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Abstract: Given a threshold distance ε and two object sets R and S in a road network, an ε-distance
join query finds object pairs from R × S that are within the threshold distance ε (e.g., find passenger
and taxicab pairs within a five-minute driving distance). Although this is a well-studied problem
in the Euclidean space, little attention has been paid to dynamic road networks where the weights
of road segments (e.g., travel times) are frequently updated and the distance between two objects is
the length of the shortest path connecting them. In this work, we address the problem of ε-distance
join queries in dynamic road networks by proposing an optimized ε-distance join algorithm called
EDISON, the key concept of which is to cluster adjacent objects of the same type into a group, and
then to optimize shared execution for the group to avoid redundant network traversal. The proposed
method is intuitive and easy to implement, thereby allowing its simple integration with existing range
query algorithms in road networks. We conduct an extensive experimental study using real-world
roadmaps to show the efficiency and scalability of our shared execution approach.

Keywords: ε-distance join query; shared execution; dynamic road network

1. Introduction

Recent advances in mobile technologies and map-based applications enable users to access
a wide range of location-based services such as shortest path queries [1–7], distance queries [2,3,5,8,9],
range queries [3,10], and k-nearest neighbor (kNN) queries [3,7,10–12]. Owing to the popularity of
map-based applications among users, processing spatial queries in road networks efficiently has
become an important research area in recent years. In this work, we address ε-distance join queries
in road networks. Given a threshold distance ε and two object sets R and S, an ε-distance join query
explores all object pairs (r, s) ∈ R× S and returns a set of object pairs (r, s) that are within the threshold
distance ε. The ε-distance join queries are useful in real-life applications such as data mining and
similarity joins [13–18]. Therefore, many studies have evaluated the efficiency of ε-distance join queries
in the Euclidean space [19,20] and in the metric space [13–18]. These studies focus primarily on
designing elegant indexing techniques to avoid scanning the entire dataset repeatedly, and on pruning
as many distance computations as possible.

Figure 1 presents an example of dynamic road networks where objects r1 through r5 denote
passengers (represented by rectangles), and objects s1 through s3 denote taxicabs (represented by
triangles). In this example, an ε-distance join query for a taxicab company involves sending an available
taxicab to each passenger who is located within a five-minute driving distance from the taxicab.
The travel time should be frequently updated depending on traffic conditions. For example, at time
t1, taxicab s2 is closer to passenger r4 than taxicab s3, as shown in Figure 1a. However, as shown in
Figure 1b, because the taxicab s2 is in a traffic-congested area, it cannot reach the passenger r4 faster
than the taxicab s3 at time t2.
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Figure 1. Example of dynamic road networks (a) traffic condition at time t1; (b) traffic condition at
time t2.

Owing to the dynamic nature of road networks, many studies have recently addressed a variety
of spatial queries in dynamic road networks such as shortest path queries [1,6,21], distance queries [8],
and kNN queries [22]. Although there have been a few studies [10,23] on ε-distance join queries in
road networks, they proposed sophisticated index structures and algorithms to boost ε-distance join
queries in static road networks, where the weights of road segments are rarely updated. Specifically,
the state-of-the-art solution to ε-distance join queries in road networks is the distance join algorithm
proposed in Reference [23], based on the spatially induced linkage cognizance (SILC) framework
introduced in Reference [3]. The algorithm pre-computes the shortest path between each pair of
vertices in a road network and stores all paths. This approach is not suitable for dynamic road
networks because in these road networks, the weights of road segments are frequently updated, and
the pre-computed distances between vertices often become obsolete. Various techniques [24–34] for
preserving location privacy in road networks have recently been developed, which focus on moving
objects such as vehicles and users, and therefore cannot be applied to the problem studied here.

Therefore, in this study, we propose an optimized ε-distance join algorithm called EDISON to
efficiently support ε-distance join queries in dynamic road networks, where materialized structures
such as the SILC framework cannot be used to dynamically compute the shortest path and distances
from a source point to one or more destination points. Intuitively, a simple solution involves computing
the distance between every object pair from two datasets. This simple solution is very inefficient,
because for each element in an object set R, the algorithm must traverse another object set S, which can
lead to redundant network traversal. The proposed solution is to cluster adjacent objects of the same
type into a group and then optimize shared execution for the group to avoid redundant network
traversal. Although the shared execution of queries has received much attention [21,35–38], no shared
execution strategy has been applied to evaluate ε-distance join queries in dynamic road networks to
date. The contributions of this study are as follows.

• We propose an efficient ε-distance join algorithm called EDISON for dynamic road networks
that optimizes the shared execution paradigm to accelerate query response times. To the best of
our knowledge, this is the first attempt to evaluate ε-distance join queries effectively in dynamic
road networks.

• We design algorithms that reduce the number of range queries required to evaluate ε-distance
join queries in dynamic road networks. The proposed method is intuitive and easy to implement,
thereby allowing its simple integration with existing range query algorithms (e.g., [10]) in
road networks.

• We conduct extensive experiments under different setups to demonstrate the efficiency and
scalability of our approach over conventional solutions.

The remainder of this paper is organized as follows. In Section 2, we review related studies.
In Section 3, we provide some background information. We present a simple solution called the
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naive EDISON method based on shared execution in Section 4. In Section 5, we present an optimized
solution that avoids redundant network traversal called the EDISON method. In Section 6, we evaluate
our proposed solutions experimentally under different setups by comparing them to a conventional
solution. We conclude the paper in Section 7.

2. Related Work

2.1. Dynamic Road Networks

The geographic information system (GIS) community has shown interest in processing spatial
queries in road networks, which form an integral aspect of geospatial applications, such as
location-based services and locational analysis [1–3,5–7,10,11,22,23,39,40]. Previous works have
studied a variety of spatial queries in road networks, which include shortest path queries [1–7],
distance queries [2,3,5,8,9], range queries [3,10], and kNN queries [3,7,10,11]. The previous studies
focused primarily on adopting sophisticated index structures to achieve good performance under
the assumption that road networks are stable. For example, Sankaranarayanan et al. [3,4] proposed
the SILC and path-coherent pairs decomposition frameworks based on spatial path coherence to
determine the shortest path and the shortest distance between every pair of vertices. In particular,
the SILC framework can support various queries in road networks including path queries, distance
queries, range queries, and kNN queries. Because these frameworks have high pre-computational
overhead and space complexity even in static road networks, they are not suitable for processing
spatial queries in dynamic road networks where the weights of road segments are often updated.
Recently, distance queries [8] and shortest path queries [1,6,21] have been actively studied in dynamic
road networks. Techniques for distance queries and shortest path queries cannot be applied directly
to processing ε-distance join queries in dynamic road networks owing to the inconsistent problem
requirements. Recently, Arain et al. [24–26], Domenic et al. [27], Gustav et al. [28], Kamenyi et al. [29],
and Memon et al. [30–34] developed novel techniques for location privacy preservation over road
networks. These techniques focus on protecting the location privacy of moving objects in road networks.
However, it is inappropriate to extend these location privacy techniques to solve the ε-distance join
problem in dynamic road networks owing to differences in the problem definition.

2.2. ε-Distance Join Queries

Given a query point q, a threshold distance ε, and a set of objects S, a range query retrieves
objects that are within the threshold distance ε from the query point q. Several algorithms have been
proposed to support range queries in road networks. Papadias et al. [10] proposed the range Euclidean
restriction (RER) and range network expansion (RNE) algorithms for processing range queries in road
networks. The ε-distance join query is another important query in road networks. Papadias et al. [10]
proposed join Euclidean restriction (JER) and join network expansion (JNE) algorithms to support
ε-distance join queries in road networks. The JER algorithm uses the Euclidean distance as a heuristic
to search for object pairs within the threshold distance ε based on their network distance. Therefore,
it performs poorly when the Euclidean distance and the network distance are very different, which is
a common scenario in practice. If the edge weight is defined as the travel time in road networks,
the Euclidean distance cannot confine the search space unless additional assumptions are made, such as
assuming maximum speed. Therefore, JER is not appropriate for processing ε-distance join queries
in dynamic road networks. Sankaranarayanan et al. [23] proposed a distance join algorithm that can
support ε-distance join queries in road networks. The distance join algorithm, based on the SILC
framework introduced in [3], exploits the pre-computation of the shortest path between each pair of
vertices in a road network and stores all paths in a quad-tree. However, the distance join algorithm
in [23] is not suitable for dynamic road networks as it suffers from excessive storage costs for large
road networks. The ε-distance join queries are well studied in the Euclidean space [19,20] and in the
metric space [13–18]. Nonetheless, all approaches are unsuitable for processing ε-distance join queries,
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because they utilize some geometric properties (e.g., MBR [20], plane-sweep [20], and space-filling
curve [41]) that are not available for dynamic road networks.

As a means to process a large number of queries in database systems, the shared execution of
queries has recently received much attention [35–38,42]. The key idea of shared query execution
is to cluster similar queries (i.e., those that share some common execution path) into a group and
then execute the group as a single query in the system. These shared execution methods are found
to be effective in many applications involving high load conditions. In this study, we optimize the
shared execution strategy to boost ε-distance join queries in dynamic road networks. Our proposed
solution differs from existing studies in several aspects. First, our solution represents the first attempt
to evaluate ε-distance join queries efficiently in dynamic road networks, where materialized index
structures (e.g., SILC [3]) cannot be used. Second, our solution considers applying a shared execution
strategy to avoid redundant network traversal while processing ε-distance join queries. Finally,
our solution can be implemented easily using the best-known solutions (e.g., RNE [10]) to range
queries in road networks, which is considered a desirable property in practice.

3. Preliminaries

Section 3.1 defines the terms and notations that are used in this paper. Section 3.2 defines the
ε-distance join query applied to road networks.

3.1. Definition of Terms and Notations

Road network: We represent a road network by an undirected weighted graph 〈G = V, E, W〉,
where V, E, and W indicate the vertex set, the edge set, and the edge distance matrix, respectively.
Each edge vivj has a nonnegative weight representing the network distance, such as the travel time.

