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Abstract: Metaphors are rhetorical devices in linguistics that facilitate the understanding of an
unfamiliar concept based on a familiar concept. Map representations are usually referred to as
the second language of geo-science studies, and the metaphor method could be applied to maps
to visualize non-spatial data via spatial element symbols. This study performs a cross-domain
application of the map representation method through a map-like visualization. The procedure first
designs the map layout with the aid of the Gosper curve. Under the guidance of the Gosper curve,
the leaf data items without spatial attributes are arranged on the space plane. Through the bottom-up
regional integration, one can complete the construction of the map framework. Then, the cartographic
method is used to complete map-like renderings that reflect different data features through diverse
visualizations. The map representation advantages, such as overview sensing and multi-scale
representation, are also reflected in the map-like visualization and used to identify the characteristics
of non-spatial data. Additionally, the electronic map provides a series of interactive convenience
features for map observation and analysis. Using the help of map-like visualizations, one can perform
a series of analyses of non-spatial data in a new form. To verify the proposed method, the authors
conducted map-making experiments and data analyses using real data.
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1. Introduction

The physical space filled with geographic elements and phenomena is essential and familiar in
human life, providing people with the basic context, and human beings interact with it in various
forms. People use map tools to describe the spatial distribution and spatial characteristics of objects.
However, in the information age, people’s living space has expanded from the traditional physical
space to the combination of physical space and virtual space, and the proportion of virtual space
is increasing [1]. Textual expressions, with the emergence of a large amount of pure semantic data,
often represent a difficult medium for meeting the needs of data exploration in today’s data-rich
society. Many researchers have considered using maps to describe virtual space and express abstract
non-spatial data, which belongs to the field of spatialization [2].

Spatialization is a method of visualizing data that uses a spatial metaphor to map the high
dimension data of the information space to a lower dimension space that is easier to understand [3].
This method not only has the advantage of providing visual overview but also can use the audience’s
spatial imaging abilities. The use of spatial objects provides tangible support for the expression.
Map representations, which are frequently referred to as the second language of geo-science studies, can
apply the metaphor method to visualize non-spatial data via spatial element symbols. Spatial metaphors
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represent an important rhetorical construct in language representation. Living in physical space, people
establish a strong sense of the spatial dimension. Through building connections between an abstracted
concept and a real spatial object, one can share similar conceptual meanings based on the spatial
direction, distance, height, and so forth. [4]. People often use spatial objects as a metaphor for abstract
concepts, such as the expression “Life is like a river”. Compared with abstract concepts, the spatial
objects lead to a more direct sensory experience and thus are more likely to be perceived. Map-like
visualizations represent a common form of expression in spatialization that uses map forms to express
non-spatial data and can exploit the convenience of maps in cognition [5]. A map that follows certain
mapping rules can be used to correctly reflect data and the data structures using symbolic language,
from the aspect of information expression. Regarding the aspect of information receival, people are
trained to read maps in the early learning period [6], and all types of map products may be encountered
throughout daily life. Based on the cognitive convenience established by a continuous interaction
with a map, the information expression of a map can be easily accepted. Map-like visualization not
only provides a new perspective for observing and analyzing data but also can greatly broaden the
application range of maps by effectively transferring the methods and techniques of cartography.

As a cognitive tool, map visualization integrates data management, visual expression and analysis,
and results presentation [7], and it deeply affects people’s thinking, decision-making, and behaviour.
Maps, such as topographic maps that express topography and navigation maps used for location
and path finding, are rich in forms of expression. Diverse forms of expression can be used to display
data in many ways and reflect different data features. However, the expression form of the current
map-like visualization is still limited and few works can reflect multiple data characters in different
map forms. This affects the flexibility of the map-like visualization. Additionally, due to the lack
of in-depth integration with map features and technologies, the current map-like visualization is
often used as a tool for data presentation to analyze some shallow rules. How to design map-like
visualization and make it undertake tasks that are difficult to do in a conventional manner is a problem
that needs to be considered and solved. Since we use map metaphors, we should not only express
the data in the form of a map but also use existing map methods to fully discover the application
potential of a map [5]. Based on the mental map produced by map reading, a comparative analysis
of the main features between many images can be conveniently performed. The multi-scale feature
of a map meets the needs for data observation and analysis from different scales [8]. Furthermore,
combined with a computer science electronic map, this method is more convenient for multi-scale
operations. The electronic map provides a human–machine interaction and a good user experience for
map browsing and analysis.

