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Abstract: Short-term traffic forecasting plays an important part in intelligent transportation
systems. Spatiotemporal k-nearest neighbor models (ST-KNNs) have been widely adopted for
short-term traffic forecasting in which spatiotemporal matrices are constructed to describe traffic
conditions. The performance of the models is closely related to the spatial dependencies, the
temporal dependencies, and the interaction of spatiotemporal dependencies. However, these models
use distance functions and correlation coefficients to identify spatial neighbors and measure the
temporal interaction by only considering the temporal closeness of traffic, which result in existing
ST-KNNs that cannot fully reflect the essential features of road traffic. This study proposes an
improved spatiotemporal k-nearest neighbor model for short-term traffic forecasting by utilizing
a multi-view learning algorithm named MVL-STKNN that fully considers the spatiotemporal
dependencies of traffic data. First, the spatial neighbors for each road segment are automatically
determined using cross-correlation under different temporal dependencies. Three spatiotemporal
views are built on the constructed spatiotemporal closeness, periodic, and trend matrices to represent
spatially heterogeneous traffic states. Second, a spatiotemporal weighting matrix is introduced
into the ST-KNN model to recognize similar traffic patterns in the three spatiotemporal views.
Finally, the results of traffic pattern recognition under these three spatiotemporal views are aggregated
by using a neural network algorithm to describe the interaction of spatiotemporal dependencies.
Extensive experiments were conducted using real vehicular-speed datasets collected on city roads
and expressways. In comparison with baseline methods, the results show that the MVL-STKNN
model greatly improves short-term traffic forecasting by lowering the mean absolute percentage error
between 28.24% and 46.86% for the city road dataset and, between 53.80% and 90.29%, for the
expressway dataset. The results suggest that multi-view learning merits further attention for
traffic-related data mining under such a dynamic and data-intensive environment, which owes
to its comprehensive consideration of spatial correlation and heterogeneity as well as temporal
fluctuation and regularity in road traffic.

Keywords: short-term traffic forecasting; spatiotemporal k-nearest neighbor model; spatiotemporal
dependencies; multi-view based learning; traffic patterns
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1. Introduction

Accurate and reliable short-term traffic prediction has long been a focus of intelligent transportation
systems and location-based services. However, the dynamic, heterogeneous, and nonlinear characteristics
of traffic conditions lead to extremely unpredictable changes in the entire traffic network, which makes
it difficult to accurately model traffic conditions. Consequently, short-term traffic prediction remains
a challenging issue [1].

Researchers have proposed a series of short-term traffic prediction models in past decades [2,3] such as
ARIMA [4], Kalman filters [5,6], k-nearest neighbor (KNN) [7–10], and neural network models [11,12] among
others. However, these models often fail to simultaneously consider both the spatial and temporal
characteristics of traffic and neglect the spatial heterogeneity and temporal non-stationarity of traffic
influence, which leads to large deviations in prediction accuracy [13,14]. As a typical system with
spatiotemporal distribution, road traffic has the essential characteristics of spatiotemporal dependence
compared with general time-series data and static spatial data [15,16]. Therefore, giving synchronous
consideration to spatial and temporal information within a prediction model can better identify the
traffic conditions on road segments [17,18]. With regard to this, a series of methods have been proposed
for short-term traffic prediction [19], which can be roughly divided into parametric and nonparametric
spatiotemporal modeling methods.

The most representative parametric spatiotemporal method is ST-ARIMA [20–22]. Considering
that spatiotemporal parametric models usually quantitatively express spatiotemporal relationships
using explicit parameterization functions and need to make strong assumptions in the modeling
process. These approaches are not suitable for simulating real traffic application scenarios. In contrast,
non-parametric spatiotemporal models are data-driven and, therefore, require no prior knowledge or
explicit mathematical expression. Consequently, they can easily achieve satisfactory portability and
comparatively greater prediction accuracy. Therefore, non-parametric spatiotemporal models are more
popular for short-term traffic prediction problems [23].

As a typical non-parametric spatiotemporal modeling method, the ST-KNN model is widely used
in traffic prediction. Wu et al. introduced spatial and temporal information to the traditional KNN
model to achieve more accurate short-term traffic predictions [24]. Yu et al. considered the time-varying
property and continuity of traffic conditions and realized multi-step prediction of short-term traffic
conditions [25]. Xia et al. optimized the search mechanism of a KNN model by considering the
spatiotemporal correlation and the trend of traffic flow and by implementing the KNN model with
spatiotemporal weights [26]. Cai et al. constructed the spatiotemporal state matrix rather than the time
series of the traditional KNN model and defined the distance function using a Gaussian weighting
function to select candidate neighbors. The resulting spatiotemporal KNN model was used to realize
multi-step short-term traffic prediction [27].

However, the previous studies have some shortcomings. With regard to spatial dependence,
existing ST-KNN models mainly employ two methods to capture spatial information when
defining spatiotemporal state space. The first includes selecting several road segments neighboring
the target road segment such as upstream and downstream segments [24,26]. This approach
assumes the existence of widespread spatial auto-correlation on adjacent road segments. However,
when constructing the state space, it is difficult or even impossible to know exactly which—and how
many—road segments should be included. This means the spatiotemporal relationship between traffic
data cannot be clearly quantified [19]. In addition, when the time series problem is transformed into
a supervised machine learning problem, the number of neighboring road segments determines the
number of selected features. Consequently, artificial selection of adjacent road segments easily leads to
dimensional problems, which makes the model’s performance difficult to guarantee [28]. The second
method includes utilizing the spatial correlation of road traffic to determine the neighbors [27].
This method can directly describe the impact of the surrounding road segments on the target road
segment in order to construct the spatiotemporal state space more effectively. However, the number
of spatial neighbors still cannot be automatically determined. Consequently, model performance is
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heavily reliant on the threshold that is set to filter out those road segments with lower correlation
coefficients. In addition, the dimensions of the spatiotemporal state space defined by the existing
ST-KNN models are usually globally fixed. After selecting appropriate thresholds for the spatial
neighbors and time windows, the road segments share the spatiotemporal dimensions across the
whole road network. However, spatial neighbors of road segments should rely on the current
traffic conditions, which are smaller during congestion and larger during non-peak periods [29,30].
Considering the heterogeneous characteristics of city road networks, sharing the dimensions of
spatiotemporal state space globally across the entire networks is apparently unreasonable [31].

