t1 with the maximum orthogonal

projection in the orthogonal complement space t1 = arg
{

max
x

[
(P⊥U0

x)
T
(P⊥U0

x)
]}

.

4. Suppose that we find the ith target ti generated at the ith step by ti = arg
{

max
x

[
(P⊥Ui−1

x)
T
(P⊥Ui−1

x)
]}

,

where Ui−1 = [t0, t1, · · · , ti−1] is the target pixel vector matrix generated at the (i− 1)st step.
5. The orthogonal subspace of Ui is given by P⊥Ui

= I−UiU#
i , where U#

i = (UT
i Ui)

−1UT
i is the

pseudoinverse of Ui; the notation
⊥
Ui

in P⊥Ui
indicates that the projector P⊥Ui

maps the observed

pixel x into the range
⊥
Ui

, the orthogonal complement of Ui; and I is a unit matrix.

6. The ATGP stops when i equals to the number of the endmembers q. The target pixel vector matrix
[t 1, t2, · · · , tq

]
which contains q target pixel vectors apart from the initial target pixel vector t0,

is then regarded as the endmember spectra.

Another widely used endmember finding algorithm, i.e., the VCA algorithm, extracts endmembers
by the maximal OPs from a sequence of successive orthogonal projection subspaces, which is quite
similar to that of the ATGP [45,46]. Actually, the VCA algorithm can be considered as a variant of ATGP.
However, the VCA algorithm does not have stable performance when random initial values are used [47].
Scholars have proven that the performance of VCA can be improved by using ATGP-generated targets
as its initial conditions [48]. Compared to VCA, the ATGP algorithm is not constrained by initial
conditions or dimension reduction transformations. Therefore, it serves as a more effective and
accurate endmember extraction method when little or no prior information is available.

2.4. Proposed Endmember Initialization Scheme for NMF

The NMF blind unmixing method improved by the ATGP-generated initial target endmembers
(ATGP-NMF) can be expressed as follows:

1. Initialization: target endmembers extracted by the ATGP algorithm are used as the initial
endmember matrix A of NMF. Since the NNLS algorithm has been used for hyperspectral
unmixing, especially for the initialization of NMF [33,49], the corresponding abundances of target
endmembers derived by NNLS are used as the initial abundance matrix S of NMF.
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2. Objective function and optimization algorithm: The objective functions are constructed based
on the Euclidean distance, due to its simplicity, intuition and wide application. To solve the
objective functions, the multiplicative update algorithm is selected as the optimization criterion.
The update formula of endmember matrix A and abundance matrix S can be expressed as
Equations (4) and (5):

Spn ← Spn
(ATX)pn

(ATAS)pn+λ
(4)

Alp ← Alp
(XST)lp

(ASST)lp+λ
(5)

where Spn is the pth endmember abundance value of the nth mixed pixel, and Alp is the pth

endmember spectrum value of the lth band. Here, a minimal positive value λ is used to ensure
that the denominator is nonzero [14].

3. Update: the rows of the weight coefficient matrix S are updated using Equation (4), while the
columns of the basic matrix A are updated using Equation (5).

4. Normalization: according to the ASC in the spectral mixing model, and following the methods
suggested in [2,9,14], the weight coefficient matrix S is normalized after every iteration using
Equation (6) to guarantee that the sum of each column vector in the weight coefficient matrix S is
always equal to one.

Spn ←
Spn

∑P
p Spn

(6)

5. Final endmember matrix A and endmember abundance matrix S: matrices A and S are repeatedly
updated until the maximum number of iterations is reached or until the stopping condition is
satisfied, i.e., the value of the objective function is equal to zero or the prescribed error threshold ε .

Euc(k)(X, X̂(k)
) = 1

2‖X− X̂‖(k)2 ≤ ε (7)

where X̂(k) is the reconstruction of X after the kth iteration.

The endmembers extracted by the blind unmixing method do not contain information about their
categories; therefore, it is necessary to compare the endmember spectra extracted from hyperspectral
data to the real endmember spectra and further identify their exact categories. In this study, we search
for the best match of each endmember’s spectral curve in the reference spectra set until the average
correlation coefficient of the spectra set reaches the maximum value.