Based on the use of map-like visualizations for data expression, this study aims to try a variety of
expression forms in map-like visualization to reflect different data characteristics, and to perform tasks
that are difficult to carry out in a conventional manner through the combination of map features and
techniques with data. The introduction of the Gosper curve helps arrange the location of non-spatial
data in the plane space. In this process, the corresponding map regions of all data items are obtained by
merging regions bottom-up. It completes the layout of data and provides a basic map framework. Using
geographic language, different data features are reflected by the diversification of geographical features,
and the comparative analysis of data is conducted. Additionally, combined with the multi-scale feature
and interactive convenience of an electronic map, the authors analyze data from multiple scales in the
form of map browsing. The remainder of this paper is organized as follows. Section 2 reviews the
theoretical and practical work related to the map-like visualization. Section 3 introduces the method
design of this study. Section 4 discusses the experimental part using real data to verify the proposed
theoretical method. Finally, in Section 5, the conclusions of this study are provided.

2. Related Research

A metaphor is a rhetorical device used in linguistics, and studies have shown that a metaphor
is associated with human thinking and acts on human cognitive processes [4]. People often use
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familiar concepts to understand unfamiliar items, and this is the most basic application of a metaphor.
People stay in the physical space and interact with it all the time and the map is a common tool for
people to acquire spatial knowledge. However, both the understanding of space and the mastery
of maps are continuous learning processes. Piaget [9] has done meticulous research on human
spatial cognition and put forward the developmental stage theory to describe the stages in a child’s
development of spatial skills. The process of human growth is also a process of constant understanding
and familiarity with space. Regarding maps, by designing the amount, shape, size, and color of map
symbols, and using map generalization to reduce the geometric complexity of elements one could
increase the cognitive convenience in the process of map reading. Due to the limitation of human
visual perception, the minimum size, minimum width, and minimum interval of symbols all need to
be considered and designed in the course of cognitive design [10]. The audience’s individual factors
cannot be ignored, at the same time. There are tactile maps specially designed for people with visual
impairments [11] for example. How to fully consider the problems of geometric visual complexity
and perceptive graphical restrictions to design a map that is more consistent with their cognition for
different audience groups has always been a continuous exploration problem. Through reasonable map
design, people can build up cognitive familiarity in the continuous interaction with maps. Based on
the familiarity of human beings to space and maps, the map metaphor method uses familiar map
language to describe data features and explore data through map browsing.

In the research of the basic theories, Skupin and Buttenfield [3] provided the definition of
spatialization in the information space. Fabrikant and Skupin [12] proposed the framework of
spatialization from the perspective of geographic visualization and outlined a summary of the
process. The researchers studied the distance similarity metaphor in various types of spatializations
(point-display spatializations, network display spatializations, region-display spatializations, and so
forth) to analyze the influence of different types of distance on similarity judgement [13–15]. Based on
the influence of distance in similarity judgement, the first law of cognitive geography was proposed,
and it states that closer things are considered more similar [13]. This law is reminiscent of the first
law of geography [16] in the inverse, because similarity determines distance in spatializations rather
than the reverse [17]. Under the effective consideration of the first law of cognitive geography,
the location of each abstract object can be determined through similarities or correlations among data.
This dimensionality reduction process converts abstract data in the multidimensional attribute space
into a two-dimensional plane space and realizes the simple generalization of semantic data through
spatial elements. Skupin compared the map projection to the dimension reduction operation and
performed a comparative analysis of several commonly used methods of dimension reduction [5].

Researchers have also accumulated rich results in the practice of map-like visualization.
Skupin [18] tried to express abstract multidimensional data in the form of a map and used the
Self Organizing Map (SOM) method to cluster semantic data. Cao et al. [19] also aimed at expressing
multidimensional data and visualized the multi-label data on a triangle map. Wattenberg [20] used
the space-filling curve for map region division, and Auber et al. [21] also proposed a method of
polygon map building using another space-filling curve called the Gosper curve. These methods based
on a space-filling curve can construct map-like visualizations achieving seamless regional splicing.
Biuk-Aghai et al. [22] created a preliminary map layout by using a force-directed algorithm with
the aid of category similarity values and then applied liquid modelling to create the final layout.
Yang and Biuk-Aghai [23] chose a random filling method to implement the map region construction.
The graphic parameters, such as the aspect ratio, were considered and controlled in these processes.
For relational data, many studies have expressed such data in the form of a map [24,25]. Fried and
Kobourov [26] also introduced the heatmap to the study of relational data to extract the characteristic
data. Social media data has been a very hot research focus in recent years [27], and related studies
analyzed this typical relational data in the form of map-like visualization [28,29]. Cao et al. [30] also
applied the contour map to the study on social media data. Knowledge and technologies should be
applied to the design of spatialization to improve its application value [12] for the practitioners of
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maps. The current achievements provide an effective technical support framework for the research
of non-spatial data. Combined with the related technologies and methods in cartography, map-like
visualization can not only express data but also perform data structure and data feature analyses
and mining.