In terms of time dependence, existing ST-KNN models only consider the temporal closeness of
traffic conditions when capturing information on the time dimension. This means the traffic conditions
on the road segments during recent time intervals are selected to construct the spatiotemporal state
space. The implied assumption is that the more recent the time interval, the greater the impact
on the current road segment. However, in view of the obvious periodicity of traffic conditions,
the constraints of temporal closeness may be broken in some cases. Normally, similar traffic conditions
will be repeated daily on weekdays. Such a distinct periodicity should also be adopted besides
that of temporal closeness. Moreover, the periodicity varies with changes in seasons, traffic control
strategies, or other factors and shows this tendency especially with the change of seasons [32,33].
However, existing ST-KNN models usually only consider the temporal closeness of traffic in the
spatiotemporal state space when characterizing traffic conditions and neglect the spatiotemporal
dependence relationship of periodicity and tendency.

Furthermore, existing ST-KNN models usually employ weighted distance functions to choose
K candidate neighbors such as Gaussian weight [27] and exponential weight with trend adjustment [26].
These methods will undoubtedly improve the accuracy of prediction models to some extent. However,
the construction of distance functions often introduces excessive hyper parameters, which further
exacerbates the difficulty of the parameter adjustment in the modeling process.

In recent years, multi-view learning methods have been widely used in the field of spatiotemporal
modeling. Zheng et al. constructed a hybrid multi-view learning approach for fine-grained air quality
prediction [34]. Liu et al. built a multi-view learning method to forecast urban water quality using
multiple data sets in different fields [35]. Yi et al. combined empirical statistical models and data-driven
algorithms to build a multi-view learning method to reconstruct missing data [36]. Considering the
typical spatiotemporal characteristics of road traffic, we were inspired to further explore the application
of multi-view learning to short-term traffic prediction.

In response to the shortcomings of existing ST-KNN models, we gave comprehensive consideration
to spatiotemporal dependence and proposed an improved ST-KNN model based on multi-view
learning (MVL-STKNN) for short-term traffic prediction. First, in the spatial dimension, considering
the characteristics of spatial heterogeneity, we model each road segment individually and use
a cross-correlation function to automatically determine the spatial neighbors of each road segment.
In the time dimension, we consider temporal closeness, periodicity, and trend rates to describe the
impacts of historical traffic on current traffic conditions. By integrating information from the spatial and
temporal dimensions, we construct a spatiotemporal closeness matrix, spatiotemporal periodic matrix,
and spatiotemporal trend matrix of the different dimensions. We built three spatiotemporal views to
characterize current traffic conditions. Second, the spatiotemporal weighting matrix is introduced
to improve the existing ST-KNN model, which avoids the introduction of additional parameters.
This improved ST-KNN model is then used to mine similar traffic patterns, which obtained predictions
according to the three spatiotemporal views. Finally, different weightings are assigned to the three
spatiotemporal views by using a neural network algorithm to obtain the predicted traffic conditions.

The remainder of this paper is organized as follows. Section 2 proposes the MVL-STKNN model
to capture spatial and temporal dependencies and introduces the construction of the spatiotemporal
cuboids, improvement of ST-KNN, and the multi-view-based learning method. In Section 3, we first
test the heterogeneity of traffic data and then calibrate the parameters of the MVL-STKNN model.
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A comprehensive assessment of the model performance is conducted using real road traffic datasets.
The experimental results are discussed in Section 4. Section 5 concludes the paper and provides an
outlook on future work.

2. Methodology

In this section, we construct the MVL-STKNN model for short-term traffic prediction for which
the overall architecture is shown in Figure 1. In the model, 1© represents the spatiotemporal cuboid,
2© represents the modeling process of the ST-KNN model, 3© represents the sample construction of

multi-view learning, 4© represents the multi-view learning process, 5© and 6© represent the candidate
neighbor selection process for the ST-KNN model in training data sets and test data sets, and 7©
represents the modeling process of different road segments. Elements 1©, 2©, 3©, 5©, and 6© are used to
construct the model inputs and 4© is used for model training. The overall framework is a progressive
relationship at the logical level, according to the construction of spatiotemporal cuboid and the
improved ST-KNN model and the multi-view-based learning methods. The spatiotemporal cuboid is
used to reorganize the original historical traffic data and it uses the stacked spatiotemporal state matrix
to characterize the temporal and spatial dependence of traffic conditions. The improved ST-KNN
model (the red-dashed box in 2© is the improved part) exploited the constructed spatiotemporal cuboid
as input to similar traffic patterns and, therefore, obtained predictions, according to the spatiotemporal
closeness, periodicity, and trend views. The three predictions are used as training samples and input to
the multi-view learning model for fusion. After developing the trained MVL-STKNN model, the test
sample is the input to obtain predictions of traffic conditions. It should be noted that, since we consider
spatial heterogeneity in the modeling process, the main difference between the modeling processes
represented by 7© and 1©– 6© is that the dimensions of the spatiotemporal cuboids are different.

Figure 1. Schematic of the MVL-STKNN model.
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2.1. Construction of Space-Time Cuboid

In the road network, traffic conditions on road segments are space–time constrained. In the
spatial dimension, traffic conditions on road segments are usually influenced by the surrounding
road segments. For example, congestion on one road segment may spread to surrounding segments
over time, which leads to regional congestion [37]. In our research study, the surrounding road
segments refer to the road segments within the third-level topological neighbors of the predicted road
segment. This type of influence has spatial heterogeneity, which means the number of surrounding
road segments affected by different road segments is inconsistent. In the time dimension, due to the
existence of traffic patterns, the traffic state on road segments is usually associated with historical traffic
conditions and displays temporal closeness, periodicity, and trend. Therefore, in the MVL-STKNN
model, the time series of historical traffic conditions are reorganized by the fusion of spatiotemporal
dimension information to form the spatiotemporal closeness matrix, the period matrix, and the
trend matrix, which characterizes the traffic conditions on any road segment at any time. All of
the spatiotemporal state matrices are then stacked according to the time necessary to form three
spatiotemporal cuboids in order to depict the spatiotemporal dependence of road segments.