The flowchart of the proposed method is shown in Figure 1.
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3. Experimental Results

In this study, we carried out spectral unmixing experiments using the synthetic hyperspectral
data and two real hyperspectral images to analyze the applicability and validity of the ATGP-NMF
algorithm. The synthetic hyperspectral data were used to simulate a series of situations with different
SNR levels, different purity levels and different numbers of endmembers. The real hyperspectral
images representsituations in which pure pixels do not exist and there are strong spectral correlations
between endmembers. The performance of the proposed method was compared with those of
three representative algorithms, namely the VCA-NMF algorithm, the MVC-NMF algorithm and the
VCA-FCLS algorithm. The VCA-NMF algorithm is included to test whether the ATGP approach is a
better choice than the VCA to perform the initialization of NMF. The MVC-NMF algorithm, which adds
the minimum volume constraint into NMF, is used to compare two different solutions for the NMF’s
local optimum problem, i.e., to impose certain constraints and provide better initialization. In addition,
it is a representative of constraint-NMF algorithms and has been widely used in comparative studies of
NMF-based algorithms [23,50,51]. The VCA-FCLS algorithm, which uses VCA to identify endmembers
and FCLS to calculate abundances, represents the traditional two-stage spectral unmixing method.

3.1. Performance Metrics

The performances of the abovementioned algorithms are evaluated from two perspectives,
the similarity to real spectra and the accuracy of the abundance estimation. The similarity of the
extracted endmember’s spectra to the real spectra is evaluated via the indices of spectral angle distance
(SAD) [52] and spectral information divergence (SID) [3]. The accuracy of the abundance estimation is
evaluated by the root mean square error (RMSE) [53]. The equations of these indices are given as follows:

• Spectral angle distance (SAD):

SAD(A, B)= cos−1(
AB

‖A‖‖B‖ )= cos−1(
∑n

i=1 AiBi√
∑n

i=1 AiAi
√

∑n
i=1 BiBi

) (8)

where A is the actual spectral vector, B is the estimated spectral vector, and n is the number of
bands. The real endmember spectra can be spectra in the spectral library, observed spectra from
the laboratory or field, or spectra extracted from pure pixels in remote sensing imagery.

• Spectral information divergence (SID):

SID(A, B) = D(A||B ) + D(B||A) (9)

where A is the actual spectral vector, and B is the estimated spectral vector.

• Root mean square error (RMSE):

RMSE =

√
∑N

i=1 ∑P
j=1 (Sij−Ŝij)

2

n
(10)

where Sij is the actual abundance of the jth endmember abundance of the ith mixed pixel, Ŝij is
the estimated value of Sij and n is the number of bands. The RMSE metric can partly reflect how
the inversion results reconstruct the original information.

3.2. Spectral Unmixing Using Synthetic Data

The hyperspectral synthetic data were generated using five spectral signatures randomly
selected from the United States Geological Survey (USGS) digital spectral library [54], i.e., those
for brucite, chabazite, olivine, spessartine and witherite (Figure 2). These spectral signatures
are linearly independent and can be regarded as endmembers [16]. All signatures are available
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online (http://speclab.cr.usgs.gov/spectral-lib.html). The spectral data contain 420 bands covering
wavelengths from 395.1–2560 nm. To create the linear mixtures, the abundance of each endmember was
randomly determined using the Dirichlet distribution under the ANC and ASC. Moreover, to simulate
possible errors and sensor noise, zero mean white Gaussian noise with a 30-dB signal-to-noise ratio
(SNR), as defined in [55], was added to the mixture dataset.
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Figure 2. Reflectance spectra of the five materials selected from the USGS spectral library.

The abovementioned four algorithms, including the ATGP-NMF, VCA-NMF, MVC-NMF and
VCA-FCLS algorithms, were first applied to the synthetic mixture data (SNR = 30 dB, purity level
$ = 0.8) to extract the endmember spectra (Figure 3) and calculate the corresponding abundances.
The similarity of the extracted spectra to the real spectra was evaluated by SAD and SID (Figure 4).
The accuracy of the abundance estimation was evaluated by RMSE (Table 1).
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To further evaluate the robustness of these four algorithms, we compared their performances 
under different conditions, in terms of the SNR, purity level ρ and number of endmembers p, by using 
synthetic data. The comparison results are shown in Figures 5–7. 

