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Abstract: Remotely sensed data are often adversely affected by many types of noise, which influences
the classification result. Supervised machine-learning (ML) classifiers such as random forest (RF),
support vector machine (SVM), and back-propagation neural network (BPNN) are broadly reported to
improve robustness against noise. However, only a few comparative studies that may help investigate
this robustness have been reported. An important contribution, going beyond previous studies, is that
we perform the analyses by employing the most well-known and broadly implemented packages of
the three classifiers and control their settings to represent users’ actual applications. This facilitates
an understanding of the extent to which the noise types and levels in remotely sensed data impact
classification accuracy using ML classifiers. By using those implementations, we classified the land
cover data from a satellite image that was separately afflicted by seven-level zero-mean Gaussian,
salt–pepper, and speckle noise. The modeling data and features were strictly controlled. Finally,
we discussed how each noise type affects the accuracy obtained from each classifier and the robustness
of the classifiers to noise in the data. This may enhance our understanding of the relationship between
noises, the supervised ML classifiers, and remotely sensed data.

Keywords: machine learning; remote sensing; robustness; Gaussian noise; salt–pepper noise;
multiplicative noise

1. Introduction

Remotely sensed data, especially for satellite images, are used to estimate information about
the Earth, its various objects, phenomena, and processes. These images have been widely used for
applications of Earth surface monitoring such as land cover classification and change detection, crop
yield estimation, and geographic information extraction. Improving the accuracy of the classifications
is thus a fundamental research topic in the field of geographic information sciences [1]. However, it can
be a difficult task depending on the complexity of the landscape, the spatial and spectral resolution of
the imagery being used, and the amount of noise included.

Noise may be added to remotely sensed data during different stages of data acquisition or
processing, from the moment the data are captured by the sensor until their atmospheric and
topographic correction, orthorectification, or co-registration [2]. In satellite image classification,
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the data obtained from the satellite sensors may be affected by atmospheric noise resulting from
the obstruction of the light reflected by targets on the Earth’s surface by a variety of phenomena,
including aerosols and clouds in the atmosphere as well as changing illumination patterns and the
angle at which the satellite views the ground at any given time [3]. The basic source for image pixels,
such as those acquired by satellite sensors, has limited radiometric and geometric resolution. This effect
leads to a mixture of classes within one pixel, thereby resulting in the representation of the partial
degree membership of at least two classes in the pixel, known as a mixed pixel, which normally
increases the classification complexity [4]. Moreover, the image generation process may add noise to
the data. This is widely found in most Synthetic-aperture radar (SAR) images [5–7]. These data have
to be compressed to reduce their requirements for archiving and data transmission and this may cause
artifacts and ambiguities in the final images [8].

Normally, the normal distribution values that occur at a random location by merging with the
original values in the satellite image are referred to as zero-mean Gaussian noise [9]. In optical remote
sensing multispectral imagery, the noise is typically independent of the data and it is generally additive
in nature. The noise may reduce the performances of important techniques of image processing such
as detection, segmentation, and classification. Most of the natural images are assumed to have additive
white Gaussian noise [10,11].

Salt and pepper noise are the highest and lowest global values, respectively, that replace an
original pixel at a random location. This is generally caused due to errors in data transmission [5,12].
A report of data loss on the Landsat Missions website also refers to an artifact called Christmas Tree
anomaly. The lost data appear as bright red, green, and blue artifacts, often next to or overlapping
each other. This artifact is usually caused by telemetry data erroneously being included in the satellite
imagery [13]. The missing data may be replaced by null values (salt noise) or filled with a designated
fill pattern by the ground processing systems. Charoenjit et al. [14] stated that one of the problems
associated with biomass estimation from very high-resolution (VHR) data is salt–pepper noise. In an
attempt to solve the problem caused by the noise, these authors performed object-based image analysis
on a Para rubber plantation and proved that the segmentation method can reduce the effect of constant
salt–pepper noise.

Multiplicative noise or speckle is widely found in most SAR images [5–7]. These data have to
be compressed to reduce their requirements for archiving and data transmission and this may cause
artifacts and ambiguities in the final images [8,15]. Speckle noise gives a grainy appearance to radar
imageries. It reduces the image contrast, which has a direct negative effect on the texture-based analysis
of the imageries [16,17]. For example, Nobrega et al. [18] showed a LiDAR intensity image that was
affected by signal eccentricities caused by sensor scanning patterns. By filtering the noise, they could
improve the efficiency of the image’s segmentation. Moreover, Mulder et al. [19] reviewed the use of
remotely sensed data for soil and terrain mapping. They concluded that the accuracy of retrieving soil
information by using proximal sensing combined with a remote sensing method decreases because of
several types of noise such as that caused by a mixture of soil properties and atmospheric, topographic,
and sensor noise. Soil moisture retrieval from SAR images is always affected by speckle noise and
uncertainties associated with soil parameters, which impact negatively the accuracy of soil moisture
estimates. Barber et al. [7] proposed a soil moisture Bayesian estimator from polarimetric SAR images
to address these issues. The results indicated that the model enlarges the validity region of the
minimization-based procedure and the speckle effects can be reduced by the multilooking method
included in the model scheme.

Consequently, the effect of noise within the data can be either mitigated or ignored by selecting
appropriate classifiers that are robust to noise, especially for supervised machine-learning classifiers
which have a mechanism for handling noise [20–23]. Continuous developments in storage capacity
and the processing speed of computers made advanced machine learning (ML) available for land
cover classification. Supervised machine-learning algorithms require external assistance in the form of
training [24]. Their classification accuracy obviously depends on the quality of the training data [20].
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The input dataset is normally divided into training and testing datasets. The training dataset has an
output variable that needs to be predicted or classified. Most algorithms learn some kind of pattern
from the training dataset and apply them to the test dataset for prediction or classification [25,26].

Algorithms based on random forests (RF) [21] utilize decision trees. These algorithms are probably
one of the most efficient ML algorithms in terms of prediction accuracy [27]. The algorithm has the
capability to rapidly process databases ranging from small to very large, and is easy to interpret and
visualize [28]. Moreover, RF has been reported to be robust to noise [29–31]. However, the algorithm
can slow down as the number of trees increases [28]. In recent decades, many scientists have used
RF as a classifier. In the original paper describing RF [21], the performance of RF was observed
against Adaboost algorithms [32] by classifying 20 different datasets. The authors proved that RF is
more robust with respect to noise. Moreover, Crisci et al. [27] reviewed a number of supervised ML
algorithms to model mortality events in benthic communities in rocky coastal areas in the northwestern
Mediterranean Sea. The RF model yielded the lowest misclassification rates for such ecological data.