3. Methods

Data expression and analysis are two important functions of a map. The basic purpose of data
expression is to promote data understanding and data mining analyses. This study designs the map
framework to highlight the data structure, which references the Gosper map generation principle,
and combined with cartography technology, the expression and analysis of hierarchical data are
realized. The hierarchical data contain including relationships that are often hidden in the data
organization. These data have many features, such as an object that can only be directly contained
by another object but can directly contain multiple objects. This study uses file directory data as an
example. Figure 1 shows the three folders of ArcGIS Desktop 10.1, MyEclipse 2017, and Visual Studio
2015 which are selected as data sources. The authors use the nested relationship between map regions
to reflect hierarchy and use other map features to display hierarchical data characteristics.
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3.1. Map Frame Construction

This study is slightly different from that of Auber et al. [21] in constructing the Gosper map.
First, the discrete points are generated according to certain horizontal and longitudinal intervals.
As Figure 2a shows, for discrete points, the horizontal interval is H, the vertical interval is V, and the
points between adjacent columns differ by V/2 in the vertical direction. The relationship between H
and V is expressed in Equation (1). The Thiessen polygons are constructed based on these discrete
points shown in Figure 2b. These polygons are all hexagons. Then, the appropriate hexagonal center
point is selected as the starting point and the Gosper fractal curve is constructed on the hexagonal base
map, with V as the step length. Following the above steps, the resulting Gosper curve’s nodes are
coincident with the center points of the hexagons, thus, establishing the correspondence between the
Gosper curve and the base map shown in Figure 2c.
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The process of building a map framework is shown in Figure 3. The leaf nodes of a multilevel
tree are extracted by the depth-first traversal. Under the guidance of the Gosper curve, these nodes
are arranged on certain hexagons. According to the inclusion relationship of the nodes, a parent node
region can be obtained from the fusion of the node regions in the lower layer. This process is repeated
in a bottom-up manner to generate a collection of polygons that corresponds to the hierarchical
relationship of the data.
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The Gosper map uses the hexagon as the basic unit for constructing the map, which has the
advantages of seamless splicing and representational accuracy [31]. Compared with the point connection
commonly used in the triangular mosaic and the regular mosaic, the adjacent regions in the hexagon
mosaic are connected with the shared edge, which makes them more isotropic [32] and can increase
the continuity of the contiguous region and avoids the discontinuous phenomena caused by point
connection. Additionally, human beings are particularly sensitive to vertical and horizontal lines [33].
The hexagonal grid structure can avoid the orthogonal lines formed in the regular grid, thus, avoiding
a loss of attention [34,35]. Under the guidance of the Gosper curve, a strict mapping between the
data and map is established. The adjacent relation of nodes in the hierarchical data can be considered,
and the hierarchical inclusion relation can also be embodied intuitively through region nesting. Moreover,
the irregular shape of the boundary and region in a Gosper map also increases its map similarity. The shape
plays an important role in discovering characteristics [36], and it will affect people’s discrimination of
items [37]. The authors construct a Gosper map in Figure 4a and a Hilbert map (constructed on a square
base map under the guidance of the Hilbert curve) in Figure 4b using the same data. The irregular region
shape in Figure 4a effectively avoids the straight line boundaries in Figure 4b due to hard cutting.
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3.2. Virtual Terrain Expression

Abstract high-dimensional spaces are unfamiliar to humans, which increases the difficulty of
expressing, perceiving, and identifying their structures and patterns [38]. When faced with abstract
concepts, people often choose the familiar spatial metaphor to explain and understand them [4].
Whether in the process of human evolution or experience in personal life, the terrain or the natural scene
is universal, and humans are constantly trained to understand the terrain structure effectively [39,40].
The use of terrain to express the characteristics of abstract data aims to exploit the human sense of space
and familiarity with spatial objects. The abstract data are described in the form of geographic language
to make them concrete. Transforming semantic data into natural objects allows visual exploration
to be performed rather than abstract thinking, thus, providing a familiar method of interacting with
data [38]. The macro overview of the terrain could promote the identification of subject areas and
significant entities [41], and such objects are easy to remember and helps the user to build a mental
map, which facilitates comparative analyses between different scenes [38,42].