By taking the structure of the spatiotemporal closeness cuboid as an example, we assume that the

time series representing traffic conditions is
{

v
Lj
t , t0 ≤ t ≤ tc, 1 ≤ j ≤ m

}
, where t0 and tc represent

the start time-step and the current time-step of the time series, m is the number of road segments,

and v
Lj
t is the traffic conditions of the road segment Lj at time interval t. For each road segment

Lj, the spatiotemporal closeness state matrix at t time interval can be expressed as MC
Lj
t (lc, ln).

The elements in the spatiotemporal closeness state matrix represent traffic conditions on the relevant
surrounding road segments at historically recent time intervals, which is formally defined by the
equation below.

MC
Lj
t (lc, ln) =

{
vLk

tk , t− lc + 1 ≤ tk < t, Lk ∈ RLj

}
(1)

where lc is the length of the closeness-dependent sequence. The traffic conditions of lc historical time
intervals adjacent to the t time interval are selected within the range [t− lc + 1, t). RLj represents
the set of spatial neighbors of road segment Lj and each road segment has a different set of spatial

neighbors. ln represents the number of spatial neighbors; ln = card
(
RLj

)
.

In a similar way, the formal definitions of spatiotemporal periodicity matrix MP
Lj
t (lp, ln) and

spatiotemporal trend matrix MQ
Lj
t (lq, ln) are shown in the equations below.

MP
Lj
t (lp, ln) =

{
vLk

tk , tk ∈ TP, Lk ∈ RLj

}
(2)

MQ
Lj
t (lq, ln) =

{
vLk

tk , tk ∈ TQ, Lk ∈ RLj

}
(3)

where lp is the length of the period-dependent sequence and TP is the value set of the temporal period:
lp = card(TP). lq is the length of the trend-dependent sequence and TQ is the value set of temporal
trends: lq = card(TQ).

TP = {t− 1440/t_interval ∗ p ∗ i, 1 ≤ i ≤ lp} (4)

TQ = {t− 1440/t_interval ∗ q ∗ i, 1 ≤ i ≤ lq} (5)

In this scenario, the t_interval is the sampling time interval of traffic conditions such as 5 min
(where one day = 1440 min). p is the period span and q is the trend span. For example, p = 1 describes
daily periodicity and q = 7 reveals the weekly trend.

The spatial neighbor setRLj of the road segment Lj is automatically obtained using cross-correlation.
Considering the delay in spatiotemporal dependency between road segments, the traditional way to find
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spatial neighbors using correlation coefficients does not satisfy this requirement. The cross-correlation
function, as a delayed version of the correlation coefficient function, measures the correlation coefficients
of two time series using a specific delay [38] and is better suited to describing the spatiotemporal
dependence of traffic. Assume that the traffic condition time series of two road segments are, respectively:

U =
{

v
Lj
t

}
, Z =

{
vLv

t

}
. Then the cross-correlation functions at delayed ϕ are defined by the equation below.



cc fu,z(ϕ) =
γu,z(ϕ)

σuσz
, ϕ = 0,±1,±2, · · · ,

γu,z(ϕ) = E
[
(ut − µu)

(
zt+ϕ − uz

)]
σu =

√
∑(ut − µu)

2

σz =
√

∑
(
zt+ϕ − µz

)2

(6)

where γu,z(ϕ) is the cross-correlation coefficient of time series U and time series Z at delay ϕ. µu and
uz are the mean values of U and Z, respectively. Parameters σu and σz are the standard deviations of
U and Z, respectively. From the above definition, the cross-correlation function can be regarded as
a function of time delay so that the maximum time delay value of the cross-correlation function is the
average delay time of the surrounding road segments to the predicted road segment [29], which can
be formally defined by Equation (7).

ψLv = |argmax(cc fu,z(ϕ))|, v ∈ [1, m] (7)

where ψLv is the maximum time delay value of the surrounding road segment Lv for predicting the
road segment Lj. Given the predicted road segment Lj and its prediction time range ∆t, only those
surrounding road segments that can be accessed within the maximum time delay are considered and
the road segments beyond the time delay limit are excluded.

RLj ← {Lv|∀0 ≤ ψLv ≤ ∆t} (8)

The corresponding maximum time delay value ψLv is obtained by calculating the cross-correlation
cc fu,z(ϕ) between all the surrounding road segments and the predicted road segments. Finally, all the
road segments satisfying the conditions 0 ≤ ψLv ≤ ∆t are added to the setRLj .

After completing the construction of the spatiotemporal state matrix at all historical time intervals,
we stacked three spatiotemporal state matrices in chronological order and constructed spatiotemporal
closeness cuboids, periodic cuboids, and trend cuboids of road segments Lj. Their formal definitions
are shown below.

XCLj =
{

MC
Lj
t (lc, ln), ml + 1 ≤ t ≤ tc

}
(9)

XPLj =
{

MP
Lj
t (lp, ln), ml + 1 ≤ t ≤ tc

}
(10)

XQLj =
{

MQ
Lj
t (lq, ln), ml + 1 ≤ t ≤ tc

}
(11)

where ml = 1440/t_interval ∗ q ∗ lq, which ensures that the temporal closeness matrix, the period
matrix, and the trend matrix can be taken simultaneously at time interval t.

Finally, we divide the spatiotemporal cuboid XCLj ,XPLj ,XQLj , respectively, including historical
spatiotemporal cuboids and a historical template library for mining similar traffic patterns in the
ST-KNN model. We also divide training spatiotemporal cuboids for input to the ST-KNN model in
comparison with the historical template library to obtain forecasts from each view in order to construct
the training samples for multi-view learning as well as test spatiotemporal cuboids for verification of
model prediction accuracy, as shown in Figure 1. We take N as the total days of the time series of traffic
conditions, the number of historical days as hd, the number of training days as td, and the number
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of test days as sd. Then N = hd + td + sd + q ∗ lq, where q ∗ lq is the number of days that the sample
cannot be taken simultaneously. The number of historical samples is nhd = hd ∗ 1440/t_interval,
the number of training samples is ntd = td ∗ 1440/t_interval, and the number of test samples is
nsd = sd ∗ 1440/t_interval. Taking the partition of the temporal closeness cuboid as an example,
the historical spatiotemporal closeness cuboid XC_HtLj , the training spatiotemporal closeness cuboid
XC_TrLj , and the test spatiotemporal closeness cuboid XC_TsLj can be defined by the formulas below.