Support vector machine (SVM) is a supervised non-parametric statistical learning technique;
therefore, no assumption is made about the underlying data distribution [33]. The SVM learning
algorithm aims to find a hyperplane that separates the dataset into a discrete predefined number
of classes in a fashion consistent with the training examples. SVM outperforms other ML models,
particularly when only a small dataset is available for training [34,35]. However, SVM requires
more training time and its performance is dependent on parameter adjustment in comparison to other
methods [23]. For classification purposes, Dalponte et al. [36] used SVM and the fusion of hyperspectral
and LiDAR data, in which speckle noise usually existed. They pointed out that SVM outperformed
the maximum likelihood and k-nearest neighbor (k-NN) techniques. Moreover, the incorporation of
LiDAR variables generally improved the classification performance and the first return data was the
highest contributing factor. Insom et al. [34] improved the accuracy of standard SVM by applying a
particle filter (PF) to automatically update the SVM training model parameters to values that were
more appropriate for their flood dataset. The performance of the method is superior when compared
with standard SVM. Senf et al. [37] performed land cover classification of complex Mediterranean
landscapes using an SVM classifier. The work proved that combining phonological profiles of the
land covers and human interpretation can significantly improve the generalization power of the SVM
models, as previously stated [38]. Moreover, SVM was also reported to have good generalization
capabilities under different noise levels, types of noise, and sample sizes when it was optimized [39].

A neural network (NN) is an algorithm that simulates the neuronal structure, processing method,
and learning ability of the human brain but on much smaller scales. This technique is applicable
to problems in which the relationships may be nonlinear or quite dynamic [40]. The most common
type of NN is based on the back-propagation learning algorithm and is known as a back-propagation
neural network (BPNN) [41]. BPNN has been proven to be the best among the Multi-layer perceptron
(MLP) algorithms [22]. However, BPNN tends to be slower to train than other types of NNs, which
can be problematic in very large networks with a large amount of data [28]. BPNNs in remotely sensed
image classification applications have been widely reviewed [41–43]. They were also reported as
very effective to use in noise reduction [44,45] and robust to noises when trained by noise data [46].
These researchers have mutually concluded that the BPNN approach is feasible for the classification of
remote sensing imagery.

In recent decades, many experiments have been designed for studies aiming to observe the
robustness of a variety of classifiers relating to noise content and type. For example, Petrou et al. [2]
proposed fuzzy-rule-based classifiers to overcome uncertainty in habitat mapping. The robustness of
these classifiers was evaluated by drawing additive homogeneous noise from a zero-mean Gaussian
probability density function. The noise was added to the original images and a threshold was assigned
by an expert at different standard deviations ranging from 5 to 20% of the image mean values and
5 to 50% of the rule threshold, respectively. The results showed that the classifiers remained mostly
unaffected by noise in the data that were used because the classification was object based. In contrast,
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the additive noise in the rule threshold, which acted as inaccurate expert rules, directly affected the
performance. However, the overall accuracies remained over 75%. Celik and Ma [9] investigated the
performance of their automatic change-detection method by using different types and levels of added
noise. Different levels of zero-mean Gaussian noise ranging from 35 to 50 dB (peak signal-to-noise
ratio (PSNR)) were used in the experiments. Moreover, the authors contaminated the test images with
different levels of speckle noise to illustrate the noise that commonly occurs in SAR data. The method
proved to be highly robust (accuracies of approximately 95–100%) to both types of noise when the
classifier was assigned an appropriate parameter value. Moreover, the noise test could assist the
authors in optimizing the parameter used in the classification with different levels of noise. Dierking
and Dall [6] used complex scattering matrix data of the Electromagnetics Institute’s Synthetic Aperture
Radar (EMISAR) system in order to simulate image products with different levels of pixel dimensions
and noise levels of −35, −30, −25, and −20 dB. Ice deformation maps were generated by using a
selected threshold, such that image pixels with intensities equal to or larger than the highest 2% of
the ice intensity distribution level were classified as deformed ice. The results indicated that if the
level of the sensor noise is equal to or larger than the average backscattering intensity of the level
ice, the retrieved values for the deformation parameters change. Moreover, an L-band SAR system at
like-polarization, with an incidence angle larger than 35◦ and a noise level of at most −25 dB or lower,
is desirable for mapping the deformation state of sea ice cover.

In this work, we employed three supervised ML classifiers, i.e., random forest (RF), support vector
machine (SVM), and back-propagation neural network (BPNN), to classify the land covers in satellite
images afflicted by three classes of noise, namely zero-mean Gaussian, salt–pepper, and speckle noise.
The classification was first carried out on an image corrected for absolute atmospheric interference,
termed the reference image, to obtain the standard accuracies. Subsequently, noise was applied to
the reference image in different concentrations. The normal reflectance image (without absolute
atmospheric correction) was also classified to illustrate the real effects of mixing different kinds of
noise. To conclude, we experimented with the performance of the classifiers under the following
noise conditions:

1. Fully processed images with absolute atmospheric correction, termed the reference images.
(assumed to contain no noise);

2. Normal reflectance images without absolute atmospheric correction (mixture of noise, i.e., sensor
noise, atmospheric noise);

3. Reference images with zero-mean Gaussian noise added;
4. Reference images with salt–pepper noise added;
5. Reference images with speckle noise added (multiplicative noise).

Discussions are presented to describe and examine the performance of the different classifiers to
each noise type and level in addition to assessing the research questions: (1) To what extent do the
different types of noise affect the classification accuracies? (2) How do the classifiers behave toward
noise-afflicted image classification? Additionally, the effect of the different types of noise and the
behavior of the classifiers on remotely sensed data are considered. Note that the results and conclusions
that we made in this study are mainly aimed at providing an understanding of the core mechanisms of
the ML classifiers toward noises in remotely sensed data rather than comparing their performances.

2. Materials and Methods

2.1. Experimental Design

Figure 1 shows the overall experimental flow of the current study. A Landsat 8 OLI scene
was acquired and processed to be a reference image (refer to Section 2.2. for the image processing).
We added different levels of three types of noise, zero-mean Gaussian noise, salt–pepper noise,
and speckle noise to the reference image to produce noise-afflicted images. Twenty-three images (one
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reference image, one image without absolute atmospheric correction, and 21 images to which artificial
noise was added) were then classified by BPNN, SVM, and RF to obtain the classification accuracies.
The classifications were scoped by the following conditions. First, the training and validating samples
were extracted using the same shape file (i.e., samples were acquired at the same image locations).
Second, the parameters used in each of the algorithms were optimized. Please refer to Section 2.4
for a detailed explanation. In addition, we observed the robustness of a classifier by the differential
accuracies of the reference image and the images to which noise was added.
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Figure 1. Experimental flow.

2.2. Remotely Sensed Data

The satellite image is a Landsat-8 Operational Land Imager (OLI) image acquired on 26 December
2014 (Path 130, Row 50), shown in Figure 2. The image was acquired under clear sky conditions, a very
low content of homogeneous aerosol, and in the absence of cloud objects. The scene includes Landsat
8 surface reflectance data generated from the Landsat Surface Reflectance Code (LaSRC). The LaSRC
makes use of the coastal aerosol band to perform aerosol inversion tests, uses auxiliary climate data
from the Moderate Resolution Imaging Spectroradiometer (MODIS), and uses a unique radiative
transfer model. The model artifacts or blockiness presented in the surface reflectance data products
were excluded from the image and any future calculation by employing the quality assessment (QA)
band. We termed this image the reference image.