Figure 3. Comparison of the extracted endmember signatures using vertex component analysis
(VCA)-fully-constrained least squares (FCLS), VCA-NMF, minimum volume constrained (MVC)-NMF
and ATGP-NMF with the experiment data, spectral signals from the USGS digital spectral library for
(a) brucite; (b) chabazite; (c) olivine; (d) spessartine; (e) witherite.

Table 1. Spectral angle distance (SAD), spectral information divergence (SID) and RMSE values of the
four algorithms on synthetic data.

Method SAD SID RMSE

VCA-FCLS 0.1039 0.0233 0.1002
VCA-NMF 0.0888 0.0232 0.0867
MVC-NMF 0.0798 0.0113 0.0576
ATGP-NMF 0.0520 0.0098 0.0549

As shown in Figures 3 and 4, the spectra extracted by the proposed ATGP-NMF algorithm are
quite similar to the real spectra, with smooth curves and little noise, followed by those extracted by
the MVC-NMF, VCA-NMF and VCA-FCLS algorithms. In this experiment, although a pure pixel
does not exist (purity level $ = 0.8), the purity level of the synthetic mixture data is higher. Therefore,
the endmember spectra extracted by VCA-FCLS also resemble the real endmember spectra, with small
SAD and SID values.
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To further evaluate the robustness of these four algorithms, we compared their performances
under different conditions, in terms of the SNR, purity level $ and number of endmembers p, by using
synthetic data. The comparison results are shown in Figures 5–7.
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(1) Robustness to noise interference: In this experiment, tests of the algorithms’ sensitivities to
noise were carried out by changing the SNR level from 50 to 10 dB. The synthetic data consist of five
endmembers, i.e., the spectral signatures selected from the USGS spectral library, at the purity level of
0.8, which means pure pixels do not exist. The SAD, SID and RMSE values of the four algorithms are
shown in Figure 5a–c, respectively. The ATGP-NMF algorithm performed well, yielding lower SAD
and SID values than the other algorithms at different SNR levels. With the decrease in SNR, the RMSE
values of ATGP-NMF decreased and stabilized; for MVC-NMF, the RMSE values kept increasing.

(2) Robustness to mixing degree: Following the method used in [56], we generated mixed spectra
at different purity levels. In this experiment, we changed the purity level $ from 1 to 0.6 with an SNR of
30 dB. The comparisons of the SAD, SID and RMSE values derived from the four algorithms are shown
in Figure 6a–c. The SAD, SID and RMSE values of these four algorithms are inversely proportional to
the purity level. At the purity level of one, i.e., when pure pixels exist, the algorithms of four methods
all produced good solutions, with low SAD, SID and RMSE values. With regard to the purity level,
the RMSE values of ATGP-NMF were lower overall than those of the other algorithms.

(3) Generalization of the number of endmembers: In this experiment, we generated mixed spectra
with different numbers of endmembers to test these algorithms. The endmember numbers were set
to 3, 5 and 10, while the SNR was set to 30 dB and the purity level was set to 0.8. When the number
of endmembers was set to three, the mixed spectra were generated using the spectral signatures of
brucite, chabazite and olivine. When the number of endmembers was set to 10, another five spectral
signatures were selected from the USGS digital spectral library, in addition to the previously-selected
five signatures. Figure 7a–c shows that the performances of VCA-NMF and ATGP-NMF are relatively
better and more robust than those of the other algorithms for the tested number of endmembers.
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3.3. Spectral Unmixing Using Berlin HyMap Image