XCLj =
{

XC_HtLj , XC_TrLj , XC_TsLj

}
XC_HtLj =

{
MC

Lj
t (lc, ln), ml + 1 ≤ t ≤ nhd + ml + 1

}
XC_TrLj =

{
MC

Lj
t (lc, ln), nhd + ml + 1 < t ≤ ntd + nhd + ml + 1

}
XC_TsLj =

{
MC

Lj
t (lc, ln), ntd + nhd + ml + 1 < t ≤ tc

}
(12)

The same division method can be used to obtain the historical spatiotemporal period cuboid
XP_HtLj , the training spatiotemporal period cuboid XP_TrLj , the test spatiotemporal period cuboid
XP_TsLj , the historical spatiotemporal trend cuboid XQ_HtLj , the training spatiotemporal trend
cuboid XQ_TrLj , and the test spatiotemporal trend cuboid XQ_TsLj .

2.2. ST-KNN Model

The basic principle of the ST-KNN model is to compare the distance between the spatiotemporal
state space, select K closest historical spatiotemporal state matrices, and use predictive functions
to integrate the traffic conditions at the next time interval for the target road segment to obtain
a final predicted value. In Section 2.1, we obtained the spatiotemporal state matrix of the three views.
Therefore, the key here is how to define the distance function and the prediction function.

When defining the distance function, different weightings need to be introduced to describe the
influence of traffic conditions at different time intervals and different spatial neighbors on predicting
road segments in the spatiotemporal state matrix. In the traditional method, too many parameters are
often introduced when setting the weightings, which makes it difficult to adjust the parameters in the
modeling process and inhibits global optimal prediction results. Considering that the cross-correlation
function characterizes the correlation between the surrounding road segments and the predicted
road segments without additional parameters, we use the cross-correlation coefficient to represent

the spatial weighting value w
Lj
s (si, sj) for the predicted road segment Lj in the spatial dimension,

which becomes more closely related to the predicted road segment with greater weighting. In the time
dimension, the time weight is assigned according to the linear distribution of time. The closer it is to
the predicted time, the greater the assigned weighting. Taking the spatiotemporal closeness matrix as
an example, the weighting allocation method is shown below.

w
Lj
t (ti, tj) =

{
ti/ ∑lc

ti=1 ti, ti = tj
0, ti 6= tj

(13)

w
Lj
s (si, sj) =

{
cc f si

Lv ,Lj
/ ∑ln

si=1 cc f si
Lv ,Lj

, si = sj

0, si 6= sj
(14)

where cc f si
Lv ,Lj

is the cross-correlation coefficient between the si− th spatial neighborhood (whose road
segment is Lv) and the time series of the predicted road segment Lj. By introducing space–time
weightings into the original spatiotemporal closeness matrices, the spatiotemporal neighboring
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weight matrices Γ
Lj
t and Γ

Lj
tk at time interval t and at a historical time interval tk are represented

as Equations (15) and (16). Γ
Lj
t = w

Lj
s (si, sj)×MC

Lj
t (lc, ln)× w

Lj
t (ti, tj)

MC
Lj
t (lc, ln) ∈

{
XC_TrLj , XC_TsLj

} (15)

 Γ
Lj
tk = w

Lj
s (si, sj)×MC

Lj
tk (lc, ln)× w

Lj
t (ti, tj)

MC
Lj
tk (lc, ln) ∈

{
XC_HtLj

} (16)

It should be noted that MC
Lj
tk (lc, ln) belongs to the historical sample library of the ST-KNN

model. Therefore, its value range is limited to the set
{

XC_HtLj

}
. Furthermore, MC

Lj
t (lc, ln) is used

for comparing with MC
Lj
tk (lc, ln) to obtain the candidate neighbors. Therefore, its value range is{

XC_TrLj , XC_TsLj

}
. By calculating the distance d

(
Γ

Lj
t , Γ

Lj
tk

)
between the spatiotemporal closeness

matrix at time interval t and the historical spatiotemporal closeness matrix, it can be used to select
K candidate neighbors. The formula is below.

d
(

Γ
Lj
t , Γ

Lj
tk

)
=

√
trac

((
Γ

Lj
t − Γ

Lj
tk

)
×
(

Γ
Lj
t − Γ

Lj
tk

)
′
)

(17)

where trac represents the trace of the matrix. The distance function of the spatiotemporal periodic and
trend matrix can be defined in a similar way.

When defining the predictive function, we used the same strategy as in Reference [27] and utilized
the Gaussian function to assign different weightings to the selected K candidate neighbors to obtain
the predicted value for the target road segment Lj. Taking the spatiotemporal closeness cuboid as an
example, the form is defined below.

̂
v

Lj
t+1,sc =

∑K
k=1 v

Lj ,k
tk+1 ×ωLj(k)

∑K
k=1 ωLj(k)

(18)

where
̂
v

Lj
t+1,sc represents the prediction value of road segment Lj at time interval t + 1 and v

Lj ,k
tk+1

represents the traffic condition of k− th candidate neighbors at the next time interval. ωLj(k) represents
the weighting of the k − th candidate neighbors of the prediction road segment Lj. Its form is
defined below.

ωLj(k) =
1

4πa2 exp(−

∣∣∣dLj
k

∣∣∣2
4a2 ) (19)

where d
Lj
k is the distance between the k− th candidate neighbor and the predicted road segment Lj; a is the

spatiotemporal parameter. Using the same prediction function, we can obtain the predicted values
̂
v

Lj
t+1,sp

and
̂
v

Lj
t+1,sq of the periodic view and the trend view of the road segment Lj at time interval t, respectively.

2.3. Multi-View-Based Learning

The basic principle of the multi-view learning model is to build a supervised learning method,
which takes the prediction results of the spatiotemporal closeness, periodicity, and trend views as
inputs to neural network models. The real values for traffic conditions as outputs.

The process of training the MVL-STKNN model is shown in Algorithm 1. First, we use the

ST-KNN model to obtain predicted values for the training spatiotemporal closeness matrix MC
Lj
t (lc, ln),
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the training spatiotemporal periodic matrix MP
Lj
t (lp, ln), and the training spatiotemporal trend matrix

MQ
Lj
t (lq, ln) for each spatiotemporal state matrix in training spatiotemporal cuboids (lines 4–6 lines in

Algorithm 1). Afterward, the predictive values of the three views are used as the feature vector and
the true values are used as label values to construct the training sample (line 7). Finally, the training
samples are input to the neural network model for supervised learning (line 9) and the MVL-STKNN
modelM can be obtained (line 10).