The study area, which covered the southeastern part of the Srinakarin dam, an embankment dam
on the Khwae Yai River in the Si Sawat District of the Kanchanaburi Province of Thailand, included
five land cover classes: agriculture, bare land, construction, water body, and forest. Descriptions of the
classes are provided in Table 1. The sample pixel locations were randomly selected from Thailand’s 2014
land cover ground survey map obtained from the Geo-Informatics and Space Technology Development
Agency (GISTDA). The phenology of plants or land cover may change after the referencing date
(the time lapse is about two months). Thus, we incorporated human interpretation and Google Earth
images with an acquisition date near the Landsat image to confirm that the samples had not changed
category during the time lapse.
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Table 1. Number of samples of modeling and application testing datasets.

Classes Descriptions M * A *

Agriculture Artificial planting area/no harvested area included 504 126

Bare land Land used without vegetation cover 440 110

Construction Houses, roads, and any man-made construction 80 20

Water body Water bodies such as ponds, lakes, and rivers 344 86

Forest Area covered by natural and unused vegetation, mountain shadow 2048 512

Total 3416 854

* Modeling data (M) and application testing (A) data.
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2.3. Sampling Design

The sampling framework utilized in this paper can be explained as follows. (1) Four thousand
and four hundred random samples were randomly generated based on the Thailand’s 2014 land cover
ground survey map via Generate Random Sample—Using Ground Truth Classification Image in ENVI
classic version 5.1. (Harris Geospatial Solutions, Inc., Melbourne, Australia) The random samples
include all classes except the construction class because it rarely existed in the study area; therefore,
we manually selected 100 samples of the construction class by human interpretation. The initial
4550 random samples include 2600 samples of the forest class, 650 samples of the agriculture class,
650 samples of the bare land class, and 650 samples of the water body class. Note that the forest class
accounts for more than 50% land cover of the study area, so we provided a sample size three times
larger than other classes to capture the forest diversity. On the other hand, we maintained the same
proportion for the water body class as it has less complexity. As a result, 4650 samples were obtained
in this step. (2) The samples close to the edge of the class vectors or their classes changed during the
time lapse of the data acquisition and survey map and were excluded. The criterion for removing the
edge’s pixels is that the distance from the vector line is less than three pixels or 90 m. The remaining
pixels were compared one-by-one with the Google Earth images using human interpretation to detect
any category changes. (3) Finally, 4270 samples remained in the experiment. An 80/20 ratio of training
and validation samples was randomly drawn without replacement in MATLAB programing. The final
sample distribution is shown in Table 1.
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To ensure that the accuracy of the classifiers was comparable and less biased, 80% of data points
was used to train the various classification algorithms and 20% was used for comparison. This means
that all of the training elements required for generating a classification model—training set, testing set,
or validating set (if needed)—were included in the 80% training data. Note that each classifier used
this data in different ways based on the training algorithms. The management of the training data of
each classifier can be found in Section 2.5. Finally, we distinctly preserved 854 validating samples that
were sparse in the image (20% of the reference data) to evaluate the classification accuracies. Note that
only the Coastal, Blue, Green, Red, Near-Infrared (NIR), Shortwave-Infrared 1 and 2 (SWIR1 and
SWIR2, respectively) bands of the Landsat 8 OLI dataset were used as spectral features in this study.

2.4. Noise Afflictions

We investigated the highest case of noise affliction in the satellite image by simulating the types of
noise mentioned below in the MATLAB environment, which was then applied to the reference image
at different levels of noise. The Gaussian distribution noise can be expressed by:

P(x) = 1/
(

σ
√

2π
)
× e−

(x−µ)2

2σ2 , (1)

where P(x) is the Gaussian distribution noise in an image; µ and σ are the mean and standard deviation
of the noise process, respectively.

Salt and pepper noise are the highest and lowest global values, respectively, that replace an
original pixel at a random location. To simulate salt and pepper noise, the following conditions were
applied to the noise-free image:

p(x) =


p1, x = A
p2, x = B
0, otherwise

, (2)

where p1 and p2 are the probabilities density function (pdf); p(x) is the distribution of salt and pepper
noise in image; A, B are the possible minimum and maximum values, respectively (in this paper they
are 0 and 1, respectively).

The speckle noise is known as multiplicative noise, i.e., it is produced by the coherent
superposition of spatially random multiple scattering sources within the resolution volume of the
sensor [47]. The speckle noise distribution can be expressed as:

J = I + n× I, (3)

where J is the distribution speckle noise image; I is the input image; and n is the uniform noise image
by specific mean and variance.

The noise level is quantitatively defined in decibels (dB) in terms of the PSNR. Given an input
image I and its noisy image H, the PSNR between the two images can be expressed as:

MSE = (1/mn)∑m
i=1 ∑n

j=1[I(i, j)− H(i, j)]2, (4)

where i and j are pixel locations in rows and columns, and m and n are the maximum number of image
rows and columns, respectively.

Note that a smaller value of the PSNR refers to increasing noise intensity. The noisy images were
produced by using different PSNR values. Finally, the sample images used in this study comprise a
total of 23 datasets with the following descriptions:

Reference images (applied absolute atmospheric correction and noise removal)
Level 1 Landsat 8 images without absolute atmospheric correction (only convert from digital

number to reflectance values)
Reference images + zero-mean Gaussian noise from 10 to 40 dB (in steps of 5 dB)
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Reference images + salt and pepper noise from 10 to 40 dB (in steps of 5 dB)
Reference images + speckle noise from 10 to 40 dB (in steps of 5 dB)
Note that each pixel value of the reference image was rescaled to values between 0 and 1 using the

minimum and maximum values (as shown in Equation (5)) of its band before noise generation. If an
image data has i rows, v columns, and u bands, the rescaling equation in this work is expressed as:

I(i, v, u) = (Q(i, v, u)−min(u))/(max(u)−min(u))), (5)

where I(i, v, u) is the rescaled value of the original value Q(i, v, u). The terms min(u) and max(u)
denote the minimum and maximum values selected from band u, respectively.

2.5. Classifiers—Implementation Packages

The classifiers are described in terms of their key concepts, operational details, and parameter
settings that are exclusively used in this study. Further details of both the theoretical and mathematical
descriptions can be found by linking to the appropriate work that provides extensive points of interest
(RF: [21,48,49], SVM: [50,51], BPNN: [22,42]).

2.5.1. Random Forests (RF)

Random Forests build multiple decision trees based on random bootstrapped samples of the
training data. In contrast to other classifiers, RF neither causes overfitting nor does it require a long
training time [21]. Each tree is built using a subset that differs from the original training data, containing
approximately two-thirds of the cases, and the nodes are split using the best split variable among a
subset of m randomly selected variables [52]. The trees are created by drawing a subset of training
samples by using the replacement or bagging method. Each decision tree is independently produced
without any pruning and each node is split using a number (m) defined by the user. By growing the
forest up to the number of trees (k), the algorithm creates trees with high variance and low bias [21].
The final classification decision is taken by averaging the class assignment probabilities calculated by
all trees. Therefore, two parameters are required to construct an RF framework: the number of trees
(ntree) in the ensemble and the number of variables used to split the nodes (mtry). The classifications
were performed using the well-known “randomForest” package for R [43].