The design process of a virtual terrain includes spatial layout and rendering. The spatial layout is
mainly used to solve the randomness in map design to promote the feature representation. The node
order of most hierarchical data has no specific meaning and is generally arranged randomly. As shown
in Figure 5, the randomness of the Gosper map layout is caused by the uncertain node order of
hierarchical data. However, the spatial locations of items often imply their relationship. Such a
random layout cannot pass useful information to the audience through location design and, thus,
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is not conducive to the expression and identification of data features. Additionally, a fixed layout also
helps create a stable mental map. The map layout needs to be designed in this case.
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According to the first law of geography, objects with close spatial positions often have similar
properties. Data in this study with similar characteristics were gathered by a location clustering
design. However, the hierarchical structure also need to be considered when implementing spatial
clustering in a Gosper map. The Gosper map realizes the placement of leaf nodes by linear guidance,
and two-dimensional Euclidean distance provides a good consideration of the linear distance [43].
That is, the linear sequence distance of the leaf nodes can be reflected by the Euclidean distance
in the plane: when the two leaf nodes are adjacent to the Gosper curve, their corresponding map
regions are also adjacent on the two-dimensional plane; and if their linear order is closer, then their
location on the map plane will not be far away. Since the parent node region is fused by their sub-node
regions, the adjacency and distance relation of nodes in eah layer will be well considered in the
two-dimensional plane. Using this characteristic, the clustering relationship of the multi-tree nodes
can be transferred to the regions on the plane. Therefore, the clustering process can be performed in a
multi-tree of hierarchical data. As shown in Figure 6, for the disordered multi-tree of a hierarchical
data, the upper nodes were sorted first according to the target attribute value and then the sorting
process was completed from top to bottom. Finally, the sorted multi-tree was converted into a Gosper
map to achieve the spatial clustering expression in space. Thus, the hierarchical relationship between
the data were not destroyed in the clustering process.

A series of attributes were stored in each object region in the resulting Gosper map. Such a
map belongs to the vector data type, which have strong object characteristics and are suitable for
object-oriented queries and analysis. However, the field characteristics of this data type are weak and
the performance for a natural landform or a continuous distribution phenomenon is poor. Subsequent
processing of map rendering extracted all the central points of the leaf node regions as key points.
Combined with the target attribute, a spatial interpolation was conducted between the key points,
and the original discrete vector model was converted into a continuous grid model. The grid value
was regarded as the elevation value, and the shadow layer is built to enhance the visual effect.
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According to the type of the virtual terrain, the appropriate colour is chosen to render and complete
the construction of the virtual terrain. The above operation realizes the spatially continuous expression
of attributes without changing the positions of the elements. Through a clustering operation in the
spatial layout, feature elements were aggregated in space, and the rendering operation used visual
variables that highlighted these features. The three-dimensional terrain model was built based on the
virtual elevation value to show data in a more stereoscopic way.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  8 of 21 
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Figure 6. The sorting process of a hierarchical tree from top to bottom: (a) disordered multi-tree;
(b) sorted second layer nodes; and (c) sorted leaf nodes.

3.3. Multi-Scale Analysis of a Map

Scale is an important factor both in semantics and space. Regarding a map, a multi-scale expression
is an important advantage, and researchers have focused on such expressions [44]. Great importance
has also been attached to the scale in the early introduction of the spatialization [3]. Fabrikant studied
the metaphorical function of the scale and indicated that people could link the changes in spatial
resolution to the changes in the hierarchy [45]. Level of Detail (LOD) technology can be regarded as a
multi-granularity slice set in terms of multi-scale technology. Through different scale controls, different
slices can be visualized. Hierarchical data analysis requires a macro overview to grasp the overall
characteristics and the trend distribution of the data, and it also needs to focus on the microcosmic
details of interest areas. To meet the above requirements, the LOD technology was introduced into the
analysis of a Gosper map. The linkage relations among the map scales, LOD levels, and multilevel
map scenes were established to realize the dynamic multi-scale expression of a Gosper map. Based on
different analysis needs, the map scenes that show different levels of semantic information were used
to perform an analysis and mine the data at different scales.

The procedure included separating the map regions according to their level of hierarchy and
assigning them the level. Regarding the region corresponding to the upstream node of the hierarchical
tree, a smaller level was set. As the level deepened, the sub-node area that showed the details was
given a higher level. The region set at the same level constituted a map slice of the corresponding
level. Map scenes were made up of map slices at different levels. The relationship among the map
scales, LOD levels, and map scenes is shown in Figure 7. The increment of the LOD level corresponded
to a more elaborate subdivision, and the detail information was further displayed in the map scene.
Under a certain map scale, the increased detail occasionally caused an excessive symbol density
on the map, which affected the observation and needed to be adjusted by a scale transformation.
The general relationship between the scale range and the LOD levels was as follows: small map scales
corresponded to lower LOD levels, and large map scales corresponded to higher LOD levels.
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Via establishing a scale detector, the change of map scale was detected and the display and blanking
of corresponding map slices was controlled to construct different map scenes. The map scale was changed
through a map interactive operation to dynamically drive the map scene transformation: when the
map scale increased from small to large, the map slices with higher levels were superimposed to
construct a higher precision map scene. Conversely, when the scale decreased, the high-level slices
were hidden, and only the corresponding low-level map slices were displayed, which constructed a lower
precision map scene. Using such a map for analysis can well meet Ben Shneiderman’s well-known Visual
Information-Seeking Mantra (overview first, zoom and filter, then details-on-demand) [46]. A map has
a wide field of vision when at a smaller scale. Accordingly, a low precision map scene is more general,
which is suitable for macroscopic analysis, but lacks detail. Such a map can be used to grasp the general
trend of the data and choose the area of interest. As the analysis increases in depth, people need the map
scene with a higher precision to show more details about the area of interest. Then, one should switch
the map to a larger scale to drive the transformation of map scenes and display the details accurately.
Compared with the last map scene, the current map’s range shrinks, although the expressed information
has greater detail and is suitable for micro-research on individuals.