Classification of vertices: We divide vertices into three categories based on their degree. (1) If the
degree of a vertex is larger than or equal to 3, the vertex is referred to as an intersection vertex; (2) If the
degree is 2, the vertex is an intermediate vertex; (3) If the degree is 1, the vertex is a terminal vertex.

Vertex sequence and segment: A vertex sequence vlvl+1 . . . vm denotes a path between two
vertices vl and vm, such that vl (vm) is either an intersection vertex or a terminal vertex, and the other
vertices in the path, vl+1, . . . , vm−1, are intermediate vertices. The length of a vertex sequence is the
total weight of the edges in the vertex sequence. A part of a vertex sequence is referred to as a segment.
By definition, a vertex sequence is also a segment.

Table 1 summarizes the symbols used in this paper. Note that to simplify presentation, we use
rirj to denote riri+1 · · · rj, where adjacent outer objects ri, ri+1, · · · , rj are located in the same vertex
sequence. In this study, we employ the basic concept of clustering adjacent outer objects in a vertex
sequence into an outer segment. The advantage of this clustering method is that if we evaluate two
range queries at the two end points, ri and rj, of an outer segment rirj, we can retrieve inner objects
within distance ε from each outer object r ∈ rirj without duplicating the network traversal. In other
words, the two range queries at ri and rj are sufficient to retrieve inner objects within distance ε from
all outer objects in rirj, which is proved in Lemma 1.

Figure 2 shows the difference between the distance and the segment length between two objects r
and s in a road network, where the numbers at the edges indicate the distance between two adjacent
points (e.g., dist(v1, v2) = 6). The shortest path from r to s is denoted by r → v2 → v5 → s where the
distance between r and s is dist(r, s) = 6 in this case. The segment connecting r and s in the same
vertex sequence v2v3v4v5 becomes rv3v4s with length equal to len(r, s) = 9. We recall that len(r, s) is
defined for two objects located in the same vertex sequence.
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Table 1. Symbols and their meaning.

Symbol Definition

ε Threshold distance
εp Query distance at a point p such that εp ≤ ε
r Outer object r ∈ R
s Inner object s ∈ S
dist(p1, p2) Length of the shortest path connecting two points p1 and p2 in the road network

len(p1, p2)
Length of the segment connecting two points p1 and p2, such that both p1 and p2 are
located in the same vertex sequence

vlvl+1 . . . vm
Vertex sequence where vl and vm are not intermediate vertices and the other vertices,
vl+1, . . . , vm−1, are intermediate vertices

riri+1 . . . rj Outer segment that consists of outer objects ri, ri+1, . . . , rj in a vertex sequence

Sε
p

Set of inner objects within distance ε from a point p, i.e.,
Sε

p = {s|dist(p, s) ≤ ε for s ∈ S}
S(p1 p2) Set of inner objects in a segment p1 p2, i.e., S(p1 p2) = {s|s ∈ p1 p2 for ∀s ∈ S}
RNQ(ε, p) Range query that returns a set Sε

p of inner objects within distance ε from a point p
Ω(vx) Number of outer segments in vertex sequences adjacent to an intersection vertex vx

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  5 of 23 

 

Figure 2 shows the difference between the distance and the segment length between two objects 
 and  in a road network, where the numbers at the edges indicate the distance between two 

adjacent points (e.g., ( , ) = 6). The shortest path from  to  is denoted by → → →  
where the distance between  and  is ( , ) = 6 in this case. The segment connecting  and  
in the same vertex sequence  becomes  with length equal to ( , ) = 9. We recall 
that ( , ) is defined for two objects located in the same vertex sequence. 

 
Figure 2. Example where ( , ) = 6 and ( , ) = 9. 

3.2. -Distance Join Query 

We consider two object sets  and  in the road network . For convenience,  is referred to 
as the set of outer objects and  is referred to as the set of inner objects. Accordingly, ∈  and ∈

 are referred to as outer and inner objects, respectively.  

Definition 1. ( -distance join query): Given a threshold distance  and two object sets  and , where ={ , ,⋯ , | |} and = { , ,⋯ , | |}, the -distance join query, denoted by ⋈ , returns the set of all 
possible pairs of objects from ×  that are within the threshold distance : ⋈ = {( , )| ( , ) ≤ 	for	∀( , ) ∈ × }. 

Naturally, ⋈  is a subset of × . The -distance join query is commutative, i.e., ⋈ =⋈ . 

4. Naive Shared Execution for -Distance Join Queries in Road Networks 

4.1. Grouping of Objects in a Vertex Sequence 

Figure 3 presents an example of an -distance join query in a road network, which will be 
discussed throughout this section. In this figure, there are five outer objects,  through , and six 
inner objects,  through . Given a threshold distance = 5  and two object sets ={ , , , , }  and = { , , , , , } , we consider an -distance join query ⋈  of the 
following form: ⋈ = {( , )| ( , ) ≤ 5	for	∀( , ) ∈ × }. 

 
Figure 3. Example of an -distance join query in a road network. 

Figure 4 shows the sample grouping of outer objects in a vertex sequence and the sample 
grouping of inner objects in a vertex sequence. As shown in Figure 4a, two outer objects  and  
in a vertex sequence  are grouped into an outer segment , and three outer objects , , 
and  in a vertex sequence  are grouped into another outer segment . Similarly, as 
shown in Figure 4b, three inner objects , , and  in a vertex sequence  are grouped into 

1 
6 2 4 

2 

3 

4 

3 

 

    

  

 

outer object ∈  

inner object ∈  

2 

4 

2 

2 2 1 

3 
1 

1 1 

2 

 

 

7 2 
    

2 

3 

 
 

 

4 

      

Figure 2. Example where dist(r, s) = 6 and len(r, s) = 9.

3.2. ε-Distance Join Query

We consider two object sets R and S in the road network G. For convenience, R is referred to as
the set of outer objects and S is referred to as the set of inner objects. Accordingly, r ∈ R and s ∈ S are
referred to as outer and inner objects, respectively.

Definition 1. (ε-distance join query): Given a threshold distance ε and two object sets R and S,
where R =

{
r1, r2, · · · , r|R|

}
and S =

{
s1, s2, · · · , s|S|

}
, the ε-distance join query, denoted by R ./ε S,

returns the set of all possible pairs of objects from R× S that are within the threshold distance ε:

R ./ε S = {(r, s)|dist(r, s) ≤ ε for ∀(r, s) ∈ R× S}.

Naturally, R ./ε S is a subset of R × S. The ε-distance join query is commutative, i.e., R ./ε

S = S ./ε R.

4. Naive Shared Execution for ε-Distance Join Queries in Road Networks

4.1. Grouping of Objects in a Vertex Sequence

Figure 3 presents an example of an ε-distance join query in a road network, which will be
discussed throughout this section. In this figure, there are five outer objects, r1 through r5, and six
inner objects, s1 through s6. Given a threshold distance ε = 5 and two object sets R = {r1, r2, r3, r4, r5}
and S = {s1, s2, s3, s4, s5, s6}, we consider an ε-distance join query R ./ε S of the following form:
R ./ε S = {(r, s)|dist(r, s) ≤ 5 for ∀(r, s) ∈ R× S}.
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Figure 3. Example of an ε-distance join query in a road network.

Figure 4 shows the sample grouping of outer objects in a vertex sequence and the sample grouping
of inner objects in a vertex sequence. As shown in Figure 4a, two outer objects r1 and r2 in a vertex
sequence v1v2v3 are grouped into an outer segment r1r2, and three outer objects r3, r4, and r5 in a
vertex sequence v1v4v3 are grouped into another outer segment r3r5r4. Similarly, as shown in Figure 4b,
three inner objects s1, s4, and s5 in a vertex sequence v1v2v3 are grouped into an inner segment s1s5s4,
and two inner objects s2 and s3 in a vertex sequence v1v4v3 are grouped into another inner segment
s2s3. Therefore, a set of outer objects R = {r1, r2, r3, r4, r5} is transformed into R = {r1r2, r3r5r4},
where R is the set of outer segments generated from the outer objects. Similarly, a set of inner objects
S = {s1, s2, s3, s4, s5, s6} is transformed into S = {s1s5s4, s2s3, s6}, where S is the set of inner segments
generated from the inner objects. Without loss of generality, we assume that

∣∣R∣∣ ≤ ∣∣S∣∣, because
R ./ε S = S ./ε R. If

∣∣R∣∣ > ∣∣S∣∣, then S ./ε R is evaluated instead of R ./ε S.
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Figure 4. Grouping outer and inner objects (a) R = {r1r2, r3r5r4} and
∣∣R∣∣ = 2; (b) S = {s1s5s4, s2s3, s6}

and
∣∣S∣∣ = 3.

4.2. Shared Execution Processing of Grouped Outer Objects

Our shared execution strategy for processing ε-distance join queries in road networks is motivated
by the observation that at most two range queries are sufficient for retrieving inner objects within the
threshold distance ε from each outer object in an outer segment. This observation is formalized in
Lemma 1, which states a simple but important fact regarding the shared execution of ε-distance join
queries in road networks—if we evaluate two range queries at outer objects ri and rj, which correspond
to the two end points of an outer segment riri+1 . . . rj, then we can retrieve inner objects within distance
ε from outer objects ri+1, · · · , rj−1 without duplicating the network traversal. Thus, the two range
queries at ri and rj are sufficient for retrieving inner objects within distance ε from the other outer
objects ri+1, · · · , rj−1.

Lemma 1. For every outer object r ∈ rirj, it holds that Sε
r ⊆ Sε

ri
∪ Sε

rj
∪ S
(
rirj
)
, where Sε

ri
(Sε

rj
) is the set of

inner objects within distance ε from an outer object ri (rj), and S
(
rirj
)

is the set of inner objects located in the
outer segment rirj (e.g., s2 ∈ r3r5r4 in Figure 4).