All of the considered parameters were investigated, namely, the ntree was observed from 500 to
2000, and the mtry was observed from 2 to 5. The resulting model was selected by choosing the most
accurate model that was obtained by running the model generation procedure 30 times. Table 2 shows
the parameter tuning of all classifiers in this study.

Table 2. Parameter tuning of all classifiers.

Classifiers Cross-Validation Approaches/Parameters

Random forests (RF) ntree = {500, 1000, 1500, 2000}, mtry = {2, 3, 4, 5}, 30 replications

Support vector machines (SVM)
Grid-search cross-validation approach, radial basis function

kernel, 30 replications

Back-propagation neural networks (BPNN)
Scale conjugated gradient optimization, 70% training,

15% testing, 15% validating, hidden nodes = {5, 10, 15, 20, 40,
60}, 30 replications

The optimized models are different for each observed image.

2.5.2. Support Vector Machines (SVM)

The SVM algorithm aims to find a decision boundary termed a hyperplane that separates the
dataset into a discrete predefined number of classes in a fashion consistent with the training examples.
In this study, we employed the well-known “LIBSVM” package [53] implemented in the MATLAB
environment. A brief mathematic description of the SVM package is provided below.
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Given the input training sets of l examples xi with labels yi: (xi, yi), i = 1, 2, 3, . . . , l where xi ∈ RN

and y ∈ {1,−1}l , the SVMs require the solution of the following optimization problem [53] as revised
from The Soft Margin Hyperplane [51]:

max
w,b,ξ

1
2 wTw + C ∑i

i=1 ξi,

subject to yi
(
wTφ(xi) + b

)
≥ 1− ξi, ξi ≥ 0,

(6)

where w, b, T, and ξ are the l-dimensional vectors, bias, transpose function, and non-negative variables,
respectively. The training vectors xi are mapped into a higher dimensional space by the function φ.
SVM finds a linear separating hyperplane with the maximal margin in this higher dimensional space.
C > 0 denotes the penalty parameters of the error term. Furthermore, K

(
xi, xj

)
≡ φ(xi)

Tφ
(
xj
)

is termed the kernel function. In this work, the radial basis function (RBF) kernel is used. It is
expressed as:

K
(

xi, xj
)
= exp

(
−γ‖xi − xj‖2

)
, γ > 0, (7)

where γ is the kernel parameter. Therefore, only two parameters—the penalty parameter C and kernel
parameter γ—are required when using the method.

To attain reasonable accuracy in each of the classifications, we implemented the algorithm
in a step-by-step manner. First, the training data were converted to a suitable form for the
SVM package. The labels were changed from category attributes into binary numbers 0 and 1.
For example, {water body, constructions, agriculture} were represented as (1,0,0), (0,1,0), and (0,0,1).
The straightforward grid-search cross-validation approach [53], which is provided in the package,
was performed to find the best model parameters, since the values of C and γ directly affect the
performance of the SVM model [34]. The cross-validation was replicated 30 times (Table 2). Therefore,
the final SVM model was generated by training the entire training set by the obtained parameters in
regards to the testing set, after which we exported the model to classify the 20% validating data.

2.5.3. Back-Propagation Neural Network (BPNN)

The goal of BPNN is to compute the partial derivative or gradient of a loss function with respect
to any weight in the network. The loss function calculates the difference between the input training
example and its expected output, after the example has been propagated through the network [36].
The basic concern of an NN algorithm is that it cannot perform accurately beyond the range of trained
inputs; that is, the classification accuracies strongly depend on the data used to train the networks.
The modeling data were labeled by binary number forms and then they were randomly separated
into training, testing, and validating sets in the ratios of 70%, 15%, and 15%, respectively. The number
of hidden layers was observed from 5 to 60. The BPNN model was automatically trained until the
network converges by using the trainscg function (scaled conjugate gradients or SCG), the details
of which have been described by Moller [49], in the MATLAB environment. The SCG training was
automatically optimized by the parameter sigma σ (which determines the change in weight for the
second derivative approximation) and lamda λ (which regulates the indefiniteness of the Hessian).
The values of σ and λ were taken as 5 × e−5 and 5 × e−7, respectively. The model was repeated
30 times and the best model was then employed to classify the given validating data. The mean and
standard deviation of the model accuracies were reported.

3. Results

3.1. Image with Added Noise

Each noisy image was constructed by considering the PSNR values. An automatic noise-adding
function was used to apply random noise to each satellite image band. In the case of salt–pepper
noise, the pixel location may possibly be disturbed by the noise (irrespective of whether it is salt or
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pepper) more than once, i.e., the first location (row 1, column 1) of the seven-band satellite image
data consists of seven pixels, and the noise can either be added or not added to a pixel, some pixels,
or all pixels. In the case of additive (zero-mean Gaussian noise) and multiplicative noise (speckle
noise), all pixels in each image band were directly afflicted by adding or multiplying by random values.
Note that, to produce the intended PSNR, a certain noise parameter is associated with each image
band depending on the type of noise. In other words, a noise layer was prepared by using specific
parameters such as the variance, mean, and standard deviation, after which the PSNR was calculated
from the mean-square error of the original image and the noise layer combined with the original image.
This requires the parameters to be assigned a certain value before they are used to target a certain
PSNR. The noisy images are shown in Figure 3.
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3.2. Classification Results

3.2.1. BPNN

The mean model accuracy (OAm1) and mean validation accuracy (OAV1) obtained by classifying
(30 replications) the reference image by the neural network model are 99.1% and 96.7% (K = 0.94).
In the case of images without atmospheric correction, the algorithm produced accuracies of 99.0%
and 96.4% (K = 0.94) for OAm1 and OAV1, respectively. It is obvious that the value of OAV is fairly
low when the algorithm encounters very high noise content. The best validation accuracy (OAV0)
of the images to which zero-mean Gaussian noise was added is 65.9% (K = 0.31) at 10 dB, for which
the classifier was completely unable to classify the construction class until reaching a PSNR of 30 dB.
The accuracy rapidly increased from this percentage to over 90% at 25 dB, then slightly increased to
98.5% (K = 0.97) at 40 dB.

The OAV0 for image classification with added speckle noise at 10 dB is 73.8% (K = 0.52), which
differs considerably from the lowest accuracy obtained for the zero-mean Gaussian noise; however,
the construction class still cannot be classified until a PSNR of 30 dB is reached. Above 25 dB, the image
classification accuracies are higher for images to which zero-mean Gaussian noise was added in
comparison to speckle noise. In contrast, the classification accuracies obtained for images with added
salt–pepper noise are higher than those to which other types of noise were added, i.e., the mean
validation accuracies (OAV1) exceed 85% (K ≥ 0.75) at 10 dB and are over 90% (K ≥ 0.85) for the
remaining PSNR levels. The classification accuracies obviously showed that BPNN is affected by
all types of noise at increasing noise intensities. Details of the classification accuracies of the BPNN
classifiers are presented in Table 3.