Algorithm 1: Training of MVL-STKNN

Input: Near spatiotemporal cuboids:
{

XC_HtLj , XC_TrLj

}
;

Periodic spatiotemporal cuboid:
{

XP_HtLj , XP_TrLj

}
;

Trend spatiotemporal cuboid:
{

XQ_HtLj , XQ_TrLj

}
;

Lengths of closeness, period, trend: lc, lp, lq;
Number of candidate neighbors: K;

Parameter of Gaussian function: a.
Output: MVL-STKNN model M.
// construct training instances
1 D ← ∅
2 For all time interval t in the training spatiotemporal cuboids
3 // nhd + ml + 1 < t ≤ ntd + nhd + ml + 1

4
̂

vLj
t+1,sc = ST-KNN(XC_HtLj , MCLj

t (lc, ln), K, a) // MCLj
t (lc, ln) ∈

{
XC_TrLj

}
5

̂
vLj

t+1,sp = ST-KNN(XP_HtLj , MPLj
t (lp, ln), K, a) // MPLj

t (lp, ln) ∈
{

XP_TrLj

}
6

̂
vLj

t+1,sq = ST-KNN(XQ_HtLj , MQLj
t (lq, ln), K, a) // MQLj

t (lq, ln) ∈
{

XQ_TrLj

}
7 Put a training instance

({ ̂
vLj

t+1,sc,
̂

vLj
t+1,sp,

̂
vLj

t+1,sq

}
, vLj

t+1

)
into D

8 End for
// Training the model
9 M← Muti_view_learning(D) // Neural network training
10 Output the learned MVL-STKNN model M

After obtaining the trained MVL-STKNN model M, we can predict all samples of the test
spatiotemporal cuboid. The prediction process is shown in Algorithm 2. First, the spatiotemporal

closeness matrix MC
Lj
t (lc, ln), spatiotemporal periodic matrix MP

Lj
t (lp, ln), and spatiotemporal trend

matrix MQ
Lj
t (lq, ln) in all the test spatiotemporal cuboids are input to the ST-KNN model to obtain the

predicted values of the three views (lines 3–5 in Algorithm 2). Note that the range of the spatiotemporal
state matrix is different from the training process. Additionally, the predicted values obtained by
the ST-KNN model are input to the trained MVL-STKNN modelM and we get the final prediction
value of the road segment at the next time interval (line 6). Finally, the predicted values for all the test
samples are saved to set χLj for evaluating the accuracy of the MVL-STKNN model (line 7).
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Algorithm 2: Prediction of MVL-STKNN

Input: Near spatiotemporal cuboids:
{

XC_HtLj , XC_TsLj

}
;

Periodic spatiotemporal cuboid:
{

XP_HtLj , XP_TsLj

}
;

Trend spatiotemporal cuboid:
{

XQ_HtLj , XQ_TsLj

}
;

Lengths of closeness, period, trend: lc, lp, lq;
Number of candidate neighbors: K;

Parameter of Gaussian function: a.
Output: Set of test sample predictions: χLj .
1 For all time interval t in the test spatiotemporal cuboids
2 // ntd + nhd + ml + 1 < t ≤ tc

3 v̂Lj
t+1,sc = ST-KNN(XC_HtLj , MCLj

t (lc, ln), K, a) // MCLj
t (lc, ln) ∈

{
XC_TsLj

}
4 v̂Lj

t+1,sp = ST-KNN(XP_HtLj , MPLj
t (lp, ln), K, a) // MPLj

t (lp, ln) ∈
{

XP_TsLj

}
5 v̂Lj

t+1,sq = ST-KNN(XQ_HtLj , MQLj
t (lq, ln), K, a) // MQLj

t (lq, ln) ∈
{

XQ_TsLj

}
6 v̂Lj

t+1 ←M
(

v̂
Lj
t+1,sc, v̂

Lj
t+1,sp, v̂

Lj
t+1,sq

)
// Obtain the predicted values

7 Put v̂Lj
t+1 into χLj // Save the predicted values into set χLj

8 End for
9 Return the set of predictions χLj

3. Performance Evaluation

In this section, we use floating car-speed data collected for the Beijing road network and the
California Freeway and Expressway systems to evaluate the proposed MVL-STKNN model. First,
we pre-process the raw traffic data and demonstrate its heterogeneous attributes. Afterward, in the
Beijing data set, we adjust the parameters of the MVL-STKNN model to obtain a set of optimal
parameter combination values. On this basis, we compare existing baseline methods to verify the
efficiency of the proposed model. At the same time, the generalizability of the MVL-STKNN model
was tested by further comparing the accuracy of different traffic prediction models using the Caltrans
Performance Measurement System (PeMS) datasets. Finally, taking the Beijing dataset as an example,
the impact of each component on the overall prediction accuracy of the model is explored including
the time–space weighting and spatiotemporal dependence components proposed in this study.

3.1. Data Preparation

3.1.1. Data Sources

We used floating car-speed data collected from the Beijing road network and the California
Freeway and Expressway systems to evaluate the performance of the models by predicting the
vehicular speed of the road segment. These data points are widely applied in the field of
transportation [14,23,39,40]. Among these, PeMS continuously collects real traffic data from more than
8100 locations on the California Freeway and Expressway systems. These data are integrated into
multiple time intervals and are freely available on the network [41]. PeMS travel speed data were
downloaded for 59 consecutive locations on the US Route 101 and the data distribution is shown in
Figure 2. The data were collected at 5-min intervals for 60 days (15 August 2016 to 14 October 2016),
which was shown in Table 1. The Beijing dataset comes from the driving track of a GPS-equipped
floating car by uploading driving-related information to the server at one-minute intervals, including
travel time, direction, and speed. The time period is from 1 March 2012 to 30 April 2012, which is
shown in Table 1. We integrated the data into 5-min intervals, calculate the average speed of each
road segment, and finally selected 30 representative road segments for subsequent experiments.
The data distribution is shown in Figure 3. In both data sets, data from the last five days were used as
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test data to construct the test spatiotemporal cuboids and five days were used to construct training
spatiotemporal cuboids.

