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Abstract: Hyperspectral image (HSI) classification is a fundamental and challenging problem in
remote sensing and its various applications. However, it is difficult to perfectly classify remotely
sensed hyperspectral data by directly using classification techniques developed in pattern recognition.
This is partially owing to a multitude of noise points and the limited training samples. Based on
multinomial logistic regression (MLR), the local mean-based pseudo nearest neighbor (LMPNN) rule,
and the discontinuity preserving relaxation (DPR) method, in this paper, a semi-supervised method
for HSI classification is proposed. In pre-processing and post-processing, the DPR strategy is adopted
to denoise the original hyperspectral data and improve the classification accuracy, respectively. The
application of two classifiers, MLR and LMPNN, can automatically acquire more labeled samples in
terms of a few labeled instances per class. This is termed the pre-classification procedure. The final
classification result of the HSI is obtained by employing the MLRsub approach. The effectiveness
of the proposal is experimentally evaluated by two real hyperspectral datasets, which are widely
used to test the performance of the HSI classification algorithm. The comparison results using several
competing methods confirm that the proposed method is effective, even for limited training samples.

Keywords: hyperspectral image; semi-supervised classification; multinomial logistic regression; local
mean-based pseudo nearest neighbor; discontinuity preserving relaxation

1. Introduction

Owing to the special advantages of a wide spectral range, high spectral resolution, and
continuous spectral curve, hyperspectral remote-sensing images have been widely applied in earth
observation [1,2]. As a fundamental and challenging problem in remote sensing, hyperspectral image
(HSI) classification and its various applications have attracted increasing attention in recent years.
Many methods have been introduced to classify HSI, attempting to detect a perfect classification
result for a specific HSI. According to whether the class labels of the samples are used in the
classification process, the existing classification approaches are generally partitioned into three
categories: unsupervised/cluster [3,4], supervised [5–7], and semi-supervised [8,9]. Although a
satisfactory classification result can be obtained by the supervised classification method, the acquisition
of labeled samples is laborious and time consuming and also depends on expert knowledge. Contrarily,
sufficient unlabeled samples can be acquired. The unsupervised classification does not require
prior knowledge of the hyperspectral dataset; however, the cluster purity is often not satisfied with
the corresponding absence of the discriminative information. Compared with the unsupervised
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and supervised classifications, semi-supervised classification applies partial labeled samples and
a large number of unlabeled instances, aiming at achieving a better classification effect. The
classification results provided by semi-supervised methods generally have a close relationship to the
size of the labeled samples. A number of studies show that semi-supervised HSI classification is a
powerful and promising technique. Nevertheless, it is still a challenging problem to propose more
powerful semi-supervised methods to classify remotely sensed hyperspectral data in cases of limited
training samples.

Unlike other datasets, the hyperspectral dataset is depicted by both spectral information and
definite spatial information. Tobler’s first law [10] shows that all attribute values on a geographic
surface are related to each other, but closer values are more strongly related than those from farther
away. Tobler’s first law implies that the spatial neighboring pixels in remote-sensing images are likely
to be the same class label. Therefore, it is natural to consider the spectral and spatial information
together in HSI classification. Plenty of spatial–spectral-based classification methods have been
developed in the past decades [11–15].

Hyperspectral data are known to contain plenty of noise points. These noise points can evidently
affect the final classification accuracy. The spectral–spatial technique is also used to reduce noise points
for the HSI pre-processing task or to improve the classification accuracy for an obtained classification
result in post-processing. As a typical application of this technique, probabilistic relaxation (PR) uses
the local relationship among spatially adjacent pixels to correct spectral or spatial distortion. In the
probability sense, PR is applied to exploit the continuity of neighboring labels [16].

Perhaps the most sophisticated PR technology is based on the Markov random fields (MRFs). In
particular, the MRFs have achieved prominent performance on refining the classification results by
characterizing the spatial information [17–21]. For instance, Yu et al. proposed a novel classification
method by integrating an adaptive MRF with a subspace-based support vector machine (SVM)
classifier [17]. The class labels predicted in the pre-classification process were altered through an
adaptive MRF approach. In [18], an adaptive MRF was applied to optimize the classified image
provided by the threshold exponential spectral angle map classifier, which improved the classification
performance markedly. To an extent, it proved that the incorporation of a classifier and spatial
smoothing technique can yield the ideal result. A novel probabilistic label relaxation strategy was
proposed in [22], which combined the evidence of adjacent label assignments to effectively eliminate
label ambiguity. Nevertheless, it is often observed that the effect of using spatial information as
a relaxation is not ideal. On the one hand, it significantly improves the classification accuracy
of smooth image regions. On the other hand, the boundary of the class is blurred by the forced
smoothness. Therefore, a more powerful PR strategy to handle this problem is urgently required.
Wang et al. proposed a novel two-step MRF regularization method [23], which addressed the problem
of over-smoothing at the image boundary areas based on the spatial regularizing methodology of the
MRF. By detecting the discontinuities of a band image in advance, the results could be locally smoothed
without crossing the boundaries by the discontinuity preserving relaxation (DPR) method [24].
More recently, a new relaxation method [16], DPR was introduced to logically smooth the original
hyperspectral image or the classification results, using both spatial and spectral information while
maintaining the discontinuity extracted from the hyperspectral data cube.