3.2.2. SVM

The mean model accuracy (OAm1) and mean validation accuracy (OAV1) obtained from
classifying the reference image by the SVM model are as high as the values obtained from
non-atmospheric-corrected images, i.e., approximately 99% (K ≥ 0.98). The OAV0 of the images
to which zero-mean Gaussian noise was added is 64.5% (K = 0.23) at 10 dB, for which the classifier was
completely incapable of classifying the agriculture and construction class until PSNRs of 15 dB and
25 dB, respectively, were reached. In most of the cases, the accuracy increases from this percentage
to 99.2% (K = 0.99) at 40 dB. The OAV1 for the classification of images to which speckle noise was
added at 10 dB is 74.5% (Kappa = 0.54), which differs by 10% from the value obtained for zero-mean
Gaussian noise; however, it is still not possible to classify the construction class until a PSNR of 30 dB
is reached. At high noise content (10–20 dB), the classifications of images to which speckle noise was
added yielded accuracies higher than those of the datasets afflicted by zero-mean Gaussian noise.
Contrary to this, the mean validation accuracies are over 90% (K ≥ 0.83) for all classification tasks that
were afflicted by salt–pepper noise. Moreover, the SVM algorithm could model all classes to which this
noise was added. Details of the classification accuracies of the SVM classifiers are provided in Table 4.

3.2.3. RF

In the case of RF classifiers, the mean model accuracy (OAm1) and mean validation accuracy
(OAV1) obtained by classifying the reference image are 99.1% and 98.8% (K = 0.98), respectively.
The algorithm produced the closed OAV1 value for the reference and image without atmospheric
correction, which is consistent with the results obtained from the BPNN and SVM. The increasing
trends observed for OAm1 and OAV1 for the classification of images to which zero-mean Gaussian and
speckle noise was added is similar to that of SVM and BPNN, but the RF classifiers are more effective
at high noise intensity. Unexpectedly, the mean validation accuracies reached 93.8% (K ≥ 0.89) for 10
dB salt–pepper noise-afflicted image classifications. Consequently, classifying the construction class,
the classification of which is problematic with both BPNN and SVM, remains impossible until PSNRs
of 25, 15, and 30 dB are reached with zero-mean Gaussian, salt–pepper, and speckle noise, respectively.
Details of the classification accuracies of the RF classifiers are provided in Table 5.
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Table 3. Classification accuracies of the BPNN classifiers.

RI NI G10 G15 G20 G25 G30 G35 G40 SP10 SP15 SP20 SP25 SP30 SP35 SP40 SPK10 SPK15 SPK20 SPK25 SPK30 SPK35 SPK40

PA1 99.2 97.6 7.1 38.1 69.8 87.3 92.1 91.3 96.0 78.6 94.4 90.5 95.2 96.8 98.4 96.8 27.8 46.8 72.2 84.9 94.4 91.3 93.7
PA2 97.3 99.1 46.4 81.8 86.4 95.5 97.3 97.3 98.2 90.9 96.4 97.3 97.3 98.2 99.1 100 44.5 76.4 90.0 95.5 97.3 97.3 99.1
PA3 95.0 85.0 0 0 0 0 5.0 70.0 85.0 0 0 0 75.0 80.0 95.0 95.0 0 0 0 0 30.0 65.0 80.0
PA4 100 100 39.5 76.7 91.9 100 100 100 100 81.4 91.9 100 97.7 100 100 100 87.2 100 100 100 100 100 100
PA5 99.8 99.6 91.6 91.8 94.3 96.9 98.0 99.0 99.4 97.7 97.5 97.3 97.9 99.6 99.4 99.6 92.0 93.9 94.3 96.3 97.7 98.8 99.8

UA1 98.4 99.2 47.4 54.5 71.5 85.3 89.9 98.3 98.4 88.4 88.8 92.7 92.3 98.4 99.2 100 40.7 56.7 73.4 82.3 89.5 95.0 99.2
UA2 98.2 95.6 57.3 81.1 87.2 90.5 91.5 93.9 94.7 84.7 92.2 90.7 94.7 96.4 98.2 98.2 53.8 75.0 84.6 87.5 93.9 93.0 97.3
UA3 95.0 100 0 0 0 0 50.0 87.5 100 0 0 0 83.3 88.9 90.5 90.5 0 0 0 0 75.0 92.9 94.1
UA4 100 100 60.7 77.6 94.0 96.6 100 100 100 94.6 98.8 94.5 100 100 100 100 87.2 93.5 100 100 100 100 100
UA5 99.8 99.4 68.0 82.5 89.8 95.4 96.5 97.3 99.0 91.2 95.0 95.6 98.4 99.2 99.6 99.4 79.7 88.1 91.7 95.2 97.5 97.7 98.3

OAm0 99.7 99.9 90.6 93.7 96.4 97.9 98.6 99.6 99.7 98.2 98.6 98.5 99.4 99.6 99.8 99.8 93.9 96.2 96.8 97.6 98.8 99.3 99.7
OAV0 99.3 98.9 65.9 78.9 87.2 93.3 95.1 97.1 98.5 90.0 94.0 94.3 96.8 98.6 99.2 99.2 73.8 83.1 88.9 92.6 95.8 96.8 98.4

K0 0.99 0.98 0.31 0.62 0.78 0.89 0.92 0.95 0.97 0.83 0.90 0.90 0.95 0.98 0.99 0.99 0.52 0.70 0.81 0.87 0.93 0.95 0.97

OAm1 99.1 99.0 90.3 93.4 96.2 97.7 98.4 98.9 99.0 96.8 98.1 98.2 98.8 98.9 99.1 99.3 92.9 95.3 96.4 97.3 98.4 98.8 98.8
OAV1 96.7 96.4 65.2 78.0 86.7 92.7 94.5 95.7 96.5 86.9 92.6 93.1 94.9 96.5 97.1 97.2 71.1 81.0 87.7 90.8 95.1 95.5 95.4

K1 0.94 0.94 0.28 0.60 0.77 0.88 0.90 0.93 0.94 0.76 0.87 0.88 0.91 0.94 0.95 0.95 0.46 0.66 0.79 0.84 0.92 0.92 0.92

OAm2 0.60 0.95 2.51 0.33 0.19 0.34 0.28 0.41 0.34 0.28 0.15 0.15 0.11 0.10 0.29 0.28 1.34 1.17 0.62 0.79 0.14 0.20 0.93
OAV2 2.14 3.45 0.55 0.45 0.30 0.30 0.25 0.60 0.76 5.32 0.68 0.48 1.11 0.77 1.17 1.14 3.30 3.26 2.06 2.77 0.38 0.48 3.40

K2 0.060 0.039 0.017 0.008 0.005 0.005 0.005 0.011 0.013 0.143 0.012 0.008 0.019 0.013 0.020 0.020 0.090 0.072 0.042 0.052 0.007 0.009 0.061

RI = reference image; NI = non-atmospheric-corrected image; G(i) = zero-mean Gaussian noise; SP(i) = salt–pepper noise; SPK(i) = speckle noise; OAm(r) = self-model accuracy;
OAV(r) = validation accuracy; K(r) = Cohen’s kappa; UA(x) = user’s accuracy; PA(x) = production accuracy; x (class) = {1 = agriculture, 2 = bare land, 3 = construction, 4 = water body,
5 = forest}; i = peak signal-to-noise ratio (dB); r = {0 = best, 1 = mean, 2 = standard deviation}.
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Table 4. Classification accuracies of the SVM classifiers.