Table 1. Description of the experimental data sets.

Dataset PeMS Beijing

Time span 15 August 2016–14 October 2016 1 March 2012–30 April 2012

Time interval 5 min 5 min

Number of link 59 30

Figure 2. Location distribution of traffic flow in PeMS dataset.

Figure 3. Location distribution of traffic flow in the Beijing dataset.
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3.1.2. Data Processing

Due to equipment failure and other factors, some data were missing from the original traffic-speed
data sets. Considering the spatiotemporal characteristics of traffic data, we used the existing
spatiotemporal interpolation algorithm to fill in the missing data in order to better reconstruct the
original traffic conditions [42]. The basic principle is to consider the missing data pattern in the
interpolation process and use coarse-grained interpolation to obtain partial reconstruction results in
order to eliminate the effect of missing continuous block data on the subsequent interpolation process.
On this basis, considering the spatiotemporal heterogeneity, fine-grained interpolation was applied
to the spatial and temporal dimensions. Finally, the unbiased estimation values of the missing data
were obtained by integrating the interpolation results of the spatiotemporal dimensions in a nonlinear
way. Considering that travel speeds on different types of road segments vary greatly across the road
network, we normalized the original traffic data and used the ratio of the average speed to a maximum
speed limit on each road segment to represent the traffic conditions of road segments. This is expressed
in Formula (20).

v
Lj
t =

v
Lj
t

f j,max
, j ∈ [1, m], t ∈ [t0, tc] (20)

In this study, v
Lj
t is the normalized speed of the j-th road segment at time interval t, v

Lj
t is the

average speed of the road segment and f j,max is the speed limit of the j-th road segment.

3.2. Evaluation Metrics

Similarly, with regard to other traffic prediction studies [9,10,26,27], the present study uses the
mean absolute percentage error (MAPE) as a measure of performance, which reflects the percentage
difference between predicted and actual traffic conditions. The prediction accuracy of different models
is depicted by averaging the percentage error of traffic conditions for all road segments during the test
time interval. A smaller MAPE value indicates higher accuracy of the prediction model. The formal
definition is below. 

MAPE = 1
m×nsd

m
∑

j=1

tc
∑

t=ts

∣∣∣∣∣vLj
t −v̂

Lj
t

∣∣∣∣∣
v̂

Lj
t

ts = ntd + nhd + ml + 1
nsd = tc− ts + 1

(21)

where ts is the start time interval of the test data and v
Lj
t and v̂

Lj
t are the actual vehicular speed

and the predicted vehicular speed at the next time step of the j− th predicted road segment at the
current time step. After dividing the test data set for the original traffic time series, the equations
ts = ntd + nhd + ml + 1 and nsd = tc− ts + 1 are satisfied.

3.3. Variable Estimation

The MVL-STKNN hyper parameters include parameter a, the number of candidate neighbors K,
the length of the closeness-dependent sequence lc, the length of the periodic-dependent sequence lp,
and the length of the trend-dependent sequence lq. We set up a reasonable range of values for each
parameter in order to find the combination of parameter values that achieves the lowest MAPE where
a ∈ [0.001, 0.003, · · · , 0.013, 0.015], K ∈ [5, 10, · · · , 25, 30], lc ∈ [1, 2, · · · , 5, 6], lp ∈ [1, 2, 3, 4],
and lq ∈ [1, 2, 3]. During this estimation process, the parameters were adjusted in a progressive
manner. First, a and K were determined to obtain the optimal ST-KNN model. On this basis, the effect
of temporally dependent sequence length on model accuracy was tested to determine the values of lc,
lp, and lq.
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3.3.1. Calibrating the Parameters of ST-KNN Model

Figure 4 shows the effect of the combined values of parameters a and K on the prediction accuracy
of the model. We fixed lc = 3, lp = 4, and lq = 2 while varying the values of parameters a and K,
which is shown in Figure 4. It can be seen that the MVL-STKNN model has the smallest MAPE value
when a = 0.009 and K = 5. MAPE shows a small overall change, which indicates that the values of
parameters a and K have little influence on the overall prediction accuracy of the MVL-STKNN model.

Figure 4. Impact of ST-KNN model parameters.

3.3.2. Calibrating the Temporally Dependent Parameters

Furthermore, we verified the impacts of temporally dependent parameters on model performance,
which is shown in Figure 5. First, we fixed lp = 4, lq = 2, and varied the value of the temporal
closeness parameter lc to test its effect on prediction accuracy. As shown in Figure 5a, by changing
lc, the prediction accuracy first increased and then decreased. The lowest MAPE value was recorded
for lc = 2. Afterward, we fixed lc = 2, lq = 2, and varied the value of the temporal period parameter
lp. The resulting prediction accuracies are shown in Figure 5b. The MVL-STKNN model has the
highest prediction accuracy when lp = 1. As lp increases, prediction accuracy gradually decreases.
The results show that short-range periods are helpful for prediction models while long-range periods
are difficult to model. Finally, we fixed lc = 2, lp = 1, and varied the time trend parameter lq.
As shown in Figure 5c, the model has a nearly equal prediction performance when lq = 1 or lq = 2,
which indicates that the short-range trend is easier to capture. When lq = 3, the value of MAPE rose
sharply. The reason is that the dynamic changes in traffic conditions obscure the long-range trend,
which affects the prediction accuracy of the model.

Figure 5. Impact of temporal dependent parameters.
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Through the above parameter-debugging process, the parameter-calibration results of the
MVL-STKNN model are shown in Table 2.

Table 2. Calibrated model parameters.

Parameters Values

a 0.009
K 5
lc 2
lp 1
lq 2

3.4. Test of Spatial Heterogeneity

After completing the data preprocessing, we tested the heterogeneous nature of traffic. Taking
30 road segments in Beijing as an example, we used cross-correlation to automatically determine
the spatial neighbors of each road segment, according to the selection strategy of spatial neighbors.
The result is shown in Figure 6. The abscissa represents the IDs of the road segments and the ordinate
represents the number of spatial neighbors of the road segments. For example, Link 1 has 15 spatial
neighbors and Link 2 has eight spatial neighbors. It can be observed that the number of spatial
neighbors of different road segments is inconsistent. The above results show that the set of spatial
neighbors and the number of spatial neighbors differ for each road segment, which reflects the
obvious heterogeneity of urban road traffic. Therefore, when constructing the spatiotemporal state
matrix, previous studies used global fixed spatiotemporal dimensions to represent traffic conditions,
which cannot reflect the heterogeneity of traffic conditions on the road network. It also confirms that
the selection strategy of adaptive spatial neighbor adopted in this research study is reasonable.