Based on the interactive convenience of an electronic map, a series of exploration works can be
performed in a multi-scale map expression. Through dynamic changes in the map scale, switching
to different levels of map slices to observe the hierarchy of data can be accomplished, for example.
Additionally, people can find the area of interest through the map overview and achieve a multilevel
location of the area of interest. During these processes, a map provides a rich context that is useful for the
comparison of object structure characteristics and attribute content. This comparison could be conducted
between maps constructed by different data sources or between different regions of the same map.

4. Experiment and Discussion

The file directory data are typical hierarchical data whose hierarchical relationship is embodied
by the nesting of the folders. During daily interactions with file data, the focus is often on a single file,
and intuitively understanding the overall information of other context files is difficult. When faced with
a folder, people cannot obtain the information of each sub-file contained in the folder and thus cannot
effectively analyze the files.
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Regarding the three file data in the experiment, based on the map construction method described
above, the map frames were generated. First, file data were organized into a hierarchical multi-tree
whose nodes corresponded to folders or files. Then, the nodes were sorted according to the size of the
node object (corresponding to the size of a folder or file) from top to bottom. Finally, the hierarchical
tree was converted into a polygon map frame (Figure 8) through the method introduced in this article.
Through these operations, the hidden hierarchy in the file data was reflected as nested inclusion relations
among polygons. As shown in Figure 8, because the area of each map building unit was the equivalent
and the slice of each map was generated at the same scale, the number of files contained in the folders
were learned from the area of the territory: Visual Studio 2015 had the largest number of files, followed by
MyEclipse 2017 and ArcGIS Desktop 10.1. However, these polygons were simple graphs that were not
trimmed. Subsequent series of map decoration and rendering work will be carried out based on them.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  11 of 21 
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4.1. Diversified Expressions of Maps

Combined with the map framework and file attributes, the virtual terrain could be build. Figure 9a
shows the bottom hexagons corresponded to file objects that were associated with basic file attributes
such as size, depth, and so forth, were singled out. The authors extracted the geometric center points
of bottom hexagons, which are shown in Figure 9b. The file size was selected to interpolate the discrete
points to form a continuous grid field model in Figure 9c. Figure 9d shows the mountain shadow result
generated by the grid data to enhance the stereoscopic effect of the expression. Figure 9e displays color
rendering conducted in the form of a geomorphic map, in which a large file area is red high terrain
while a small file area uses a flat terrain of green. The making and rendering of a two-dimensional
virtual terrains are completed above. Compared with the simple grid data in Figure 9c, shadow
superposition and color rendering can better highlight the high value region in Figure 9e. Finally,
the result of the grid field model was stretched in three dimensions, in which the size of the file was
mapped to the elevation of the terrain (Figure 9f).

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  12 of 21 

 

rendering of a two-dimensional virtual terrains are completed above. Compared with the simple grid 
data in Figure 9c, shadow superposition and color rendering can better highlight the high value 
region in Figure 9e. Finally, the result of the grid field model was stretched in three dimensions, in 
which the size of the file was mapped to the elevation of the terrain (Figure 9f). 

Concurrently, the authors constructed a virtual terrain using the unsorted hierarchical tree 
following these mapping steps, which can be seen in Figure 10. That is, this data was not processed 
by clustering. Compared with the virtual terrain produced without the cluster process shown in 
Figure 10, the data that was clustered by hierarchical tree sorting significantly reduced the discrete 
small humps in the red boxes. To further quantitatively explore the aggregation of the clustered data, 
the authors calculated the spatial autocorrelation coefficient of the data. The calculation was carried 
out by ArcGIS software and the hexagon base map layer Figure 9a was used as the input data. The 
“Inverse Distance” was chosen as the conceptualization of spatial relationships parameter and the 
distance method was “Euclidean Distance”. The distance threshold was 100.01 m, which was slightly 
larger than the center distance of two adjacent hexagonal units (100 m). Figure 11 shows the graphical 
calculation results: the p value indicates that the data are not random and the high z-score shows the 
high aggregation of data. The results significantly reject the null hypothesis and show that the data 
present clustering characteristics and are positively correlated with the spatial mode. 