Proof. We prove Lemma 1 by contradiction. We assume that Sε
r ⊆ Sε

ri
∪ Sε

rj
∪ S
(
rirj
)

does not hold, i.e.,
Sε

r * Sε
ri
∪ Sε

rj
∪ S
(
rirj
)
. Then this implies that there is an inner object s+ ∈ Sε

r such that s+ /∈ Sε
ri
∪ Sε

rj
∪

S
(
rirj
)
, i.e., s+ /∈ Sε

ri
, s+ /∈ Sε

rj
, and s+ /∈ S

(
rirj
)
. Clearly, s+ /∈ Sε

ri
means that dist(ri, s+) > ε. Similarly,

s+ /∈ Sε
rj

means that dist
(
rj, s+

)
> ε. Clearly, s+ /∈ S

(
rirj
)

means that s+ is not located in rirj. Therefore,



ISPRS Int. J. Geo-Inf. 2018, 7, 270 7 of 23

the shortest path from r to s+ passes through either ri or rj and the distance from r to s+ is determined
by dist(r, s+) = min

{
len(r, ri) + dist(ri, s+), len

(
r, rj
)
+ dist

(
rj, s+

)}
. From the previous condition,

both dist(ri, s+) > ε and dist
(
rj, s+

)
> ε, which leads to dist(r, s+) > ε. Thus, s+ cannot belong to Sε

r,
which contradicts the assumption that an inner object s+ ∈ Sε

r exists such that Sε
r * Sε

ri
∪ Sε

rj
∪ S
(
rirj
)
.

Consequently, it holds that Sε
r ⊆ Sε

ri
∪ Sε

rj
∪ S
(
rirj
)

for ∀r ∈ rirj. �

We determine the inner objects within distance ε from an outer object r ∈ rirj among inner objects
in Sε

ri
∪ Sε

rj
∪ S
(
rirj
)
. First, we compute the distance from an outer object r ∈ rirj to an inner object

s ∈ Sε
ri
∪ Sε

rj
∪ S
(
rirj
)
. If there exists a path r → ri → s (i.e., s ∈ Sε

ri
), then the distance from r to s is

dist(r, s) = len(r, ri) + dist(ri, s), as shown in Figure 5a. Similarly, if there exists a path r → rj → s
(i.e., s ∈ Sε

rj
), then the distance from r to s is dist(r, s) = len

(
r, rj
)
+ dist

(
rj, s
)
, as shown in Figure 5b.

If the inner object s is located in rirj (i.e., s ∈ rirj), then the distance from r to s is dist(r, s) = len(r, s),
as shown in Figure 5c. Because dist(r, s) is the length of the shortest path among multiple paths
between r and s, dist(r, s) is computed as follows.

dist(r, s) =

{
min

{
len(r, ri) + dist(ri, s), len

(
r, rj
)
+ dist

(
rj, s
)}

if s /∈ rirj
min

{
len(r, ri) + dist(ri, s), len

(
r, rj
)
+ dist

(
rj, s
)
, len(r, s)

}
otherwise
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Figure 5. Determination of the distance from r to s (a) If s ∈ Sε
ri

, then dist(r, s) = len(r, ri) + dist(ri, s);

(b) If s ∈ Sε
rj

, then dist(r, s) = len
(

r, rj

)
+ dist

(
rj, s
)

; (c) If s ∈ rirj, then dist(r, s) = len(r, s).

Table 2 explains how to compute the distance from r to s, where r ∈ rirj and s ∈ Sε
ri
∪ Sε

rj
∪ S
(
rirj
)
.

The inner object s belongs to a combination of Sε
ri

, Sε
rj

, and S
(
rirj
)
, so seven possible cases are considered

in total. Clearly, it is trivial to retrieve a set S
(
rirj
)

of inner objects that are located in rirj compared
with retrieving a set Sε

ri
(Sε

rj
) of inner objects within distance ε from an outer object ri (rj).

Table 2. Computation of dist(r, s) for r ∈ rirj and s ∈ Sε
ri
∪ Sε

rj
∪ S
(

rirj

)
.

Condition dist(r, s)

s ∈ Sε
ri
∩ Sε

rj
∩ S
(

rirj

)
dist(r, s) = min

{
len(r, ri) + dist(ri, s), len

(
r, rj

)
+ dist

(
rj, s
)

, len(r, s)
}

s ∈ Sε
ri
∩ Sε

rj
− S

(
rirj

)
dist(r, s) = min

{
len(r, ri) + dist(ri, s), len

(
r, rj

)
+ dist

(
rj, s
)}

s ∈ Sε
ri
∩ S
(

rirj

)
− Sε

rj
dist(r, s) = min{len(r, ri) + dist(ri, s), len(r, s)}

s ∈ Sε
rj
∩ S
(

rirj

)
− Sε

ri
dist(r, s) = min

{
len
(

r, rj

)
+ dist

(
rj, s
)

, len(r, s)
}

s ∈ Sε
ri
−
(

Sε
rj
∪ S
(

rirj

))
dist(r, s) = len(r, ri) + dist(ri, s)

s ∈ Sε
rj
−
(

Sε
ri
∪ S
(

rirj

))
dist(r, s) = len

(
r, rj

)
+ dist

(
rj, s
)

s ∈ S
(

rirj

)
−
(

Sε
ri
∪ Sε

rj

)
dist(r, s) = len(r, s)
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4.3. Naive EDISON Algorithm

Algorithm 1 describes the naive EDISON algorithm, which employs the grouping of outer objects
and shared execution to reduce query processing time. This algorithm involves two steps. In the first
step, adjacent outer objects in a vertex sequence are grouped into an outer segment. Similarly, adjacent
inner objects in a vertex sequence are also grouped into an inner segment. In other words, R and S
are transformed into R and S, respectively. For simplicity, we assume that

∣∣R∣∣ ≤ ∣∣S∣∣. If
∣∣R∣∣ > ∣∣S∣∣,

we simply evaluate S ./ε R, because R ./ε S = S ./ε R. In the second step, the naive EDISON
algorithm explores each outer segment rirj sequentially to retrieve inner objects that are within
distance ε from each outer object in the outer segment rirj. Depending on the number of outer objects
in rirj, there are three possible cases, which the naive EDISON algorithm handles differently: (1)∣∣rirj

∣∣ = 1; (2)
∣∣rirj

∣∣ = 2; and (3)
∣∣rirj

∣∣ > 2. If
∣∣rirj

∣∣ = 1, a range query RNQ(ε, ri) is evaluated at ri
because rirj includes an outer object ri (= rj) only. Then, a partial join result Φ(ri) is simply obtained

from the range query result Sε
ri

at ri, i.e., Φ(ri) =
{
(ri, s)

∣∣∣s ∈ Sε
ri

}
. The partial join result Φ(ri) is

added to the ε-distance join query result Φ(R), i.e., Φ(R) = Φ(R) ∪Φ(ri) (lines 8-10). If
∣∣rirj

∣∣ = 2,
two range queries, RNQ(ε, ri) and RNQ

(
ε, rj
)
, are evaluated at ri and rj, respectively, because rirj

includes only two outer objects ri and rj. Then, two partial join results Φ(ri) and Φ
(
rj
)

are simply

obtained from the range query results Sε
ri

and Sε
rj

at ri and rj, respectively, i.e., Φ(ri) =
{
(ri, s)

∣∣∣s ∈ Sε
ri

}
and Φ

(
rj
)
=
{(

rj, s
)∣∣∣s ∈ Sε

rj

}
. These partial join results Φ(ri) and Φ

(
rj
)

are added to the ε-distance

join query result Φ(R), i.e., Φ(R) = Φ(R) ∪Φ(ri) ∪Φ
(
rj
)

(lines 11-14). Finally, if
∣∣rirj

∣∣ > 2, only two
range queries, RNQ(ε, ri) and RNQ

(
ε, rj
)
, are evaluated at ri and rj, respectively, similar to the case of∣∣rirj

∣∣ = 2. According to Lemma 1, a partial join result Φ
(
rirj
)

can be obtained from Sε
ri
∪ Sε

rj
∪ S
(
rirj
)

using the shared execution method (lines 15-19), which is detailed in Lemma 2. This is because the
partial join result Φ

(
rirj
)

is the set of object pairs (r, s) that are within distance ε, where r ∈ rirj

and s ∈ Sε
ri
∪ Sε

rj
∪ S
(
rirj
)
, i.e., Φ

(
rirj
)
=
{
(r, s)

∣∣∣dist(r, s) ≤ ε for r ∈ rirj and s ∈ Sε
ri
∪ Sε

rj
∪ S
(
rirj
)}

.
Finally, the ε-distance join query result Φ(R) is returned after all outer segments have been processed
(line 20), i.e., Φ(R) =

⋃
Φ
(
rirj
)

for each outer segment rirj ∈ R. In Lemma 2, we prove the correctness
of the naive EDISON algorithm.

Algorithm 1: Naive_EDISON (ε, R, S)

Input: ε: threshold distance, R: set of outer objects, S: set of inner objects
Output: R ./ε S: set of object pairs (r, s) ∈ R× S such that dist(r, s) ≤ ε

1 Φ(R)← ∅ // Φ(R) is the set of object pairs (r, s) ∈ R× S such that dist(r, s) ≤ ε.

2
// Step 1: neighboring outer objects are grouped and neighboring
inner objects are also grouped.

3 R← group_objects(R)
// Outer objects in a vertex sequence are grouped into an outer
segment.

4 S← group_objects(S)
// Inner objects in a vertex sequence are grouped into an inner
segment.

5
// For simplicity, we assume that

∣∣R∣∣ ≤ ∣∣S∣∣. if
∣∣R∣∣ > ∣∣S∣∣, we simply

evaluate S ./ε R.
6 // Step 2: rirj ./ε S is evaluated for each outer segment rirj ∈ R.
7 for each outer segment rirj ∈ R do

8 if
∣∣∣rirj

∣∣∣ = 1 then //
∣∣∣rirj

∣∣∣ = 1 means that rirj contains an outer object ri only.