Figure 6. Adaptive spatial neighbors of each road segment.

3.5. Accuracy Comparison

In order to verify the efficiency of the proposed MVL-STKNN model, we compared it with four
existing traffic predicting models in Beijing and PeMS data sets, which are comprised of the historical
average model (HA), the Elman neural network (Elman-NN), the KNN model (Original-KNN), and the
spatiotemporal KNN model (ST-KNN). Of these, the HA model uses the average value of the historical
time window as the prediction value of traffic condition at the next time interval. The Elman-NN
model is extended to short-term traffic prediction by introducing delay operators into the model to
adapt traffic time-varying features [43]. The Original-KNN model is an instance-based nonparametric
supervised learning algorithm that heuristically compares the similarity of historical traffic time series
with the current observed time series. Many researchers have successfully applied the KNN model
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to short-term traffic prediction [25,44,45]. Based on the Original-KNN model, the ST-KNN model
is formed by considering the spatiotemporal relationships among multiple road segments in the
road network.

Figure 7 shows the prediction accuracy of the four models when using the Beijing dataset. It can
be seen that because the HA, the Elman-NN, and the Original-KNN models consider traffic forecasting
as a time series modeling problem, they ignore the influence of spatial factors on the predicted road
segments. Therefore, their predictive performances are worse than those of the ST-KNN model and the
proposed MVL-STKNN model. The ST-KNN model introduces the spatiotemporal closeness matrix
rather than the traditional time series to characterize traffic conditions and constructs the distance
function and prediction function using the Gaussian function to improve the predictive performance
of the model. However, in the modeling process, the spatiotemporal dependence relationship is
not fully characterized. For example, in the spatial dimension, the heterogeneity of road network
traffic is not considered, which results in a globally fixed dimension of its spatiotemporal adjacency
matrix. In the temporal dimension, the influence of temporal periodicity and trend on the prediction
of road segment traffic conditions is ignored. In addition, when the distance function is constructed,
too many parameters are artificially introduced, which exacerbates the difficulty of the parameter
adjustment. Consequently, the predictive accuracy of the model is significantly lower than the method
proposed here. In the MVL-STKNN model, the improved ST-KNN model is first introduced by using
space-time weighting rather than Gaussian weighting. On this basis, the spatiotemporal dependencies
are comprehensively considered and three spatiotemporal views are constructed (spatiotemporal
closeness, periodic, and trend matrices) to characterize the traffic conditions. Finally, short-term
traffic prediction is achieved by using a multi-view learning method. It can be seen from Figure 7
that the MVL-STKNN model reduces the MAPE between 28.24% and 46.86% compared with the
existing methods, which indicates that the proposed method solves the problems existing in the
baseline method.

Figure 7. Comparison with baselines using the Beijing data set.

Since urban road networks and freeway exhibit different road network topological structures
and have large differences in traffic patterns, we further validated the model’s performance on PeMS
datasets. The experimental results are shown in Figure 8. Overall, the accuracy trend of the model
was similar to that of the Beijing dataset, but the predictive accuracy was more extensive. This is
attributed to higher data quality. The PeMS data set is relatively complete and, because the data
collection area is an expressway, the traffic pattern is relatively simple when compared with an urban
road network. The change trend is small, which makes it easier to capture the regular traffic pattern.
As can be seen from Figure 8, the MVL-STKNN model reduces the MAPE between 53.80% and 90.29%.
When compared with the existing methods, this further demonstrates the effectiveness of the proposed
method and its satisfactory generalization.
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Figure 8. Comparison with baselines using the PeMS data set.

3.6. Impact of Space-Time Weighting Matrix

Based on the existing ST-KNN model, we use space–time weighting allocation instead of the
traditional Gaussian function allocation method to construct the STKNN-W model. The experimental
results in Figure 9 clearly demonstrate that the proposed method achieves superior performance,
which is attributed to the MVL-STKNN model by employing the ST-KNN model to mine similar
traffic patterns and to derive predictions for the spatiotemporal closeness, periodic, and trend views.
In the training process, these three sets of predictions are then used to construct training samples for
multi-view learning. During testing, the parameters trained through multi-view learning are used to
integrate the three views to give predicted values for traffic conditions on the road segments. Therefore,
the performance of the ST-KNN model will have a certain impact on the overall prediction results.
In the ST-KNN model, the key is how to construct a suitable distance function to select the candidate
neighbors. The existing ST-KNN constructs the distance function using a Gaussian function to allocate
weightings in the time and space dimensions, respectively. Compared with Euclidean distance and
correlation distance, the predictive accuracy of the model is somewhat improved [27]. However,
the Gaussian weight function requires the introduction of additional parameters, which exacerbates
the difficulty of parameter calibration. In contrast, the proposed weight allocation method does
not require additional parameters. Moreover, the influence of traffic conditions with different time
intervals and different spatial neighbors on the predicted road segments can be mined from the data
itself, which achieves higher prediction accuracy.

Figure 9. Impact of space-time weighting matrix.
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3.7. Impact of Spatial and Temporal Dependencies

In this section, we further discuss the impacts of spatial and temporal dependencies on the
overall results.

First, we test the effect of spatiotemporal closeness on predictive accuracy. Considering that the
existing ST-KNN and STKNN-W models use the globally fixed spatiotemporal closeness matrix to
characterize traffic conditions, they cannot cope with the heterogeneous nature of traffic conditions.
Therefore, based on the STKNN-W model, we hold other variables fixed and automatically select the
spatial neighbors for each road segment using cross-correlation so that the spatial neighbors of each
road segment are different (see Figure 4). Afterward, the STKNN-W-C model is constructed using the
adaptive spatiotemporal closeness matrix rather than the traditional globally fixed spatiotemporal
closeness matrix. As can be seen from Figure 10, the STKNN-W-C model is more accurate than
STKNN-W, which confirms the validity of the adaptive spatiotemporal closeness matrix.