RI NI G10 G15 G20 G25 G30 G35 G40 SP10 SP15 SP20 SP25 SP30 SP35 SP40 SPK10 SPK15 SPK20 SPK25 SPK30 SPK35 SPK40

PA1 99.2 97.6 0 26.2 68.3 88.9 90.5 94.4 97.6 77.0 90.5 95.2 96.8 97.6 98.4 96.0 25.4 49.2 67.5 82.5 91.3 91.3 94.4
PA2 100 98.2 37.3 84.5 87.3 92.7 97.3 100 100 90.9 97.3 98.2 99.1 96.4 99.1 98.2 52.7 73.6 89.1 90.9 98.2 98.2 99.1
PA3 100 95 0 0 0 10.0 40.0 55.0 90.0 10.0 65.0 85.0 85.0 90.0 95.0 95.0 0 0 0 0 40.0 80.0 85.0
PA4 100 100 27.9 76.7 94.2 98.8 100 100 100 87.2 97.7 100 100 100 100 100 89.5 98.8 100 100 100 100 100
PA5 99.6 99.6 94.9 94.3 93.4 96.7 98.0 99.2 99.6 97.5 97.9 99.0 99.4 99.6 99.6 99.4 92.0 94.3 94.9 96.3 97.7 99.0 99.6

UA1 100 98.4 0 62.3 68.3 83.6 91.9 98.3 99.2 85.8 94.2 96.0 98.4 98.4 99.2 98.4 47.8 59.0 70.8 80.6 89.8 95.0 99.2
UA2 98.2 98.2 55.4 84.5 88.1 90.3 93.9 94.8 97.3 90.9 93.0 97.3 98.2 97.2 98.2 98.2 57.4 79.4 84.5 87.7 93.1 94.7 96.5
UA3 100 100 0 0 0 66.7 88.9 100 100 25.0 81.3 100 94.4 94.7 95.0 86.4 0 0 0 0 88.9 100 100
UA4 100 100 68.6 75.9 92.0 97.7 100 100 100 96.2 97.7 100 100 100 100 100 84.6 95.5 100 100 100 100 100
UA5 99.8 99.2 65.2 80.0 90.0 95.7 96.4 97.7 99.4 91.6 97.1 98.4 98.8 99.0 99.6 99.2 79.2 87.0 91.4 94.1 97.1 98.1 98.5

OAm0 99.5 99.4 64.5 77.2 87.2 93.3 98.7 98.1 98.8 89.4 96.2 98.1 98.3 98.7 99.0 99.2 75.9 85.0 88.1 92.5 96.1 97.9 98.8
OAV0 99.6 99.1 64.5 79.0 86.8 93.2 95.7 97.7 99.2 90.5 95.9 98.1 98.7 98.7 99.3 98.7 74.7 83.3 88.4 91.7 95.7 97.4 98.5

K0 0.99 0.98 0.23 0.61 0.77 0.88 0.93 0.96 0.99 0.83 0.93 0.97 0.98 0.98 0.99 0.98 0.54 0.70 0.80 0.86 0.93 0.96 0.97

OAm1 99.5 99.4 64.5 77.2 87.2 93.3 98.7 98.1 98.8 89.4 96.2 98.1 98.3 98.7 99.0 99.2 75.9 85.0 88.1 92.5 96.1 97.9 98.8
OAV1 99.6 99.1 64.5 79.0 86.8 93.2 95.4 97.7 99.2 90.4 95.7 98.0 98.4 98.7 99.3 98.7 74.5 83.2 88.3 91.6 95.5 97.3 98.5

K1 0.99 0.98 0.23 0.61 0.77 0.88 0.92 0.96 0.99 0.83 0.93 0.97 0.97 0.98 0.99 0.98 0.53 0.70 0.80 0.86 0.92 0.95 0.97

OAm2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OAV2 0.02 0.00 0.00 0.04 0.00 0.00 0.06 0.00 0.00 0.06 0.14 0.05 0.12 0.00 0.04 0.00 0.08 0.04 0.06 0.06 0.04 0.07 0.04

K2 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.002 0.001 0.002 0.000 0.001 0.000 0.002 0.001 0.001 0.001 0.001 0.001 0.001



ISPRS Int. J. Geo-Inf. 2018, 7, 274 14 of 21

Table 5. Classification accuracies of the RF classifiers.

RI NI G10 G15 G20 G25 G30 G35 G40 SP10 SP15 SP20 SP25 SP30 SP35 SP40 SPK10 SPK15 SPK20 SPK25 SPK30 SPK35 SPK40

PA1 97.6 95.2 10.3 23.8 66.7 84.9 92.9 96.0 94.4 87.3 93.7 94.4 94.4 94.4 95.2 95.2 27.8 57.9 71.4 83.3 92.9 93.7 95.2
PA2 100 100 45.5 81.8 90.0 96.4 97.3 98.2 98.2 95.5 99.1 98.2 99.1 100 99.1 100 50.9 80.0 92.7 93.6 99.1 98.2 97.3
PA3 95 70.0 0 0 0 10.0 20.0 45.0 65.0 0 35.0 60.0 60.0 60.0 70.0 70.0 0 0 0 0 25.0 55.0 65.0
PA4 100 100 31.4 69.8 90.7 98.8 100 98.8 100 98.8 98.8 100 100 100 100 100 88.4 98.8 100 100 100 100 100
PA5 99.4 99.4 88.9 93.4 93.9 96.9 97.9 99.2 99.4 98.8 99.2 99.0 99.0 99.6 99.6 99.4 93.2 94.3 94.7 96.5 97.7 98.8 99.2

UA1 100 99.2 35.1 46.2 71.8 84.3 90.7 97.6 97.5 90.9 97.5 97.5 96.7 99.2 99.2 99.2 41.7 60.8 72.6 82.0 90.0 95.2 96.0
UA2 96.5 94.8 53.2 78.3 85.3 92.2 92.2 95.6 93.9 92.1 92.4 93.9 94.8 93.2 94.8 95.7 57.1 80.7 84.3 88.0 92.4 93.9 94.7
UA3 100 100 0 0 0 66.7 100 81.8 92.9 0 100 92.3 85.7 100 93.3 93.3 0 0 0 0 100 91.7 100
UA4 100 100 50.9 82.2 94.0 97.7 100 100 100 98.8 100 98.9 100 100 100 100 91.6 97.7 100 100 100 100 100
UA5 99.4 98.5 67.9 79.5 89.4 95.0 96.5 97.5 98.5 94.9 97.1 98.1 98.3 98.5 98.6 98.5 81.0 89.8 92.7 94.5 97.1 97.9 98.3