9 Sε
ri
← RNQ(ε, ri) // A range query is evaluated at ri and its result is Sε

ri
.

10 Φ(R)← Φ(R) ∪Φ(ri) // Note that Φ(ri) =
{
(ri, s)

∣∣s ∈ Sε
ri

}
.

11 else if
∣∣∣rirj

∣∣∣ = 2 then //
∣∣∣rirj

∣∣∣ = 2 means that rirj contains two outer objects ri and rj.

12 Sε
ri
← RNQ(ε, ri) // A range query is evaluated at ri and its result is Sε

ri
.

13 Sε
rj
← RNQ

(
ε, rj

)
// Another range query is evaluated at rj and its result is Sε

rj
.

14 Φ(R)← Φ(R) ∪Φ(ri) ∪Φ
(

rj

)
// Note that Φ(ri) =

{
(ri, s)

∣∣s ∈ Sε
ri

}
and Φ

(
rj

)
=
{(

rj, s
)∣∣∣s ∈ Sε

rj

}
.

15 else if
∣∣∣rirj

∣∣∣ > 2 then //
∣∣∣rirj

∣∣∣ ≥ 2 means that rirj contains more than two outer objects.

16 Sε
ri
← RNQ(ε, ri) // A range query is evaluated at ri and its result is Sε

ri
.

17 Sε
rj
← RNQ

(
ε, rj

)
// Another range query is evaluated at rj and its result is Sε

rj
.

18 Φ
(

rirj

)
← DJQ

(
ε, rirj, Sε

ri
∪ Sε

rj
∪ S
(

rirj

))
// DJQ is explained in Algorithm 3.

19 Φ(R)← Φ(R) ∪Φ
(

rirj

)
// Φ

(
rirj

)
=
{
(r, s)

∣∣∣dist(r, s) ≤ ε for r ∈ rirj, s ∈ Sε
ri
∪ Sε

rj
∪ S
(

rirj

)}
.

20 return Φ(R) // Φ(R) stores the result of R ./ε S.
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Lemma 2. The naive EDISON algorithm is correct.

Proof. We prove the correctness of the naive EDISON algorithm by cases. As shown in Algorithm 1,
the naive EDISON algorithm handles the following three cases differently depending on the number
of outer objects in an outer segment rirj, namely, (1)

∣∣rirj
∣∣ = 1, (2)

∣∣rirj
∣∣ = 2, and (3)

∣∣rirj
∣∣ > 2. In the

first two cases (i.e.,
∣∣rirj

∣∣ = 1 and
∣∣rirj

∣∣ = 2), a range query is used to retrieve inner objects s within
distance ε from each outer object r ∈ rirj. This is same as a straightforward method used to answer
ε-distance join queries by issuing a range query for each outer object r ∈ R. For

∣∣rirj
∣∣ = 1, the naive

EDISON algorithm evaluates a range query RNQ(ε, ri) for only an outer object ri, and adds an object
pair (ri, s) to the ε-distance join query result for each inner object s ∈ Sε

ri
. Therefore, the naive EDISON

algorithm is correct for
∣∣rirj

∣∣ = 1 because RNQ(ε, ri) simply retrieves inner objects s within distance ε

from ri. Similarly, for
∣∣rirj

∣∣ = 2, the naive EDISON algorithm evaluates two range queries, RNQ(ε, ri)

and RNQ
(
ε, rj
)
, for two outer objects ri and rj, respectively. The naive EDISON algorithm then adds

an object pair (ri, s) to the ε-distance join query result for each inner object s ∈ Sε
ri

, and adds an object
pair

(
rj, s
)

to the ε-distance join query result for each inner object s ∈ Sε
rj

. Therefore, the naive EDISON
algorithm is correct for

∣∣rirj
∣∣ = 2 because RNQ(ε, ri) and RNQ

(
ε, rj
)

retrieve inner objects s within
distance ε from ri and rj, respectively.

The proof for the correctness of the naive EDISON algorithm for
∣∣rirj

∣∣ > 2 differs from that
for

∣∣rirj
∣∣ = 1 and

∣∣rirj
∣∣ = 2 because the naive EDISON algorithm exploits the shared execution

strategy for
∣∣rirj

∣∣ > 2. Note that the naive EDISON algorithm evaluates only two range queries
RNQ(ε, ri) and RNQ

(
ε, rj
)

for
∣∣rirj

∣∣ > 2. The key idea of the proof of the correctness for
∣∣rirj

∣∣ > 2
is to compute the distance between an outer object r and each candidate inner object s without
evaluating a range query for r, where r ∈ rirj −

{
ri, rj

}
and s ∈ Sε

ri
∪ Sε

rj
∪ S
(
rirj
)
. According to

Lemma 1, we can retrieve inner objects within distance ε from every outer object r ∈ rirj among the
candidate inner objects s ∈ Sε

ri
∪ Sε

rj
∪ S
(
rirj
)
. The distance between r and s, dist(r, s), determines

whether an object pair (r, s) is included in the ε-distance join query result. Let us compute the distance
between an outer object r and candidate inner object s. To do so, we consider the two cases, s /∈ rirj
and s ∈ rirj, as shown in Figure 6a,b, respectively. If s /∈ rirj, the distance from r to s is evaluated
as dist(r, s) = min

{
len(r, ri) + dist(ri, s), len

(
r, rj
)
+ dist

(
rj, s
)}

because there are two possible paths
from r to s, i.e., r → ri → s and r → rj → s ; otherwise, the distance from r to s is evaluated as
dist(r, s) = min

{
len(r, ri) + dist(ri, s), len

(
r, rj
)
+ dist

(
rj, s
)
, len(r, s)

}
because there are three possible

paths from r to s, i.e., r → ri → s , r → rj → s , and r → s . If dist(r, s) ≤ ε, an object pair (r, s) is
included in the ε-distance join query result; otherwise, the object pair (r, s) is not included. Therefore,
the naive EDISON algorithm is correct for

∣∣rirj
∣∣ > 2. Consequently, the naive EDISON algorithm is

correct for
∣∣rirj

∣∣ = 1,
∣∣rirj

∣∣ = 2, and
∣∣rirj

∣∣ > 2. �
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Figure 6. Computation of the distance from r ∈ rirj to s (a) If s /∈ rirj,

dist(r, s) = min
{

len(r, ri) + dist(ri, s), len
(

r, rj

)
+ dist

(
rj, s
)}

; (b) If s ∈ rirj, dist(r, s) =

min
{

len(r, ri) + dist(ri, s), len
(

r, rj

)
+ dist

(
rj, s
)

, len(r, s)
}

.
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4.4. Evaluation of an Example ε-Distance Join Query Using the Naive EDISON Algorithm

We discuss how to evaluate the ε-distance join query in Figure 3 using the naive EDISON
algorithm. Recall that ε = 5, R = {r1, r2, r3, r4, r5}, and S = {s1, s2, s3, s4, s5, s6} are given and that
outer objects r1 through r5 are grouped into outer segments r1r2 and r3r5r4, as shown in Figure 4.
Table 3 summarizes the computation of R ./ε S for the naive EDISON algorithm.

Table 3. Computation of R ./ε S using the naive EDISON algorithm.

rirj ri rj S”
ri

S”
rj S

(
rirj

) {
ri+1, . . . , rj−1

}
S”

ri
∪S”

rj
∪S
(

rirj

)
r1r2 r1 r2 Sε

r1
= {s1, s5} Sε

r2
= {s1, s6} S(r1r2) = ∅ ∅ {s1, s5, s6}

r3r5r4 r3 r4 Sε
r3
= {s6} Sε

r4
= {s2, s3} S(r3r5r4) = {s2} {r5} {s2, s3, s6}

Because Algorithm 1 processes outer segments one by one, we determine inner objects within
the threshold distance ε from each outer object r ∈ r1r2 followed by r3r5r4. Two range queries
RNQ(5, r1) and RNQ(5, r2) are evaluated for an outer segment r1r2, whose results are Sε

r1
= {s1, s5}

and Sε
r2
= {s1, s6}, respectively. Because |r1r2| = 2 holds, we can simply obtain the partial join result

Φ(r1r2) for r1r2, i.e., Φ(r1r2) = Φ(r1) ∪Φ(r2) = {(r1, s1), (r1, s5), (r2, s1), (r2, s6)}.
Similarly, two range queries RNQ(5, r3) and RNQ(5, r4) are evaluated for an outer segment

r3r5r4, whose results are Sε
r3

= {s6} and Sε
r4

= {s2, s3}, respectively. Because we have Sε
r3

= {s6},
Sε

r4
= {s2, s3}, and S(r3r5r4) = {s2}, we can compute the distance ε from r5 ∈ r3r5r4 to each

candidate inner object s ∈ Sε
r3
∪ Sε

r4
∪ S(r3r5r4) and can retrieve inner objects within distance

ε from r5. For this, we need to compute the distance from r5 to each candidate inner object
s ∈ {s2, s3, s6}. Because s2 ∈ Sε

r4
∩ S(r3r5r4) − Sε

r3
according to Table 3, the distance from r5

to s2 is dist(r5, s2) = min{len(r5, r4) + dist(r4, s2), len(r5, s2)} = min{10, 4} = 4, as shown in
Figure 7a. Similarly, because s3 ∈ Sε

r4
−
(
Sε

r3
∪ S(r3r5r4)

)
according to Table 3, the distance from

r5 to s3 is dist(r5, s3) = len(r5, r4) + dist(r4, s3) = 10, as shown in Figure 7b. Finally, because
s6 ∈ Sε

r3
−
(
Sε

r4
∪ S(r1r5r4)