To evaluate the performance of the proposed ATGP-NMF algorithm on the real image,
we conducted experiments on a subset of the Berlin-Urban-Gradient dataset, which mainly comprises
a HyMap reflectance image, a library of material spectra and the reference land cover information [57].
More information on this dataset can be found in [58–60]. For this work, a subset with 80 × 80 pixels
of the Berlin HyMap image (Figure 8a), acquired on 20 August 2009 at 9 m spatial resolution, was
selected as the study data. The image contains 111 bands after removing noisy bands with spectral
sampling distances between 13 and 17 nm, and spectral coverage from 440 to 2500 nm. Based on the
reference land cover information, we considered five urban land cover types in the study area, i.e., roof,
pavement, grass, tree and soil. The reference abundances of each land cover type (Figure 9), defined as
the corresponding proportions at each pixel, were calculated based on the reference land cover map
(Figure 8b). We selected the pixels with an area percentage of one and calculated their average spectral
values as the reference spectrum of the land cover type. Because there were no pure pixels of the grass
category, four pixels with an area percentage greater than 0.7 were selected instead.

The comparisons of the VCA-FCLS, VCA-NMF, MVC-NMF and ATGP-NMF algorithms on the
Berlin HyMap image are shown in Figure 10 and Table 2. Figure 10a,b shows that the proposed
ATGP-NMF algorithm provided five endmembers with relatively low SAD and SID values. Figure 11
shows the estimated abundance maps by ATGP-NMF. Comparing to the reference abundance maps
(Figure 9), it is demonstrated that the ATGP-NMF algorithm can produce satisfactory abundance
separation. For all four algorithms, the estimated spectra of grass are in bad accordance with the
reference endmembers. In the study area, grasses are scattered mainly around the buildings and trees,
which are susceptible to the shadows of the buildings and trees and the spectral similarity between the
grasses and trees.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  11 of 19 

 

3.3. Spectral Unmixing Using Berlin HyMap Image 

To evaluate the performance of the proposed ATGP-NMF algorithm on the real image, we 
conducted experiments on a subset of the Berlin-Urban-Gradient dataset, which mainly comprises a 
HyMap reflectance image, a library of material spectra and the reference land cover information [57]. 
More information on this dataset can be found in [58–60]. For this work, a subset with 80 × 80 pixels 
of the Berlin HyMap image (Figure 8a), acquired on 20 August 2009 at 9 m spatial resolution, was 
selected as the study data. The image contains 111 bands after removing noisy bands with spectral 
sampling distances between 13 and 17 nm, and spectral coverage from 440 to 2500 nm. Based on the 
reference land cover information, we considered five urban land cover types in the study area, i.e., 
roof, pavement, grass, tree and soil. The reference abundances of each land cover type (Figure 9), 
defined as the corresponding proportions at each pixel, were calculated based on the reference land 
cover map (Figure 8b). We selected the pixels with an area percentage of one and calculated their 
average spectral values as the reference spectrum of the land cover type. Because there were no pure 
pixels of the grass category, four pixels with an area percentage greater than 0.7 were  
selected instead. 

The comparisons of the VCA-FCLS, VCA-NMF, MVC-NMF and ATGP-NMF algorithms on the 
Berlin HyMap image are shown in Figure 10 and Table 2. Figure 10a,b shows that the proposed 
ATGP-NMF algorithm provided five endmembers with relatively low SAD and SID values. Figure 11 
shows the estimated abundance maps by ATGP-NMF. Comparing to the reference abundance maps 
(Figure 9), it is demonstrated that the ATGP-NMF algorithm can produce satisfactory abundance 
separation. For all four algorithms, the estimated spectra of grass are in bad accordance with the 
reference endmembers. In the study area, grasses are scattered mainly around the buildings and trees, 
which are susceptible to the shadows of the buildings and trees and the spectral similarity between 
the grasses and trees. 

  
(a) (b) 

Figure 8. (a) A subset of the Berlin HyMap image (R = 833 nm, G = 1652 nm, B = 632 nm); (b) the 
reference land cover map of the study area. 