 
Figure 9. The construction process of the virtual terrain of ArcGIS Desktop 10.1: (a) bottom hexagons 
corresponding to files; (b) geometric center points of the bottom hexagons; (c) grid field model result 
of files; (d) mountain shadow layer generated by the grid data; (e) two-dimensional virtual terrain; 
(f) three-dimensional virtual terrain. 

Figure 9. The construction process of the virtual terrain of ArcGIS Desktop 10.1: (a) bottom hexagons
corresponding to files; (b) geometric center points of the bottom hexagons; (c) grid field model result
of files; (d) mountain shadow layer generated by the grid data; (e) two-dimensional virtual terrain;
(f) three-dimensional virtual terrain.
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Concurrently, the authors constructed a virtual terrain using the unsorted hierarchical tree
following these mapping steps, which can be seen in Figure 10. That is, this data was not processed by
clustering. Compared with the virtual terrain produced without the cluster process shown in Figure 10,
the data that was clustered by hierarchical tree sorting significantly reduced the discrete small humps
in the red boxes. To further quantitatively explore the aggregation of the clustered data, the authors
calculated the spatial autocorrelation coefficient of the data. The calculation was carried out by ArcGIS
software and the hexagon base map layer Figure 9a was used as the input data. The “Inverse Distance”
was chosen as the conceptualization of spatial relationships parameter and the distance method was
“Euclidean Distance”. The distance threshold was 100.01 m, which was slightly larger than the center
distance of two adjacent hexagonal units (100 m). Figure 11 shows the graphical calculation results:
the p value indicates that the data are not random and the high z-score shows the high aggregation
of data. The results significantly reject the null hypothesis and show that the data present clustering
characteristics and are positively correlated with the spatial mode.
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Figure 11. The spatial autocorrelation result of the clustered data.

The above construction process of the virtual terrain was performed for all three folders.
Three pieces of data results were placed in a unified expression space to facilitate the horizontal
contrast between data. The same attribute values were expressed as the same height and color,
for example. Figure 12 shows the result of the virtual terrain expression for the other two data
sources. This approach represented the abstract value by tangible height. Its purpose was to enable
audiences to analyze the data through visual observation rather than abstract thinking like numerical
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comparison. Using hierarchy tree sorting, the objects with similar attributes were more aggregated in
space. This highlighted the characteristics of the data and made it easy to be found.

The virtual landscape indicates the map overview analysis perspective so that the audience can
explore the data characteristics from a global perspective. Simultaneously, it could also provide for
convenient feature contrast among different data sources. When observing the virtual landscape map
(Figure 9e,f and Figure 12, respectively) the authors found that the large file areas in each folder were
effectively highlighted via the geometry and color rendering. Due to the clustering process, the large
file distribution presented good clustering. The clusters of peaks better highlighted the features,
thereby facilitating feature discovery and comparisons. A lack of high topography means that the
proportion of large files is generally small in a virtual landscape map. Particularly, in the maps of Visual
Studio 2015 (Figure 12c,d), the high terrain area showed a sporadic distribution. However, as shown in
Figure 9, ArcGIS Desktop 10.1 had many high terrain regions. A horizontal comparison of these maps
showed that ArcGIS Desktop 10.1 and MyEclipse 2017 had significantly more large files than did Visual
Studio 2015. Due to the small size of the territory (the number of files was small), the distribution
density of large files in ArcGIS Desktop 10.1 was generally higher.
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The depth of the file in the file tree can be simply understood as the number of clicks required
to reach the target file from the outermost folder. Using an operating system, the depth of the
file is not explicitly described, and it is usually calculated in the file tree window or through the
information in the address bar. When the folder contains a large number of subfolders or many levels,
the depth distribution of its sub-files is difficult to observe. Figure 13 shows the two-dimensional and
three-dimensional virtual water depth maps that were generated based on the depth attribute of the
file. The mapping process was similar to the above virtual topographic map. These virtual maps used
the depth of water as a metaphor for the depth of the document. By using the ocean map style for
reference, the low terrain in dark blue corresponded to the deep files, whereas the white high terrain
showed that the corresponding files were small in depth. The virtual water depth map provided an
image and macro-perspective for the observation and analysis of folder depth characteristics. Similar to
the virtual terrain, these maps integrated the information hidden in the files and visualized these data
in the form of a virtual landscape, thus, they can be used to compare various data sources.