)
according to Table 3, the distance from r5 to s6 is dist(r5, s6) =

len(r5, r3) + dist(r3, s6) = 6, as shown in Figure 7c. Thus, Sε
r5

= {s2} given that dist(r5, s2) = 4,
dist(r5, s3) = 10, and dist(r5, s6) = 6. The partial join result Φ(r3r5r4) for r3r5r4 is obtained by
taking the union of the three range query results at r3, r4, and r5, i.e., Φ(r3r5r4) = Φ(r3) ∪Φ(r4) ∪
Φ(r5) = {(r3, s6), (r4, s2), (r4, s3), (r5, s2)} where Φ(r3) = {(r3, s6)}, Φ(r4) = {(r4, s2), (r4, s3)},
and Φ(r5) = {(r5, s2)}. Consequently, we have the result Φ(R) of the ε-distance join query, i.e.,
Φ(R) = Φ(r1r2) ∪Φ(r3r5r4) = {(r1, s1), (r1, s5), (r2, s1), (r2, s6), (r3, s6), (r4, s2), (r4, s3), (r5, s2)}.
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5. Optimal Shared Execution for ε-Distance Join Queries in Road Networks

5.1. Extending Shared Execution Processing to Adjacent Outer Segments

We can extend the shared execution processing to adjacent outer segments. We call this shared
execution processing the EDISON method. To this end, we investigate the number of outer segments
that belong to adjacent vertex sequences of an intersection vertex. Let Ω(vx) be the number of outer
segments in vertex sequences adjacent to an intersection vertex vx. If Ω(vx) = 0, as shown in Figure 8a,
no range query is issued at vx. If Ω(vx) = 1, as shown in Figure 8b, a range query RNQ(ε, ri) is issued
at ri. If Ω(vx) ≥ 2, as shown in Figure 8c, a range query RNQ(εvx , vx) is issued at vx, where Ω(vx) = n
and εvx = ε−min

{
len
(
vx, ri1

)
, len

(
vx, ri2

)
, · · · , len(vx, rin)

}
. Naturally, if εvx ≤ 0, no range query at

vx is issued. In summary, if Ω(vx) = 1, the same shared execution as the naive EDISON algorithm
is applied to an outer segment, and if Ω(vx) ≥ 2, an extended shared execution is applied to outer
segments adjacent to vx.
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Figure 8. Investigating the number of outer segments adjacent to an intersection vertex vx (a) Ω(vx) = 0;
(b) Ω(vx) = 1; (c) Ω(vx) ≥ 2.

Returning to the example in Figure 3, we reevaluate the ε-distance join query to demonstrate
the effectiveness of considering the shared execution of adjacent outer segments. To answer the
ε-distance join query, the naive EDISON method would evaluate four range queries RNQ(5, r1),
RNQ(5, r2), RNQ(5, r3), and RNQ(5, r4) whereas the EDISON method only evaluates the range query
RNQ(4, v3) at the intersection vertex v3. This occurs because there are two intersection vertices v1 and
v3, as shown in Figure 4a and we have Ω(v1) = 2, Ω(v3) = 2, εv1 = ε−min{len(v1, r1), len(v1, r4)} =
5−min{12, 7} = −2, so εv3 = ε−min{len(v3, r2), len(v3, r3)} = 5−min{2, 1} = 4.

We present a simple heuristic where no range queries close to terminal vertices are issued.
As shown in Figure 9, the example network has one intersection vertex vx and three terminal vertices
v3, v4, and v5. In this figure, the naive EDISON method evaluates two range queries RNQ(ε, ri) and
RNQ

(
ε, rj
)

to answer the ε-distance join query. However, the EDISON method evaluates only the
range query RNQ(ε, ri) to answer the same ε-distance join query. This is because Sε

ri
∪ Sε

rj
∪ S
(
rirj
)
=

Sε
ri
∪ S
(
rirjv3

)
holds, and it is sufficient to evaluate the range query RNQ(ε, ri) rather than the two

range queries RNQ(ε, ri) and RNQ
(
ε, rj
)
.
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ri
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5.2. EDISON Algorithm

Algorithm 2 describes the EDISON algorithm based on shared execution to avoid redundant
range queries while processing ε-distance join queries. For simplicity, we assume that

∣∣R∣∣ ≤ ∣∣S∣∣,
because R ./ε S = S ./ε R. The EDISON algorithm examines Ω(vx), the number of outer segments
adjacent to each intersection vertex vx, and applies the extended shared execution to outer segments
adjacent to vx if Ω(vx) ≥ 2. If Ω(vx) < 2, then no range query is issued at vx. If Ω(vx) ≥ 2 and
εvx > 0, then a range query RNQ(εvx , vx) is issued and its result is saved to Sεvx

vx , where εvx =

ε−min
{

len
(
vx, ri1

)
, len

(
vx, ri2

)
, · · · , len(vx, rin)

}
, assuming that outer segments ri1 rj1 , ri2 rj2 , · · · , rin rjn

are adjacent to vx and that rik is closer to vx than rjk for 1 ≤ k ≤ n (lines 8-11).
Next, for each outer segment rirj ∈ R, we retrieve a set of object pairs (r, s) within distance ε from

each outer object r ∈ rirj. We assume that ri
(
rj
)

is close to vl (vm) for an outer segment rirj ∈ vlvm.
We consider the following four cases depending on the values of Ω(vl) and Ω(vm), where vlvm is
a vertex sequence containing an outer segment rirj: (1) Ω(vl) = Ω(vm) = 1; (2) Ω(vl) = 1 and
Ω(vm) ≥ 2; (3) Ω(vl) ≥ 2 and Ω(vm) = 1; and (4) Ω(vl) ≥ 2 and Ω(vm) ≥ 2. If Ω(vl) = 1 and
Ω(vm) = 1, then inner objects within distance ε from each outer object r ∈ rirj are retrieved among
the candidate inner objects in Sε

ri
∪ Sε

rj
∪ S
(
rirj
)

(lines 13-16). If Ω(vl) = 1 and Ω(vm) ≥ 2, then inner
objects within distance ε from each outer object r ∈ rirj are retrieved among the candidate inner objects
in Sε

ri
∪ Sεvm

vm ∪ S(rivm) (lines 17-19). If Ω(vl) ≥ 2 and Ω(vm) = 1, then inner objects within distance ε

from each outer object r ∈ rirj are retrieved among the candidate inner objects in S
εvl
vl ∪ Sε

rj
∪ S
(
vlrj
)

(lines 20-22). Finally, if Ω(vl) ≥ 2 and Ω(vm) ≥ 2, then inner objects within distance ε from each outer
object r ∈ rirj are retrieved among the candidate inner objects in S

εvl
vl ∪ Sεvm

vm ∪ S(vlvm) (lines 23-24).
A partial join result Φ

(
rirj
)

for rirj is added to the query result Φ(R). Finally, the ε-distance join query
result Φ(R) is returned after all outer segments have been processed (line 26), i.e., Φ(R) = ∪Φ

(
rirj
)

for each outer segment rirj ∈ R.

Algorithm 2: EDISON (ε, R, S)

Input: R: set of outer objects, S: set of inner objects
Output: R ./ε S: set of object pairs (r, s) ∈ R× S such that dist(r, s) ≤ ε

1 Φ(R)← ∅ // Φ(R) is the set of object pairs (r, s) ∈ R× S such that dist(r, s) ≤ ε.
2 // Step 1: neighboring outer objects are grouped and neighboring inner objects are also grouped.
3 R← group_objects(R) // Outer objects in a vertex sequence are grouped into an outer segment.
4 S← group_objects(S) // Inner objects in a vertex sequence are grouped into an inner segment.
5 // For simplicity, we assume that

∣∣R∣∣ ≤ ∣∣S∣∣. if
∣∣R∣∣ > ∣∣S∣∣, we simply evaluate S ./ε R.

6 // Step 2: rirj ./ε S is evaluated by extending shared execution processing to adjacent outer segments.
7 for each intersection vertex vx do
8 if Ω(vx) ≥ 2 then // Ω(vx) ≥ 2 means that more than two outer segments are adjacent to vx.
9 εvx ← ε−min

{
len
(
vx, ri1

)
, len

(
vx, ri2

)
, · · · , len

(
vx, rin

)}
// assume that Ω(vx) = n.

10 if εvx > 0 then // If εvx ≤ 0, then no range query is evaluated at vx.
11 Sεvx

vx ← RNQ(εvx , vx) // Otherwise, a range query RNQ(εvx , vx) is evaluated at vx.

12
for each outer segment rirj ∈ vlvm

do
// Assume that ri (rj) is close to vl (vm).

13 if Ω(vl) = 1 and Ω(vm) = 1 then
14 Sε

ri
← RNQ(ε, ri) // A range query is evaluated at ri because no range query is issued at vl .

15 Sε
rj
← RNQ

(
ε, rj

)
// A range query is evaluated at rj because no range query is issued at vm.

16 Φ
(

rirj

)
← DJQ

(
ε, rirj, Sε

ri
∪ Sε

rj
∪ S
(

rirj

))
17 else if Ω(vl) = 1 and Ω(vm) ≥ 2 then
18 Sε

ri
← RNQ(ε, ri) // A range query is evaluated at ri because no range query is issued at vl .

19 Φ
(

rirj

)
← DJQ

(
ε, rirj, Sε

ri
∪ Sεvm

vm ∪ S(rivm)
)

// Sεvm
vm is reused by outer segments adjacent to vm.

20 else if Ω(vl) ≥ 2 and Ω(vm) = 1 then

21 Sε
rj
← RNQ

(
ε, rj

)
// A range query is evaluated at rj because no range query is issued at vm.

22 Φ
(

rirj

)
← DJQ

(
ε, rirj, S

εvl
vl ∪ Sε

rj
∪ S
(

vlrj

))
// S

εvl
vl is reused by outer segments adjacent to vl .

23 else if Ω(vl) ≥ 2 and Ω(vm) ≥ 2 then

24 Φ
(

rirj

)
← DJQ

(
ε, rirj, S

εvl
vl ∪ Sεvm

vm ∪ S(vlvm)
)

// S
εvl
vl (Sεvm

vm ) is reused by outer segments adjacent to vl (vm).

25 Φ(R)← Φ(R) ∪Φ
(

rirj

)
// A partial join result Φ

(
rirj

)
for rirj is added to Φ(R).