   
(a) (b) (c) 

Figure 8. (a) A subset of the Berlin HyMap image (R = 833 nm, G = 1652 nm, B = 632 nm); (b) the
reference land cover map of the study area.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  11 of 19 

 

3.3. Spectral Unmixing Using Berlin HyMap Image 

To evaluate the performance of the proposed ATGP-NMF algorithm on the real image, we 
conducted experiments on a subset of the Berlin-Urban-Gradient dataset, which mainly comprises a 
HyMap reflectance image, a library of material spectra and the reference land cover information [57]. 
More information on this dataset can be found in [58–60]. For this work, a subset with 80 × 80 pixels 
of the Berlin HyMap image (Figure 8a), acquired on 20 August 2009 at 9 m spatial resolution, was 
selected as the study data. The image contains 111 bands after removing noisy bands with spectral 
sampling distances between 13 and 17 nm, and spectral coverage from 440 to 2500 nm. Based on the 
reference land cover information, we considered five urban land cover types in the study area, i.e., 
roof, pavement, grass, tree and soil. The reference abundances of each land cover type (Figure 9), 
defined as the corresponding proportions at each pixel, were calculated based on the reference land 
cover map (Figure 8b). We selected the pixels with an area percentage of one and calculated their 
average spectral values as the reference spectrum of the land cover type. Because there were no pure 
pixels of the grass category, four pixels with an area percentage greater than 0.7 were  
selected instead. 

The comparisons of the VCA-FCLS, VCA-NMF, MVC-NMF and ATGP-NMF algorithms on the 
Berlin HyMap image are shown in Figure 10 and Table 2. Figure 10a,b shows that the proposed 
ATGP-NMF algorithm provided five endmembers with relatively low SAD and SID values. Figure 11 
shows the estimated abundance maps by ATGP-NMF. Comparing to the reference abundance maps 
(Figure 9), it is demonstrated that the ATGP-NMF algorithm can produce satisfactory abundance 
separation. For all four algorithms, the estimated spectra of grass are in bad accordance with the 
reference endmembers. In the study area, grasses are scattered mainly around the buildings and trees, 
which are susceptible to the shadows of the buildings and trees and the spectral similarity between 
the grasses and trees. 

  
(a) (b) 

Figure 8. (a) A subset of the Berlin HyMap image (R = 833 nm, G = 1652 nm, B = 632 nm); (b) the 
reference land cover map of the study area. 

   
(a) (b) (c) 

Figure 9. Cont.



ISPRS Int. J. Geo-Inf. 2018, 7, 195 12 of 19

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  12 of 19 

 

  
(d) (e) 

Figure 9. Reference abundance maps of five land cover types: (a) roof; (b) pavement; (c) grass; (d) 
tree; (e) soil. 

  
(a) (b) 

Figure 10. SAD (a) and SID (b) of different endmembers with the Berlin HyMap image using VCA-
FCLS, VCA-NMF, MVC-NMF, and ATGP-NMF. 

Table 2. SAD, SID and RMSE values of different algorithms with the Berlin HyMap image. 

Method SAD SID RMSE 
VCA-FCLS 0.3260 0.2246 0.3309 
VCA-NMF 0.2655 0.2473 0.3249 
MVC-NMF 0.3508 0.2389 0.3591 
ATGP-NMF 0.2407 0.0965 0.3011 

 

   
(a) (b) (c) 

  
(d) (e) 

Figure 11. Abundance maps provided by ATGP-NMF with the Berlin HyMap image: (a) roof;  
(b) pavement; (c) grass; (d) tree; (e) soil. 

Figure 9. Reference abundance maps of five land cover types: (a) roof; (b) pavement; (c) grass; (d) tree;
(e) soil.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  12 of 19 

 

  
(d) (e) 

Figure 9. Reference abundance maps of five land cover types: (a) roof; (b) pavement; (c) grass; (d) 
tree; (e) soil. 

  
(a) (b) 

Figure 10. SAD (a) and SID (b) of different endmembers with the Berlin HyMap image using VCA-
FCLS, VCA-NMF, MVC-NMF, and ATGP-NMF. 

Table 2. SAD, SID and RMSE values of different algorithms with the Berlin HyMap image. 

Method SAD SID RMSE 
VCA-FCLS 0.3260 0.2246 0.3309 
VCA-NMF 0.2655 0.2473 0.3249 
MVC-NMF 0.3508 0.2389 0.3591 
ATGP-NMF 0.2407 0.0965 0.3011 

 

   
(a) (b) (c) 

  
(d) (e) 

Figure 11. Abundance maps provided by ATGP-NMF with the Berlin HyMap image: (a) roof;  
(b) pavement; (c) grass; (d) tree; (e) soil. 