Demonstrated in Figure 13a,b, ArcGIS Desktop 10.1 presented a large white shallow water area
and only had deeper blue regions in the central part. Additionally, its depth distribution was relatively
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uniform and many large areas of the same height could be found. The above phenomenon indicated
that it had a relatively shallow file depth in general and the depth distribution of files was even.
The other two folders generally had a larger depth and uneven depth distribution. The MyEclipse
2017 map had the deepest regions. The water depth difference reflected by the color and topographic
structure showed that ArcGIS Desktop 10.1 had a smaller depth range in its internal files than did the
other two documents. Adding the boundaries of the folders, a more detailed analysis was performed
for the distribution of the attributes within each folder.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  15 of 21 
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4.2. Multi-Scale Map Analysis

Above all, the hexagonal regions that represented all the file objects were rendered. The color
code of green, yellow, and red denoted the change of the file size from small to large. Figure 14a
corresponded to data that were not clustered. Many disordered speckled spots were shown in the red
boxes. The irregularity of the color distribution in general increased the difficulty of discerning the
distribution and change of object size. Conversely, Figure 14b depicted the image after cluster processing,
and the uniform color distribution reduced the confusion of the layout and enabled clear observations
of the size distribution. A strong clustering feature was shown from the color. Since the hierarchical
structure was considered in the clustering process, multiple clusters were observed. Accordingly, it was
easy to observe the distribution of the large file communities and analyze these files.
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Figure 14. The comparison of the file base map before and after clustering: (a) data that have not been
clustered; (b) data that have been clustered.

Using the multi-scale expression of a map, feature data could be located and analyzed from
different levels. Taking the search of large file communities in ArcGIS Desktop 10.1 as an example,
the authors used an interactive approach to analyze the large file communities and locate them at
each level.

The map boundaries were extracted at different levels as map slices. Table 1 demonstrates that
the corresponding relationship between the key map scales and the newly emerging map slices was
established. Subsequently, different blanking and display rules were set for map slices based on a user’s
map interaction behaviours, such as zoom in and zoom out. When the user zoomed in on the map,
if the current scale was greater than or equal to the map scale of a certain LOD level, the corresponding
newly emerging map slice was superimposed to construct a new map scene. Accordingly, if the
zooming out operation caused the current scale to be less than a certain map scale of a LOD level,
the corresponding map slice was eliminated. Using the user’s map operation, the dynamic change of
map scenes led the user to browse different data levels.

Table 1. The relationship between the key map scales and the newly emerging map slices.

LOD Level Map Scale Newly Emerging Map Slice

LOD1 1:150,000 map slice of level 1
LOD2 1:100,000 map slice of level 2
LOD3 1:50,000 map slice of level 3
LOD4 1:25,000 map slice of level 4
LOD5 1:10,000 map slice of level 5

. . . . . . . . .

Through an overall observation of the map in Figure 15a, the authors determined the distribution
of large files in ArcGIS Desktop 10.1. Three distinct large file communities were observed, and a few
large files were scattered in the central and the lower part. When zooming in on the map to enter a
larger scale, the new boundaries were superimposed onto the map and divided the map to include
more details (Figure 15b). It could be observed that the area of the regions is uneven, which conformed
to the Pareto principle: a few regions occupy most of the area on the map. As an example, the “help”
and “bin” regions accounted for more than half of the area on the map, which meant that most of the
files in ArcGIS Desktop 10.1 were included in these two folders. The three large file communities were
divided into three folders: “help”, “bin”, and “Styles”. The area of the large file community at the top of
the “help” folder was identified as the target area and the hierarchical location analysis was continued.
Moving the focus of the map and switching to a large-scale map perspective, Figure 15c indicated the
previously locked target area was located in the newly emerging region “zh-CN”. Regarding “zh-CN”,
most of its sub-regions appeared in green tones, indicating that their file size was small, and the regions
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representing large files were clustered at the top. A similar map operation could be chosen, and the
top region could be amplified. Figure 15d shows that when targeting a deeper folder, a more detailed
boundary was displayed. The large file community in that observation had reached the bottom of the
branch and became a series of hexagonal units representing the files. However, other regions were
still not completely divided. To explore the details of the files in the large file community, the red
box area was constantly amplified until the map scene became Figure 15e. During the process of the
above analysis, the authors found that the levels of the files in this large file community were relatively
shallow (all at the fourth level, while the whole folder has 12 levels). The situation was similar to that
of the remaining two large file communities. Figure 16 shows that the files in the other two large file
communities also had relatively shallow levels (level 3 or level 4). This multilevel search and location
pattern was not limited to be used for the discovery of large files. When using other attributes, such as
file depth, to render the map, the above model could also be used to analyze other file features.
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The analysis of the key operations in the above task showed that the process of constantly opening
the target folder on a map was accomplished by constantly amplifying the target area. The above
operations in the operating system were performed as follows (consider the Windows operating system
as an example): double click the folder to be analyzed to open it and determine the next object to open
in the subfolders. When the number of subfolders was too large, the current screen space would not fit.
The user could browse by dragging the scroll bar up and down, which was similar to dragging a map
to change the focus area. Double click on the selected subfolder and repeat the process. One could also
use the file tree window on the left side in file form to complete the process: double click on the folder
node that needed to be analyzed, and the included subfolder nodes appeared below it. When there
were too many subfolder nodes, the user also needed to drag the scroll bar to determine the next open
folder node. The subfolder in the form could be opened using a single click on folder node, and the
above process can be repeated.