26 return Φ(R) // Φ(R) stores the result of R ./ε S.

Algorithm 3 retrieves a set Φ
(
rirj
)

of object pairs (r, s) within distance ε, where r ∈ rirj and

s ∈ Sεα
α ∪ S

εβ

β ∪ S
(
αβ
)
. First, Φ

(
rirj
)

is initialized to the empty set. According to the condition of an
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inner object s ∈ Sεα
α ∪ S

εβ

β ∪ S
(
αβ
)
, the distance from r to s is computed (lines 4-11). Note that dist(r, s)

in Algorithm 3 may not necessarily be the length of the shortest path from r to s, as discussed in
Section 5.3. If dist(r, s) ≤ ε, then the object pair (r, s) is added to the partial join result Φ

(
rirj
)

(lines
12-14). Clearly, Φ

(
rirj
)

is returned after all candidate object pairs (r, s) have been examined (line 15).
In Lemma 3, we prove the correctness of the EDISON algorithm.

Algorithm 3: DJQ
(

ε, rirj, Sεα
α ∪ S

εβ

β ∪ S
(
αβ
))

Input: ε: threshold distance, rirj: outer segment,

Sεα
α ∪ S

εβ

β ∪ S
(
αβ
)
: set of candidate inner objects for outer

objects in rirj

Output: Φ
(

rirj

)
: set of object pairs (r, s) such that

dist(r, s) ≤ ε for r ∈ rirj and s ∈ Sεα
α ∪ S

εβ

β ∪ S
(
αβ
)

1 Φ
(

rirj

)
← ∅

// Φ
(

rirj

)
is the set of object pairs

(r, s) within distance ε where
r ∈ rirj and s ∈ Sεα

α ∪ S
εβ

β ∪ S
(
αβ
)
.

2 for each outer object r ∈ rirj do
3 for each inner object s ∈ Sεα

α ∪ S
εβ

β ∪ S
(
αβ
)

do

4 // dist(r, s) is computed according to the condition of s.
5 if s ∈ Sεα

α ∩ S
εβ

β ∩ S
(
αβ
)

then dist(r, s)← min{len(r, α) + dist(α, s), len(r, β) + dist(β, s), len(r, s)}
6 else if s ∈ Sεα

α ∩ S
εβ

β − S
(
αβ
)

then dist(r, s)← min{len(r, α) + dist(α, s), len(r, β) + dist(β, s)}
7 else if s ∈ Sεα

α ∩ S
(
αβ
)
− S

εβ

β then dist(r, s)← min{len(r, α) + dist(α, s), len(r, s)}
8 else if s ∈ S

εβ

β ∩ S
(
αβ
)
− Sεα

α then dist(r, s)← min{len(r, β) + dist(β, s), len(r, s)}
9 else if s ∈ Sεα

α −
(

S
εβ

β ∪ S
(
αβ
))

then dist(r, s)← len(r, α) + dist(α, s)

10 else if s ∈ S
εβ

β −
(
Sεα

α ∪ S
(
αβ
))

then dist(r, s)← len(r, β) + dist(β, s)

11 else if s ∈ S
(
αβ
)
−
(

Sεα
α ∪ S

εβ

β

)
then dist(r, s)← len(r, s)

12 // If dist(r, s) ≤ ε then an object pair (r, s) is involved in the query result.
13 if dist(r, s) ≤ ε then

14 Φ
(

rirj

)
← Φ

(
rirj

)
∪ {(r, s)}

15
return
Φ
(

rirj

) // A partial join result Φ
(

rirj

)
for

rirj is returned.

Lemma 3. The EDISON algorithm is correct.

Proof. We prove the correctness of the EDISON algorithm by cases. As shown in Algorithm 2,
the EDISON algorithm handles the following four cases differently depending on the values of Ω(vl)

and Ω(vm) of a vertex sequence vlvm containing an outer segment rirj, namely, (1) Ω(vl) = Ω(vm) = 1;
(2) Ω(vl) = 1 and Ω(vm) ≥ 2; (3) Ω(vl) ≥ 2 and Ω(vm) = 1; and (4) Ω(vl) ≥ 2 and Ω(vm) ≥ 2.
For Ω(vl) = Ω(vm) = 1, two range queries, RNQ(ε, ri) and RNQ

(
ε, rj
)
, are evaluated at ri and rj,

respectively. According to Lemma 1, we can retrieve the inner objects within distance ε from every
outer object r ∈ rirj among the candidate inner objects s ∈ Sε

ri
∪ Sε

rj
∪ S
(
rirj
)
. The EDISON algorithm

computes the distance dist(r, s) from an outer object r to each candidate inner object s ∈ Sε
ri
∪ Sε

rj
∪

S
(
rirj
)
. Because dist(r, s) is the length of the shortest path among three possible paths (i.e., r → ri → s ,

r → rj → s , and r → s if s ∈ rirj), it is determined simply depending on the conditions listed in
Algorithm 3. Specifically, if s /∈ rirj, then dist(r, s) = min

{
len(r, ri) + dist(ri, s), len

(
r, rj
)
+ dist

(
rj, s
)}

;
otherwise, dist(r, s) = min

{
len(r, ri) + dist(ri, s), len

(
r, rj
)
+ dist

(
rj, s
)
, len(r, s)

}
. If dist(r, s) ≤ ε,

an object pair (r, s) is included in the ε-distance join query result; otherwise, the object pair (r, s)
is not included. Therefore, the EDISON algorithm is correct for Ω(vl) = Ω(vm) = 1.

For Ω(vl) = 1 and Ω(vm) ≥ 2, two range queries, RNQ(ε, ri) and RNQ(εvm , vm), are evaluated
at ri and vm, respectively, where εvm = ε−min

{
len
(
vm, rj1

)
, len

(
vm, rj2

)
, · · · , len

(
vm, rjn

)}
, assuming

that the outer segments ri1 rj1 , ri2 rj2 , · · · , rin rjn are adjacent to vm, and that rjk is closer to vm than rik
for 1 ≤ k ≤ Ω(vm). Because rirj ∈

{
ri1 rj1 , ri2 rj2 , · · · , rin rjn

}
and εvm ≥ ε′, set Sεvm

vm of the inner objects
within distance εvm from vm contains set Sε′

vm of the inner objects within distance ε′ from vm, where
ε′ = ε − len

(
vm, rj

)
, i.e., Sε′

vm ⊆ Sεvm
vm . According to Lemma 1, we can retrieve inner objects within

distance ε from every outer object r ∈ rirj among the candidate inner objects s ∈ Sε
ri
∪ Sεvm

vm ∪ S(rivm)

because Sε
ri
∪ Sεvm

vm ∪ S(rivm) contains Sε
ri
∪ Sε

rj
∪ S
(
rirj
)
. The EDISON algorithm computes the distance
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dist(r, s) from an outer object r to each candidate inner object s ∈ Sε
ri
∪ Sεvm

vm ∪ S(rivm). Because
dist(r, s) is the length of the shortest path among three possible paths (i.e., r → ri → s , r → vm → s ,
and r → s if s ∈ rivm), it is determined simply depending on the conditions listed in Algorithm 3.
Specifically, if s /∈ rivm, then dist(r, s) = min{len(r, ri) + dist(ri, s), len(r, vm) + dist(vm, s)}; otherwise,
dist(r, s) = min{len(r, ri) + dist(ri, s), len(r, vm) + dist(vm, s), len(r, s)}. If dist(r, s) ≤ ε, an object pair
(r, s) is included in the ε-distance join query result; otherwise, the object pair (r, s) is not included.
Therefore, the EDISON algorithm is correct for Ω(vl) = 1 and Ω(vm) ≥ 2. Without loss of generality,
the proof of the correctness of the EDISON algorithm for Ω(vl) ≥ 2 and Ω(vm) = 1 can be simply
obtained by interchanging the roles of vl and vm, as well as the roles of ri and rj, in the proof for
Ω(vl) = 1 and Ω(vm) ≥ 2, which is omitted.

Finally, for Ω(vl) ≥ 2 and Ω(vm) ≥ 2, two range queries, RNQ
(
εvl , vl

)
and RNQ(εvm , vm),

are evaluated at vl and vm, respectively, where εvl = ε − min{len(vl , ra1), · · · , len(vl , ran)} and
εvm = ε−min

{
len
(
vm, rd1

)
, · · · , len(vm, rdn)

}
. It is assumed that the outer segments ra1 rb1 , · · · , ran rbn(

rc1 rd1 , · · · , rcn rdn

)
are adjacent to vl (vm), and that rak

(
rdk

)
is closer to vl (vm) than rbk

(
rck

)
for

1 ≤ k ≤ Ω(vl) (1 ≤ k ≤ Ω(vm)). Because rirj ∈
{

ra1 rb1 , · · · , ran rbn

}
(rirj ∈

{
rc1 rd1 , · · · , rcn rdn

}
)

and εvl ≥ ε− len(vl , ri)
(
εvm ≥ ε− len

(
vm, rj

))
, set S

εvl
vl

(
Sεvm

vm

)
of the inner objects within distance

εvl (εvm) from vl (vm) contains set Sε′′
vl

(
Sε′

vm

)
of the inner objects within distance ε′′ (ε′) from vl

(vm), where ε′′ = ε − len(vl , ri)
(
ε′ = ε− len

(
vm, rj

))
, i.e., Sε′′

vl
⊆ S

εvl
vl

(
Sε′

vm ⊆ Sεvm
vm

)
. According

to Lemma 1, we can retrieve the inner objects within distance ε from every outer object r ∈ rirj

among the candidate inner objects s ∈ S
εvl
vl ∪ Sεvm

vm ∪ S(vlvm) because S
εvl
vl ∪ Sεvm

vm ∪ S(vlvm) contains
Sε

ri
∪ Sε

rj
∪ S
(
rirj
)
. The EDISON algorithm computes the distance dist(r, s) from an outer object

r ∈ rirj to each candidate inner object s ∈ S
εvl
vl ∪ Sεvm

vm ∪ S(vlvm). Because dist(r, s) is the length
of the shortest path among three possible paths (i.e., r → vl → s , r → vm → s , and r → s if s ∈
vlvm), it is determined simply depending on the conditions listed in Algorithm 3. Specifically, if
s /∈ vlvm, then dist(r, s) = min{len(r, vl) + dist(vl , s), len(r, vm) + dist(vm, s)}; otherwise, dist(r, s) =
min{len(r, vl) + dist(vl , s), len(r, vm) + dist(vm, s), len(r, s)}. If dist(r, s) ≤ ε, an object pair (r, s) is
included in the ε-distance join query result; otherwise, the object pair (r, s) is not included. Therefore,
the EDISON algorithm is correct for Ω(vl) ≥ 2 and Ω(vm) ≥ 2. Consequently, the EDISON algorithm
is correct for Ω(vl) = Ω(vm) = 1, Ω(vl) = 1 and Ω(vm) ≥ 2, Ω(vl) ≥ 2 and Ω(vm) = 1, and
Ω(vl) ≥ 2 and Ω(vm) ≥ 2. �

5.3. Evaluation of an Example ε-Distance Join Query Using the EDISON Algorithm

We discuss how to evaluate the ε-distance join query in Figure 3 using the EDISON algorithm.
As shown in Figure 4, R and S are grouped into R = {r1r2, r3r5r4} and S = {s1s5s4, s2s3, s6},
respectively. Because

∣∣R∣∣ < ∣∣S∣∣, we evaluate R ./ε S. There are two intersection vertices, v1 and
v3, both of which are adjacent to r1r2 and r3r5r4. Therefore, to determine whether range queries at v1

and v3 are evaluated, the EDISON algorithm computes the distances εv1 and εv3 for the range queries
at v1 and v3, respectively. Because εv1 = ε − min{len(v1, r1), len(v1, r4)} = 5 − min{12, 7} = −2
and εv3 = ε−min{len(v3, r2), len(v3, r3)} = 5−min{2, 1} = 4, the EDISON algorithm evaluates the
range query RNQ(4, v3) only. Clearly, the range query RNQ(−2, v1) returns the empty set. Table 4
summarizes the computation of R ./ε S for the EDISON algorithm.

Table 4. Computation of R ./ε S using the EDISON algorithm.

rirj fffi ff fi S”ff
ff S”fi

fi S
(

fffi
)

S”ff
ff ∪S”fi

fi ∪S
(

fffi
)

r1r2 v1v2v3 v1 v3
S−2

v1
=

∅ S4
v3

= {s6}
S(v1v2v3) =
{s1, s4, s5}

{s1, s4, s5, s6}

r3r5r4 v1v4v3 v1 v3
S−2

v1
=

∅ S4
v3

= {s6}
S(v1v4v3) =
{s2, s3}

{s2, s3, s6}
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We retrieve inner objects within distance ε from each outer object r ∈ r1r2 among the candidate
inner objects, followed by inner objects within distance ε from each outer object r ∈ r3r5r4. As shown in
Table 4, {s1, s4, s5, s6} is the set of candidate inner objects for r1r2, and {s2, s3, s6} is the set of candidate
inner objects for r3r5r4. The EDISON algorithm computes the distance between an outer object r and
each candidate inner object s and finds all qualifying object pairs (r, s) such that dist(r, s) ≤ ε.

We compute the distance from r1 to each candidate inner object s ∈ {s1, s4, s5, s6}. Because
s1 ∈ S(v1v2v3) − (S−2

v1
∪ S4

v3
) according to Table 4, the distance from r1 to s1 is dist(r1, s1) =

len(r1, s1) = 2, as shown in Figure 10a. Because s4 ∈ S(v1v2v3) −
(
S−2

v1
∪ S4

v3

)
, the distance

from r1 to s4 is dist(r1, s4) = len(r1, s4) = 10, as shown in Figure 10b. Similarly, because
s5 ∈ S(v1v2v3) −

(
S−2

v1
∪ S4

v3

)
, the distance from r1 to s5 is dist(r1, s5) = len(r1, s5) = 3, as shown

in Figure 10c. Finally, because s6 ∈ S4
v3
−
(
S−2

v1
∪ S(v1v2v3)

)
according to Table 4, the distance from

r1 to s6 is dist(r1, s6) = len(r1, v3) + dist(v3, s6) = 5 + 3 = 8, as shown in Figure 10d. Consequently,
Sε

r1
= {s1, s5} given that dist(r1, s1) = 2, dist(r1, s4) = 10, dist(r1, s5) = 3, and dist(r1, s6) = 8, and the

generated partial join result is Φ(r1) = {(r1, s1), (r1, s5)}.
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We compute the distance from r2 to each candidate inner object s ∈ {s1, s4, s5, s6}. Because s1 ∈
S(v1v2v3)− (S−2

v1
∪ S4

v3
) according to Table 4, the distance from r2 to s1 is dist(r2, s1) = len(r2, s1) = 5,

as shown in Figure 11a. Because s4 ∈ S(v1v2v3)− (S−2
v1
∪ S4

v3
), the distance from r2 to s4 is dist(r2, s4) =

len(r2, s4) = 13, as shown in Figure 11b. In fact, the shortest path from r2 to s4 is r2 → v3 → v1 → s4 ,
whose length is dist(r2, s4) = 9. However, this deviation from the shortest distance does not affect
the query result. Similarly, because s5 ∈ S(v1v2v3) − (S−2

v1
∪ S4

v3
), this distance from r2 to s5 is

dist(r2, s5) = len(r2, s5) = 6, as shown in Figure 11c. Finally, because s6 ∈ S4
v3
−
(
S−2

v1
∪ S(v1v2v3)

)
according to Table 4, the distance from r2 to s6 is dist(r2, s6) = len(r2, v3) + dist(v3, s6) = 2 + 3 = 5,
as shown in Figure 11d. Consequently, Sε

r2
= {s1, s6} given that dist(r2, s1) = 5, dist(r2, s4) = 13,

dist(r2, s5) = 6, and dist(r2, s6) = 5, and the generated partial join result is Φ(r2) = {(r2, s1), (r2, s6)}.
We compute the distance from r3 to each candidate inner object s ∈ {s2, s3, s6}. Because s2 ∈

S(v1v4v3)−
(
S−2

v1
∪ S4

v3

)
according to Table 4, the distance from r3 to s2 is dist(r3, s2) = len(r3, s2) = 6,
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as shown in Figure 12a. Similarly, because s3 ∈ S(v1v4v3) − (S−2
v1
∪ S4

v3
), the distance from r3 to

s3 is dist(r3, s3) = len(r3, s3) = 12, as shown in Figure 12b. In fact, the shortest path from r3 to s3

is r3 → v3 → v1 → s3 , whose length is dist(r3, s3) = 10. However, this deviation from the shortest
distance does not affect the query result. Finally, because s6 ∈ S4

v3
−
(
S−2

v1
∪ (v1v4v3)

)
, the distance from

r3 to s6 is dist(r3, s6) = len(r3, v3) + dist(v3, s6) = 1 + 3 = 4, as shown in Figure 12c. Consequently,
Sε

r3
= {s6} given that dist(r3, s2) = 6, dist(r3, s3) = 12, and dist(r3, s6) = 4, and the generated partial

join result is Φ(r3) = {(r3, s6)}.
We compute the distance from r4 to each candidate inner object s ∈ {s2, s3, s6}. Because s2 ∈

S(v1v4v3)−
(
S−2

v1
∪ S4

v3

)
according to Table 4, the distance from r4 to s2 is dist(r4, s2) = len(r4, s2) = 3,

as shown in Figure 13a. Similarly, because s3 ∈ S(v1v4v3)−
(
S−2

v1
∪ S4

v3

)
, the distance from r4 to s3 is

dist(r4, s3) = len(r4, s3) = 3, as shown in Figure 13b. Finally, because s6 ∈ S4
v3
−
(
S−2

v1
∪ S(v1v4v3)

)
,

the distance from r4 to s6 is dist(r4, s6) = len(r4, v3)+ dist(v3, s6) = 10+ 3 = 13, as shown in Figure 13c.
In fact, the shortest path from r4 to s6 is r4 → v4 → v1 → s6 , whose length is dist(r4, s6) = 9. However,
this deviation from the shortest distance does not affect the query result. Consequently, Sε

r4
= {s2, s3}

given that dist(r4, s2) = 3, dist(r4, s3) = 3, and dist(r4, s6) = 13, and the generated partial join result is
Φ(r4) = {(r4, s2), (r4, s3)}.
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Figure 12. Computation of the distance from r3 to s ∈ {s2, s3, s6} (a) dist(r3, s2) = 6; (b) dist(r3, s3) = 12;
(c) dist(r3, s6) = 4.
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Figure 13. Computation of the distance from r4 to s ∈ {s2, s3, s6} (a) dist(r4, s2) = 3; (b) dist(r4, s3) = 3;
(c) dist(r4, s6) = 13.

We compute the distance from r5 to each candidate inner object s ∈ {s2, s3, s6}. Because
s2 ∈ S(v1v4v3) −

(
S−2

v1
∪ S4

v3

)
according to Table 4, the distance from r5 to s2 is dist(r5, s2) =

len(r5, s2) = 4, as shown in Figure 14a. Similarly, because s3 ∈ S(v1v4v3) −
(
S−2

v1
∪ S4

v3

)
, the

distance from r5 to s3 is dist(r5, s3) = len(r5, s3) = 10, as shown in Figure 14b. Finally, because
s6 ∈ S4

v3
−
(
S−2

v1
∪ S(v1v4v3)

)
, the distance from r5 to s6 is dist(r5, s6) = len(r5, v3) + dist(v3, s6) =

3 + 3 = 6, as shown in Figure 14c. Consequently, Sε
r5

= {s2} given that dist(r5, s2) = 4,
dist(r5, s3) = 10, and dist(r5, s6) = 6, and the generated partial join result is Φ(r5) = {(r5, s2)}.
Finally, we obtain the complete query result Φ(R) = Φ(r1) ∪ Φ(r2) ∪ Φ(r3) ∪ Φ(r4) ∪ Φ(r5) =

{(r1, s1), (r1, s5), (r2, s1), (r2, s6), (r3, s6), (r4, s2), (r4, s3), (r5, s2)}.
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6. Performance Study

In this section, we report on an empirical analysis of our proposed solution. We present our
experimental settings in Section 6.1, followed by our experimental results in Section 6.2.