OAm0 99.7 98.9 67.0 78.0 89.5 93.9 96.3 98.0 98.5 95.3 97.9 98.7 98.8 98.9 99.0 98.9 78.0 87.9 88.9 93.6 96.3 98.0 98.8
OAV0 99.2 98.2 63.8 77.8 86.9 93.2 95.4 97.3 97.8 94.4 96.8 97.4 97.5 98.0 98.2 98.2 75.4 85.4 89.3 92.3 95.7 97.1 97.7

K0 0.99 0.97 0.28 0.58 0.77 0.88 0.92 0.95 0.96 0.90 0.95 0.96 0.96 0.97 0.97 0.97 0.55 0.75 0.82 0.87 0.93 0.95 0.96

OAm1 99.1 98.5 63.3 76.6 86.8 92.6 95.4 97.3 97.9 94.5 97.0 97.6 97.9 98.3 98.3 98.3 76.7 85.6 88.3 92.5 95.3 97.1 97.9
OAV1 98.8 97.8 62.8 76.7 86.0 92.7 94.9 96.9 97.1 93.8 96.4 97.1 97.0 97.7 97.7 97.8 74.7 84.8 88.7 91.6 95.2 96.5 97.1

K1 0.98 0.96 0.25 0.57 0.75 0.87 0.91 0.95 0.95 0.89 0.94 0.95 0.95 0.96 0.96 0.96 0.54 0.74 0.81 0.86 0.92 0.94 0.95

OAm2 0.27 0.25 1.35 1.05 0.91 0.71 0.60 0.41 0.49 0.58 0.47 0.47 0.44 0.33 0.37 0.35 0.79 0.92 0.50 0.62 0.53 0.51 0.46
OAV2 0.19 0.17 0.81 0.53 0.47 0.31 0.28 0.25 0.30 0.28 0.22 0.20 0.29 0.25 0.27 0.25 0.46 0.42 0.30 0.31 0.27 0.27 0.25

K2 0.003 0.003 0.016 0.011 0.009 0.005 0.005 0.004 0.005 0.005 0.004 0.003 0.005 0.004 0.005 0.004 0.009 0.007 0.005 0.005 0.005 0.005 0.004
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4. Discussion

4.1. Performance of the Classifiers vs. the Reference and the Non-Atmospheric-Corrected Image

The mean kappa coefficients of the same classifier for classification of the reference image and the
image without atmospheric correction are very similar. For example, the BPNN produced K = 0.94
for both the classification of reference and non-atmospheric-corrected image, which indicates that
there is insignificant difference between the classification result of the images. This proves that the
classifications using the three ML classifiers on data from a single date Landsat 8 OLI image may not
require absolute atmospheric correction. In other words, the Level 1 Landsat products are already used
for land cover classification after digital conversion to reflectance. However, the absolute atmospheric
correction is still required in some works, i.e., time-series analysis and multi-sensor image data.

4.2. Analysis of Noise and Classifiers

Zero-mean Gaussian noise, which was used to illustrate that the effect of adding random values
to the image pixels has a significant impact on the classification performance of all classifiers in the
presence of high-intensity noise, causes the mean validation accuracies to be lower than 66% (K ≤ 0.28)
(Figure 4). The three classifiers were unable to classify the construction class unless the noise content
was decreased to 25 dB (RF and SVM) and 30 dB (BPNN). Moreover, a noise intensity of 10 dB also
caused SVM to fail in the classification of the agriculture class, for which BPNN and RF also produced
very low accuracies. These phenomena have their origins in the high variance of noise that was added
to the training data. This variance causes additional overlapping of the ranges of values among the
categories. Another explanation may be that the addition of noise changed the samples significantly.
In other words, increasing the additive or zero-mean Gaussian noise decreases the representativeness
of each category by changing the pattern of the samples in some or all of the layers.
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random forest classifier in relation to different noise levels and types.

We simulated the occurrence of speckle noise on the reference image by multiplying the random
values at different PSNRs. It should be noted that, in real situations, speckle noise either exists
infrequently or occurs at very low radiance in Landsat 8 OLI data. The effect of speckle noise is quite
similar to that of zero-mean Gaussian noise, in that these types of noise decrease the representativeness
of the training model of each class. According to the result, the three algorithms can overcome
high-intensity speckle noise more effectively than high-intensity zero-mean Gaussian noise. When
considering the UA and PA of each class, the commission and omission errors are lower than the
classification accuracies for images to which zero-mean Gaussian noise was added. This is attributed
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to the small change in the product after multiplication of the noise and the low pixel value compared
to the original when compared to zero-mean Gaussian images, especially in the case of dark objects
such as water bodies and mountain shadows (Figure 3).

Salt and pepper noise is the minimum and maximum of the image pixel values (here they are 0
and 1) and randomly replaces the original pixels. In this case, the replaced noise pixels can be seen as
data loss or missing data in the case of salt, and black dots in the case of pepper, which can sometimes
be removed from the image by using a mask. However, if the reference data points were located among
those pixels removed by the mask, it would be problematic, because it would cause valuable ground
truth data points to be lost. In this study, the selected ML algorithms were proved to be robust to this
kind of noise. Figure 4 clearly shows the mean validation accuracies (OAV1) of all classifiers higher
than 85% (K ≥ 0.76). RF outperforms the other classifiers and has an OAV1 value of 93.8% (K = 0.89) at
the highest noise intensity used in this study (10 dB).

The question may arise here as to why salt–pepper noise had a lesser effect than other types of
noise in the classification using these classifiers. This can be explained by pointing to the characteristic
of the noise. The noise is not applied to all image pixels; instead, it randomly “replaced” the target pixel
by certain values. If the set of a training class is not completely replaced by the noise, the remaining
unchanged values can be used to represent the pattern of the class. In other words, we have seven
layers for training samples, and if only two of these are changed to the same value (even if they are
changed to a different value), the remaining five layers, which are strongly representative of the class,
are still available for classification. This is a unique characteristic of salt–pepper noise and is different
from that of speckle and zero-mean Gaussian noise.

The algorithm used to train the classifiers also plays an important role in the classification.
The black box of basic BPNNs returned a final model that consisted of two main parameters: bias and
weights. In this sense, the final model truly represents all of the training samples. This is why the
BPNN models trained by noisy data provided lower accuracies than others. Normally, we can improve
BPNN accuracy by reducing noise in the data or including more representative training samples in
the BPNN learning process. SVM separates binary classes using the optimal hyperplane. The final
hyperplane is generated by a few support vectors near the boundary area of the two classes. In this
investigation of the effect of noise, the SVM is significantly more robust, because of the fact that the
SVM’s parameter selection only determines optimal support vectors to construct the final hyperplanes
separating each of the categories. This means that the outlier or noise data were confirmed to be
mostly excluded from hyperplane construction. Moreover, for the construction class, which has a very
small training size disturbed by high noise intensity, SVM seems to be more effective than the other
classifiers. In this study, RF outperformed all the classifiers for the classification of images to which
salt–pepper noise was added. This is because the RF randomly generated a large number of trees
(decision trees) from training data to produce forests, following which the unknown test samples were
voted for by all trees in the final step. This means that anomaly values such as noise may not be voted
for by the trees.