Figure 10. SAD (a) and SID (b) of different endmembers with the Berlin HyMap image using
VCA-FCLS, VCA-NMF, MVC-NMF, and ATGP-NMF.

Table 2. SAD, SID and RMSE values of different algorithms with the Berlin HyMap image.

Method SAD SID RMSE

VCA-FCLS 0.3260 0.2246 0.3309
VCA-NMF 0.2655 0.2473 0.3249
MVC-NMF 0.3508 0.2389 0.3591
ATGP-NMF 0.2407 0.0965 0.3011

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  12 of 19 

 

  
(d) (e) 

Figure 9. Reference abundance maps of five land cover types: (a) roof; (b) pavement; (c) grass; (d) 
tree; (e) soil. 

  
(a) (b) 

Figure 10. SAD (a) and SID (b) of different endmembers with the Berlin HyMap image using VCA-
FCLS, VCA-NMF, MVC-NMF, and ATGP-NMF. 

Table 2. SAD, SID and RMSE values of different algorithms with the Berlin HyMap image. 

Method SAD SID RMSE 
VCA-FCLS 0.3260 0.2246 0.3309 
VCA-NMF 0.2655 0.2473 0.3249 
MVC-NMF 0.3508 0.2389 0.3591 
ATGP-NMF 0.2407 0.0965 0.3011 

 

   
(a) (b) (c) 

  
(d) (e) 

Figure 11. Abundance maps provided by ATGP-NMF with the Berlin HyMap image: (a) roof;  
(b) pavement; (c) grass; (d) tree; (e) soil. 

Figure 11. Abundance maps provided by ATGP-NMF with the Berlin HyMap image: (a) roof;
(b) pavement; (c) grass; (d) tree; (e) soil.



ISPRS Int. J. Geo-Inf. 2018, 7, 195 13 of 19

3.4. Spectral Unmixing Using a Hyperion Image

We used a Hyperion image to further verify the applicability of the proposed ATGP-NMF
algorithm in complicated situations. The Hyperion image (Figure 12a), acquired on 19 January
2011, covers parts of Guangzhou and Foshan, both of which are cities in Guangdong Province, China.
The test image of this study is a subset of 101 × 101 pixels with 30-m spatial resolution. In addition,
the image contains 242 bands acquired in the spectral range of 356–2577 nm. To improve the spectral
unmixing performance, a series of pretreatments was performed on this image, including radiometric
calibration and atmospheric correction. In addition, we removed the low SNR bands and the water
vapor absorption bands. A total of 158 bands (including Bands 8–57, 79–120, 133–165 and 188–220)
were used in this experiment.

For the Hyperion image, the number of endmembers was estimated using HFC mentioned in
Section 2.3. Considering the actual situation of the study area, we finally determined that there are
eight endmembers in the study area. In this study, the reference abundances were extracted from a
high-resolution remote sensing image acquired from Google Earth (Figure 12b). The classification map
of the eight land cover types of the study area (Figure 12c) was then acquired through supervised
classification of the high-resolution remote sensing image using the k-nearest neighbor [61]. Finally,
the area percentage of each land cover type in one 30 × 30 m pixel was calculated and considered as
its endmember abundance (Figure 13). In addition, due to the variability of the endmember spectra,
we selected reference endmember spectra from the Hyperion image. We selected 30 samples for each
land cover type and used the average spectra of these 30 samples as the reference spectra for each land
cover type.