6.1. Experimental Settings

For the performance study, we use three real-world road networks [43], which are described in
Table 5. These real-world road networks have different sizes and are part of the US’s road network.
Table 6 shows the range of each variable used in the experiments with defaults indicated in bold. For
convenience, each dimension of the data universe is normalized independently to unit length, such that
the threshold distance ε is in the range of [0, 1]. The positions of both the outer objects and the inner
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objects follow either centroid or uniform distributions. The centroid dataset is generated to resemble
the real-world data. First, 10 centroids are selected randomly. The objects around each centroid follow
a normal distribution, where the mean is set to the centroid and the standard deviation is set to 1% of
the side length of the data universe. In each experiment, we vary one or two of the parameters within
the range shown in Table 6, while keeping other parameters at default values. The outer objects and
the inner objects follow the centroid distribution unless stated otherwise.

Table 5. Real-world roadmaps.

Name Description Number of Vertices Number of Edges Number of Vertex Sequences

CAL California and
Nevada 1,890,815 2,315,222 1,794,708

FLA Florida 1,070,376 1,343,951 1,100,675
COL Colorado 435,666 521,200 374,355

Table 6. Experimental parameter settings.

Parameter Range

Threshold distance (ε) 0.005, 0.01, 0.03, 0.05, 0.1

Numbers of outer objects (|R|) and inner objects (|S|) 1, 5, 10, 20, 30 (×103) for CAL and FLA
1, 3, 5, 7, 10 (×103) for COL

Distributions of outer objects (C)entroid, (U)niform
Distributions of inner objects (C)entroid, (U)niform
Real-world roadmaps CAL, FLA, COL

We implement and evaluate two versions of our proposed solution, i.e., the naive EDISON
and EDISON methods. As a benchmark for our proposed method, we use a baseline method that
computes the range query of every outer object using the RNE algorithm [10]. A comparison with the
pre-computed distance-based solution [23] and the Euclidean distance-based solution (e.g., JER [10]) is
beyond the scope of this study, because these methods cannot support frequent network traffic updates.

All algorithms are implemented in C++ in Microsoft Visual Studio 2015, and they use common
subroutines for similar tasks. We conduct experiments on a desktop computer running Windows 10
with a 4 GHz processor and 32 GB of memory. We believe that indexing structures of all techniques
should be memory resident to ensure responsive query processing, which is assumed in many recent
studies [5,11] and is crucial to online map services and commercial navigation systems. We determine
the average values based on 10 repetitions of the experiments for each algorithm.

6.2. Experimental Results

Figure 15 compares the query processing times using the baseline, naive EDISON, and EDISON
methods to evaluate ε-distance join queries in the CAL roadmap, where each chart illustrates the effect
of changing one or two of the parameters in Table 6. The first and the second values in parentheses
indicate the number of range queries that are evaluated by the naive EDISON and EDISON methods,
respectively. The numbers of range queries evaluated by the baseline method are omitted, because
these numbers become min{|R|, |S|}, i.e., the cardinality of the smaller dataset between |R| and |S|.
Figure 15a shows the query processing time as a function of the threshold distance ε. Although the
EDISON method shows the worst performance for ε = 0.005, the processing times using the baseline
and the naive EDISON methods increase more rapidly with the value of ε than those using the EDISON
method. This implies that the shared execution of the EDISON method is more effective for a large
threshold distance ε. The baseline, naive EDISON, and EDISON methods evaluate a total of 10,000
range queries, 959 range queries, and 448 range queries, respectively. Figure 15b shows the query
processing time as a function of the number |R| of outer objects, while the number of inner objects is
fixed at |S| = 10, 000. The EDISON method is less sensitive to variations in |R| than the other methods,
although it shows the worst performance at |R| = 1000. Owing to the benefit of the shared execution
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processing, the numbers of range queries evaluated by the naive EDISON and EDISON methods
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Figure 15. Comparison of the baseline, naive EDISON, and EDISON methods for CAL (a) varying ε;
(b) varying |R|; (c) varying |R| and |S|; (d) varying the distributions of objects.

Figure 15c shows the query processing time as a function of both the number |R| of outer objects
and the number |S| of inner objects. The naive EDISON method outperforms the EDISON method for
1000 ≤ |R|, |S| ≤ 10, 000, whereas the latter outperforms the former for 20, 000 ≤ |R|, |S| ≤ 30, 000. This
indicates that the EDISON method optimizes the shared execution processing more effectively than the
naive EDISON method for large datasets. Clearly, the baseline method shows the worst performance in
most cases. Figure 15d shows the query processing time for various distributions of outer objects and
inner objects, where each ordered pair (i.e., (C, C), (C, U), (U, C), and (U, U)) denotes a combination
of the distributions of outer objects and inner objects. Because shared execution processing is favorable
for non-uniform distributions of objects, the naive EDISON and EDISON methods significantly
outperform the baseline method for (C, C), (C, U), and (U, C). However, the processing times of
the naive EDISON and EDISON methods for (U, U) are very similar to the baseline method. This
is because both the outer objects and the inner objects are widely scattered, which hinders shared
execution processing.

Figure 16 compares the query processing times using the baseline, naive EDISON, and EDISON
methods to evaluate ε-distance join queries in the FLA roadmap. Figure 16a shows the query processing
time as a function of ε, when ε varies between 0.005 and 0.1. The EDISON method achieves the best
performance for 0.01 ≤ ε ≤ 0.1, because it evaluates the smallest number of range queries among the
three methods. The baseline, naive EDISON, and EDISON methods evaluate 10,000 range queries,
1320 range queries, and 665 range queries, respectively. Figure 16b shows the query processing time as
a function of |R|, when |R| varies between 1000 and 30,000. The EDISON method clearly outperforms
the other methods for 5000 ≤ |R| ≤ 30, 000. Due to shared execution processing, the naive EDISON
and EDISON methods are less sensitive to changes in |R| than the baseline method. Figure 16c shows
the query processing time as a function of |R| and |S|, when |R| (|S|) varies between 1000 and 30,000.
The EDISON method clearly outperforms the other methods for 5000 ≤ |R|, |S| ≤ 30, 000. Figure 16d
shows the query processing time for various distributions of outer objects and inner objects. The naive
EDISON and EDISON methods significantly outperform the baseline method for (C, C), (C, U), and
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Figure 16. Comparison of the baseline, naive EDISON, and EDISON methods for FLA (a) varying ε;
(b) varying |R|; (c) varying |R| and |S|; (d) varying the distributions of objects.

Figure 17 compares the query processing times using the baseline, naive EDISON, and EDISON
methods to evaluate ε-distance join queries in the COL roadmap. Figure 17a shows the query processing
time as a function of ε, when ε varies between 0.005 and 0.1. The naive EDISON and EDISON methods
significantly outperform the baseline method in all cases. Specifically, the query processing time
of the EDISON method is up to 11 times shorter than the baseline method at ε = 0.1. The naive
EDISON method significantly outperforms the EDISON method for 0.005 ≤ ε ≤ 0.01, whereas the
latter outperforms the former for 0.03 ≤ ε ≤ 0.1. This indicates that the EDISON method is less
sensitive to changes in ε than the naive EDISON method. Figure 17b shows the query processing
time as a function of |R|, when |R| varies between 1000 and 10,000. The naive EDISON and EDISON
methods significantly outperform the baseline method in all cases and the former methods are less
sensitive to changes in |R| than the latter method. This indicates that the performance difference
between the EDISON method and the baseline method increases rapidly with |R|. Specifically, the
query processing time of the EDISON method is up to 155 times shorter than the baseline method
at |R| = 10, 000. Figure 17c shows the query processing time as a function of |R| and |S|, when |R|
(|S|) varies between 1000 and 10,000. The naive EDISON method outperforms the EDISON method
at |R| = |S| = 1000, whereas the latter outperforms the former for 5000 ≤ |R|, |S| ≤ 10, 000, and the
performance difference between the two methods increases with |R|. and |S|. This implies that the
EDISON method scales better with |R| and |S| than the naive EDISON method. Figure 17d shows the
query processing time for various distributions of outer objects and inner objects. The naive EDISON
and EDISON methods significantly outperform the baseline method for (C, C), (C, U), and (U, C).
However, all methods show similar performance when the outer objects and the inner objects follow
uniform distributions (U, U). This is expected because both the outer objects and inner objects are
widely scattered for (U, U), which obstructs shared execution processing of the naive EDISON and
EDISON methods.
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7. Conclusions

In this study, we investigated the efficient processing of ε-distance join queries in dynamic road
networks. We proposed a cost-effective solution called EDISON that optimizes the shared execution
method to avoid redundant network traversal. We implemented and evaluated a baseline method and
two versions of EDISON, i.e., the naive EDISON and EDISON methods. The experiments are based on
several real-world roadmaps and involve a wide range of parameter values. The experimental results
are summarized as follows: (1) the naive EDISON and EDISON methods significantly outperform
the baseline method; (2) the naive EDISON and EDISON methods are typically comparable in terms
of query processing time; (3) the EDISON method scales better with increasing number of objects
and threshold distance than the naive EDISON method. In future work, we plan to extend the
shared execution approach used here to the problems of processing sophisticated spatial queries
over road networks, such as multi-way distance join queries [44] and aggregate k-farthest neighbor
queries [45,46]. These problems have not been adequately addressed with regard to road networks
despite their importance.
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