In a classification using supervised ML algorithms, the representativeness and the number of
images used as training data should be of greater concern when the satellite image is afflicted by noise.
Considering the training data in Table 1, the reference samples of each class are imbalanced based on
the fact that the percentage of each class in the image is not equal. A rough count of the study area,
shown in Figure 2, indicates that the water body and forest class accounts for approximately 60% of the
image and the remaining 40% consists of pixels in the bare land, agriculture, and construction classes.
An examination of the result of the classifications revealed that the construction class always has the
lowest accuracies of any of the classifiers. This may come from one or both of the following: (case 1) the
construction class contains too few samples to represent the class characteristic in the presence of noise;
(case 2) the limitations of remotely sensed data to represent the class for any given pixel resolution.
In this study, based on the results, we can strongly assume that the misclassified samples cannot be
explained by case 2, because the accuracy result of the reference image classification confirms that
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the construction class can be properly classified. The classification accuracy of the water body and
forest classes was mostly high despite the existence of high noise content, because these classes have
sufficient training samples to expose the class characteristic even though it is afflicted by noise.

In our experience, supervised-based classifiers, especially ML classifiers, are sensitive to the
structure or pattern of training samples because they learn from these data. For example, two size-fixed
agricultural areas of a crop with different planting densities (one is sparse, the other is dense) can
generally be seen as different classes in medium-resolution images such as a Landsat image due to the
effect of the soil background. The user needs to use this information to train the classifier to produce a
reasonable and accurate result. This is similar to the case of noise-afflicted data. If it is not possible
to prevent or eliminate noise from data, a more effective approach would be to teach the classifier to
understand the noise patterns by increasing the number of training samples or by using training data
dispersed across the area.

The experiment in this study was carried out on the assumption that the same variance in noise
occurred in every layer, whereas the occurrence of real noise varies as it is only found in some bands
or as a mixture of different types and intensities of noise. We elucidated the gap by expressing the
simulated noise by PSNR as an appropriate way in which the real noise can also be measured by
this measurement. However, the intensity of real noise is normally not as high as the noise levels
we investigated. The experimental design aimed to determine the effect of noise and to test the
performance of the ML algorithms. Consequently, the wide range of noise levels was used to capture
the behavior and effects of noise.

4.3. Advanced Extension of the MLs

Recent decades have seen various extensions of the BPNN (e.g., [54–56]), SVM (e.g., [56,57]),
and RF (e.g., [56,58]) algorithms that were developed to overcome their drawbacks and, we believe,
can perform more effectively than the basic versions of these algorithms. We suggest that readers
who require a very high accuracy use the extended version or a noise filter [59–61]. In general,
the application of advanced MLs depends greatly on the related theory or technique. For example,
fuzzy set concepts [62] are usually attached to basic MLs to make the decision space in categorizing
more flexible (fuzzy random forest [63]; fuzzy nonlinear proximal SVM [64]; fuzzy-NN [65]).
Markov-systems-based techniques also belong to the leading trend of increasing the classification
accuracy (Markov-random-field-based SVM [57]; MLP-Markov chain models [66]). Beside the
abovementioned extensions, there are various combinable algorithms that exist in classification field,
such as a particle filter [35] and genetic algorithm.

Although the robustness of the basic BPNN towards noises observed in this study was lower than
that of RF and SVM, the new-generation neural networks, especially deep learning, are outstanding
among other advanced learning algorithms [67]. Deep learning algorithms automatically extract
features and abstractions from the underlying data. Numerous reports in the literature have
demonstrated that data representations obtained from a deep learning model often yield better results,
e.g., improved classification modeling. For example, Hu and Yi (2016) obtained a reasonable result for
ground point extraction (for digital terrain modeling) by employing deep convolution neural networks
using 17 million labeled Airborne laser scanning (ALS) points [55]. Moreover, Chen et al. (2014)
developed a hybrid framework of principle component analysis (PCA), deep learning architecture,
and logistic regression for accurate hyperspectral data classification that yielded higher accuracy than
RBF-SVM [68]. The examples demonstrated the performance of deep learning over complicated works
when a large number of training samples are available.

Nevertheless, the majority of users still use the original algorithms without any complicated
extensions. Our work is not only intended to assist private users with the selection of appropriate
classifiers for their work, but also to transfer an understanding of remote sensing data to algorithm
developers. Future work on other ML classifiers, especially on new algorithms invented in the last
decade, would be necessary to compare them to the existing algorithms.
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5. Conclusions

In this study, we investigated the effects of adding simulated zero-mean Gaussian, salt–pepper,
and speckle noise on image classification performance. Three well-known machine-learning classifiers,
i.e., back-propagation neural network (BPNN), support vector machine (SVM), and random forest
(RF), with the most basic parameter settings, were used for the classifications. A Landsat 8 OLI scene
of Srinakarin dam, Kanchanaburi Province, Thailand, acquired under cloud-free conditions with
absolute atmospheric correction, was used as reference data for noise affliction. We specified the same
number of usable training data for all classifiers. The experiment started by classifying the reference
image by the classifiers, after which the results were set as the baseline accuracy for interpretation.
The reference image was then contaminated by different levels of noise at peak signal-to-noise ratios
(PSNRs) ranging from 10 to 40 dB (in increments of 5 dB). Finally, 21 noisy images were obtained and
separately classified by the classifiers. As expected, the lower the PSNR (high noise intensity), the lower
the accuracy. All classifiers provided accuracies over 96% for the reference and the image without
atmospheric correction. This means that absolute atmospheric correction in single date classification is
unnecessary for images acquired under clear weather conditions. We suggest from our experiment that
an increase in the number of training and collecting samples dispersed in various patterns across the
study area facilitates the improvement of the representativeness of the class when the data is afflicted by
high-intensity noise. More specifically, in terms of the performance of the classifiers, the BPNN models
provided accuracies lower than others in very high noise intensity, because the algorithm strongly
depends on the values of the training samples. According to the results, SVM often provides a high
accuracy because SVM parameter selection can be used to ensure that only optimal support vectors are
found to construct the final hyperplanes separating each of the categories, and the minor fluctuations
caused by noise were confirmed to mostly be excluded from model construction. RF outperformed all
of the classifiers in salt–pepper noise added image classifications. However, although in this study the
three ML classifiers proved to be very robust to low-to-medium noise intensity (PSNR > 20) without
using any filter or extension, we suggest taking advantage of a noise filter or the advanced extensions
of these ML classifiers, especially for cases requiring very high accuracy (almost 100%).
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