Second, on the basis of the STKNN-W-C model, we further introduce temporal periodicity, which is
combined with an adaptive spatial neighbor to form a spatiotemporal periodic matrix to represent traffic
conditions from another view. Since the entire model contains two views, it can constitute a multi-view
learning method known as MVL-STKNN/CP, which considers both spatiotemporal closeness and
period. The training and prediction process is similar to that shown in Algorithms 1 and 2 except
that the spatiotemporal trend view is not included. As shown in Figure 10, the performance of the
MVL-STKNN/CP model is significantly improved, which demonstrates the usefulness of spatiotemporal
periodicity in the modeling process. Multi-view learning has the potential to accurately predict
short-term traffic.

Finally, on the basis of the MVL-STKNN/CP model, we further introduce the spatiotemporal
trend matrix to form a complete MVL-STKNN/CPT model. Based on the introduction of space–time
weightings, we simultaneously consider spatiotemporal closeness, the period, and the trend to form
a multi-view learning method. It can be seen that the predictive accuracy of MVL-STKNN/CP is
further improved. This demonstrates the validity of the spatiotemporal trend.

In addition, from comparing the improved models, comprising STKNN-W, STKNN-W-C,
MVL-STKNN/CP, and MVL-STKNN/CPT, the introduction of periodicity induces the largest
improvement in prediction accuracy, which induces the smallest improvement. Since the trend
has a greater time span than periodicity, it is more difficult to capture the changing characteristics of
traffic patterns.

Figure 10. Impact of spatial and temporal dependencies.
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4. Discussion

Accurate and robust short-term vehicular speed forecasting is a critical issue in superior
transportation systems and traffic related applications. The existing ST-KNN model uses distance
functions and correlation coefficients to identify spatial neighbors and measures the temporal
interaction by only considering the temporal closeness of traffic, which means that existing ST-KNNs
cannot fully reflect the essential features of road traffic. We address the shortcomings of such
models by introducing an improved spatiotemporal KNN model integrated with multi-view learning.
The proposed model greatly improves the performance of short-term traffic forecasting. However,
there are still some issues that require further investigation.

Considering the spatial heterogeneity of city traffic, traffic patterns of different road segments
show significant differences [46,47], which is reflected in different model structures including different
spatial neighbors and spatiotemporal parameters. In the MVL-STKNN model, we have constructed an
adaptive spatial neighbor for each road segment. However, in order to simplify the model (for example,
in the modeling process, there is no need to adjust the parameters of each road segment), we adopt the
mechanism of sharing parameters, which need further refinement in future work.

Yet, we consider the temporal proximity, periodicity, and trend to characterize the temporal
non-stationarity of different road segments in the MVL-STKNN model. However, from the perspective
of the more fine-grained variation characteristics of temporal non-stationarity, different road segments
may have different fluctuation patterns in different time periods such as morning and evening peaks.
Therefore, a very promising approach is to identify the traffic pattern of the entire road network through
a clustering algorithm and then divide the time period for each traffic pattern. Next, the MVL-STKNN
model is constructed for each time period in each cluster to further improve the accuracy and robustness of
short-term traffic prediction.

Finally, we only validated the MVL-STKNN model with a small dataset. For example, 30 representative
road segments and five days of data in the Beijing dataset were selected to test the performance of the
proposed model. As mentioned above, different road segments show different traffic patterns at different
time periods in order to use more road segments and a longer prediction period to comprehensively evaluate
the accuracy and robustness of the MVL-STKNN model.

5. Conclusions

In this paper, we propose the MVL-STKNN model for short-term vehicular speed prediction. First,
considering the heterogeneous nature of traffic, different road segments have different numbers of
spatial neighbors. Therefore, we use cross-correlation to automatically determine the spatial neighbors
of each road segment, which overcame the problem that existing methods can not automatically
capture spatial information. Afterward, we consider temporal closeness, periodicity, and trend. This is
further combined with an adaptive spatial neighbor to form three characterizations of traffic conditions
including matrices for spatiotemporal closeness, period, and trend, which overcomes the problem
that existing methods only use a global, fixed spatiotemporal closeness matrix to describe the traffic
condition. Second, we introduce space–time weighting to improve the distance function in the ST-KNN
model, which is then used to mine similar traffic patterns and obtain prediction results for the three
spatiotemporal views, respectively. Finally, a multi-view learning method based on the neural network
model is constructed from these three predicted spatiotemporal views with different weightings
allocated to these views to obtain prediction values for traffic conditions.

In the experimental section, we employ two widely used traffic data sets comprised of floating
car-speed data collected from the Beijing road network and from the California Freeway and Expressway
systems to verify the efficiency of the proposed model. We first conducted a comparison with four
existing baseline methods including HA, Elman-NN, KNN, and ST-KNN models. Compared the existing
methods, the MVL-STKNN model decreases the MAPE index anywhere from 28.24% to 46.86% in the
Beijing dataset and anywhere from 53.80% to 90.29% in the PeMS dataset. This demonstrates the efficiency
of the multi-view learning method. Second, we further explore the influence of the components of



ISPRS Int. J. Geo-Inf. 2018, 7, 218 19 of 21

the MVL-STKNN model on predictive accuracy. For the space–time weighting matrix, the problem of
parameter calibration of the existing ST-KNN model is solved by using space–time weighting instead of
Gaussian weighting in the distance function. For spatiotemporal dependencies, the introduction of the
adaptive spatial neighbor, temporal periodicity, and the trend in road traffic significantly improves the
performance of short-term traffic forecasting, which demonstrates that the multi-view learning approach
merits further attention in traffic-related data mining under such a dynamic and data-intensive environment.
This needs to be considered with regard to the spatial correlation and heterogeneity as well as temporal
closeness, periodicity, and trend in road traffic.

For the direction of future work, the following problems need to be investigated: (1) Further validation of
the proposed model using more road segments and longer prediction periods, (2) comprehensive comparison
of other spatiotemporal modeling methods such as ST-ARIMA and ST-ANN, and (3) incorporating external
factors into the modelling process such as weather conditions and traffic accidents, and integrating these into
the MVL-STKNN to achieve a more robust model that would further improve short-term traffic forecasting.
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