A comparison of the behaviours of searching and opening folders in a map and file system
showed that the difference in operation complexity mainly occurred at the stage of determining the
next target in the subfolders. The two approaches present nearly equivalent operational complexity
if the criteria, such as the file name or even random selection, to determine the target object were
relatively simple. However, when the size of the folder and other attributes were considered for the
selection process, the operation in the file system was much more complicated, and a series of complex
attribute query operations were required. For example, first right-click on the folder and click on the
property item in the drop-down menu to find its properties through the pop-up dialog. The above
actions could be repeated for each folder, and the data had to be remembered or recorded. This process
represented tedious work when the number of folders was large. The map displayed the attributes in
a visual manner that provided the context for the search process. Therefore, users could choose the
target by visual judgement rather than manual inquiry, which reduced the operational complexity of
the whole process.

A map-like visualization in the analysis of abstract non-spatial data provided vivid and concrete
features. The map-like visualization process helped users to make an intuitive comparison and analysis
of the data. Additionally, with the help of the map’s multi-scale characteristics, data could be displayed
in different levels and described with different details. Users could grasp the data structure and
analyze data at different levels. The exploration of data through map browsing might be able to
effectively reduce the complexity of operations, and certain tasks that were difficult to accomplish in
the operating system could be performed, such as the above task of large file discovery and location at
each level, because an overview could not be provided of the size and distribution of all the files in an
operating system. Just like the above advantages of using map overview and interaction, spatialization
and spatialization solutions provided a new perspective for the discovery and analysis of problems.
Concurrently, the authors were delighted to find that the combination of spatial and non-spatial
things not only existed in the theoretical thinking, but also played an important role in many software
applications. Researchers visualize and analyze data through the combination of professional spatial
information processing software and business intelligence software [47], for example. Through this
type of combination, the Geospatial Business Intelligence (Geo-BI) [48] can integrate multi-source
information and provide solutions for policy decisions. The application of map dashboards provides
an effective tool for these studies to display and analyze multiple data [47–49]. Although some of
the data processed by the above software and applications are not typical geospatial data, they are
associated with geographic space, which belong to geospatially referenced data such as consensus
data [2]. This is different from the current study because the authors here aimed at the non-spatial
data that were not referenced to geographic space such as the above file data. However, all of these
examples have the aid of spatialization and use various ways to realize spatial expressions of data to
display and analyze them.



ISPRS Int. J. Geo-Inf. 2018, 7, 225 18 of 20

5. Conclusions

Through the experiment, this paper verified the feasibility of expressing the file data without
geographical location through the map-like visualization. Under the guidance of the Gosper curve,
the spatial layout of abstract data was completed, which provided the foundation for spatial display
and analysis. Due to the sorting work in the hierarchy tree, the objects in the space presented a good
aggregation which made the data feature more significant. It is precisely due to the two-dimensional
Euclidean distance in the Gosper map providing a good consideration of the sequence distance of nodes
in hierarchical data, that the authors could achieve the aggregation of spatial objects without destroying
the hierarchy in a simple way by hierarchical tree sorting. Using the help of the rich representation
and analysis methods of maps, the map-like visualization could also identify characteristics that
conventional methods have difficulty determining. That means the map-like visualization provided
a new but also useful perspective for the expression and analysis of non-spatial data. Through this
design, it not only satisfied the discovery and contrast of macro rules, but also supported multi-scale
data analysis which made it better than the same type of research. It can be used not only for file
data analysis but also for the expression and analysis of other large non-spatial hierarchical data such
as biological classification data, large organization management data, and more. On the other hand,
map-like visualizations extended the application of maps and cartography and, thus, could be used
for spatial data as well as non-spatial data. Classical cartography theories and methods could play a
role in the analysis of semantic data and new insights are possible. However, compared with the rich
technologies available in the map field, this article focused on only a few of them. Additionally, as a
relatively new visualization form, map-like visualization inevitably had a series of problems in visual
expression, perception, cognition, and more. This is the motivation to continue to study this area and
it requires the authors to do more in-depth research to constantly improve it. The authors, in future,
will further study the application potential of map-like visualization methods and apply more map
techniques to explore the hidden features of non-spatial data. Relevant cognitive experiments will also
be carried out to help design map-like visualization more scientifically.
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