The comparison of the SAD and SID values of the four algorithms is shown in Figure 14, while the
errors of the abundance estimation are given in Table 3. As shown in Figure 14a,b, the proposed
ATGP-NMF algorithm provided eight endmembers with relatively low SAD and SID values. Compared
to those of the other three algorithms, the spectra extracted by ATGP-NMF are closer to those of the
actual land cover types. The ATGP-NMF algorithm can extract endmembers with high correlations,
such as buildings with white roofs and blue roofs. Figure 15 shows the abundance maps estimated
by ATGP-NMF. The distribution of the estimated endmembers is close to the distribution of their
corresponding land cover types. Table 3 shows that the ATGP-NMF algorithm yielded the most
accurate abundance estimation results with the lowest RMSE for the hyperspectral image. This is
primarily because the ATGP-NMF algorithm can effectively and efficiently find the most representative
endmember spectra from hyperspectral images. Among the four different algorithms, the traditional
VCA-FCLS algorithm had the poorest performance, which again proves the advantages of blind
unmixing methods.
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Table 3. SAD, SID and RMSE values of different algorithms with the Hyperion image.

Method SAD SID RMSE

VCA-FCLS 0.3072 0.2797 0.3101
VCA-NMF 0.2798 0.3249 0.2866
MVC-NMF 0.3368 0.3459 0.2732
ATGP-NMF 0.1338 0.1061 0.2659
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3.5. Computational Efficiency

To evaluate the computational efficiency of the particular algorithm, the computing time was
often used as an important measure in many related studies [35]. The computational efficiency of
an algorithm can be defined as a numerical function T(n): time versus the input size n. In this
study, since the input data are the same, we used the average computing time (in seconds) of each
algorithm’s application on synthetic data, the Berlin HyMap image, and Hyperion image to evaluate
their computational efficiency. The four algorithms were executed in Mathworks MATLAB R2014b
on a computer with Intel(R) Xeon(R) E3-1246 CPU (3.50 GHz) and 12 GB RAM. For the three NMF
derivative algorithms, i.e., VCA-NMF, MVC-NMF and ATGP-NMF, the endmember spectral and
abundance estimation results were determined at the maximum iteration number of 300.

Table 4 shows that the computing time of the proposed ATGP-NMF algorithm is less than those
of the traditional two-stage VCA-FCLS algorithm and the MVC-NMF algorithm. The MVC-NMF
algorithm required more processing time than the other three algorithms, particularly for processing the
real image. With the endmember initialization, the proposed ATGP-NMF and the existing VCA-NMF
required less computation time. Table 4 also shows that ATGP-generated initial endmembers can
significantly reduce the computational time of the spectral unmixing process. This is mainly because
ATGP only needs to process previously-generated target pixels, not the whole dataset, to extract
endmembers [42].
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Table 4. Computing time (seconds) of different methods on synthetic data, the Berlin HyMap image,
and Hyperion Image.

Method VCA-FCLS VCA-NMF MVC-NMF ATGP-NMF

Synthetic Data 0.83 0.61 0.98 0.59
Berlin HyMap Image 2.15 1.99 65.26 1.95

Hyperion Image 9.37 4.37 165.66 5.28

4. Conclusions

The traditional NMF algorithm suffers from the “local best” problem, which greatly limits its
applications. In this paper, via the use of ATGP-generated initial target endmembers, the ATGP-NMF
algorithm is proposed to improve the performance of NMF in hyperspectral unmixing. The ATGP
algorithm is introduced to provide more accurate initial points to identify endmembers, which can
then be used by the NMF to obtain the global solutions for hyperspectral unmixing. Furthermore,
the proposed ATGP-NMF algorithm requires little prior knowledge and can be applied in complex
situations, even if there are no pure pixels.

Experiments were carried out to evaluate the performances of ATGP-NMF and three other
algorithms, namely, VCA-NMF, MVC-NMF, and VCA-FCLS, using synthetic hyperspectral data and
real hyperspectral images. Based on analysis of the experimental results, the following conclusions
can be made: (1) The traditional two-stage spectral unmixing method, VCA-FCLS, can only achieve
satisfactory results when pure pixels exist. When there are little prior knowledge and no pure pixels,
the studied BSS methods, namely, VCA-NMF and ATGP-NMF, and MVC-NMF without the pure
pixel assumption can achieve better unmixing results than VCA-FCLS. (2) Of all the algorithms, the
ATGP-NMF algorithm demonstrated the best applicability and consistently produced good results
in different situations. The extracted endmember spectra were closer to the real spectra, and the
abundance estimation was more accurate. (3) Proper endmember initialization can help the NMF
algorithm yield better estimation results with less computation time.
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