Currently, many machine-learning algorithms have been widely used in HSI classification, such
as SVM [25], multinomial logistic regression (MLR) [26–28], k-nearest neighbor (KNN) [29,30], the
local mean-based pseudo nearest neighbor (LMPNN) method [31], and artificial neural networks
(ANNs) [32,33]. Using unlabeled samples actively selected from the hyperspectral dataset, Prabhakar
et al. extended the MLR algorithm to a semi-supervised learning of the posterior class distribution,
promoting classification results with smaller training datasets and less complexity [26]. Based on the
integration of MLR with the subspace projection method, MLRsub was proposed in [27]. It assumes
that the samples in each class could be located approximately into a lower dimensional subspace. The
use of the subspace projection method can effectively avoid the spectral confusion caused by mixed
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pixels [28]. To further enhance the KNN-based classification performance, LMPNN [31] was presented
in 2014, which is based upon the concept of local mean-based k-nearest neighbor rule (LMKNN) [34]
and PNN [35] rules. Additionally, a novel semi-supervised classification approach for hyperspectral
images was introduced by Tan et al. [29]. To further improve the classification accuracy, the authors
combined the KNN and MLR to determine the class labels of the selected unlabeled samples.

For limited training samples, it is typically difficult to provide a satisfactory classification result
for an HSI. Motivated by the work of the classifier combination, a pre-classification technique has
been developed, attempting to address the problem mentioned above. Based on the pre-classification,
relaxation strategy and the MLRsub algorithm, a semi-supervised method for HSI classification
consisting of four steps is proposed in this work.

The primary contributions of this paper are as follows:

1. In pre-processing and post-processing, the DPR strategy combined with the Roberts cross
operator is adopted to denoise the original hyperspectral data and improve the classification
accuracy, respectively.

2. A new classifier combination for the pre-classification process of HSIs is proposed, which
addresses the problem of automatically labeling samples based on a small training set. Two
classifiers, MLRsub and LMPNN, are used together to perform the pre-classification of
automatically predicting more labeled samples in terms of a few labeled instances per class.

3. A novel semi-supervised classification scheme is built by four steps: pre-processing,
pre-classification, classification, and post-processing.

The remainder of this paper is organized as follows. In Section 2, we first briefly introduce the
related classifiers and DPR algorithm and subsequently present the proposed classification method.
Section 3 evaluates the performances of the proposal. Some summarizing remarks and conclusions are
presented in the last section.

2. The Proposed Semi-Supervised Classification Method

We first define the notations used in this study and subsequently introduce the DPR method,
MLRsub, and LMPNN classifiers. Finally, the proposed semi-supervised classification method is
depicted in detail.

Let X = (x1, x2, · · · · · · , xn) be a hyperspectral dataset with n pixels, where xi = (xi1, xi2, . . . . . . , xid)
T

indicates a spectral vector associated with pixel i. y = (y1, y2, · · · · · · , yn) denotes an image of class
labels, yi ∈ {1, 2, . . . . . . , K} assuming that K classes exist in X.

Let N(xi) denote a collection of spatial neighbors of pixel i. We herein adopt the Moore neighbor,
which is defined as follows:

N(xi) =
{

xj
∣∣ |i1 − j1| ≤ 1 or |i2 − j2| ≤ 1

}
(1)

where (i1, i2) and (j1, j2) are the spatial coordinates of pixels i and j, respectively.

2.1. Relaxation Method

Relaxation is a technique that utilizes the local spatial relationship among neighboring pixels
to denoise hyperspectral data and enhance the spatial texture information in pre-processing and
improve classification accuracy in post-processing. The relaxation strategy is in fact a moving window
smoothing technology widely used to reduce noise in a time series. Recently, combinations of SVM and
MFR [36] or MLR and MFR [28] methods have shown outstanding performance in HSI classification.
Although the use of spatial information in the relaxation strategy can effectively refine the classification
result in smooth image areas, it also blurs the boundaries of classes, rendering it difficult to obtain a
better classification. To preserve the advantage and overcome the disadvantage of the method based
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on relaxation, Li et al. [16] proposed a DPR strategy for HSI classification. This method attempted to
accurately preserve the edges of class boundaries while smoothing remotely sensed hyperspectral data.

The DPR strategy can be described as follows.
For a given a hyperspectral dataset X, let P = [p1, · · · · · · , pn] ∈ Rk×n, pi = [pi(1), · · · · · · , pi(k)]

T ,
and pi(j) be the probability of pixel i belonging to the j-th class. Let U = [u1, · · · · · · , un] ∈ Rk×n,
and ui = [ui(1), · · · · · · , ui(k)]

T be the final k-dimensional vector of the probabilities provided by the
relaxation process.

A relaxation strategy will be obtained by solving the following optimization problem:
min

u
(1− γ)||U − P||2 + γ∑

i
∑

xj∈N(xi)

δj
∣∣∣∣uj − ui

∣∣∣∣2
s.t. : ui ≥ 0, 1Tui = 1

(2)

where γ is a parameter balancing the relative impact of both terms in Equation (2) and δj is a value of
the pixel j of the edge image. δ is calculated by Equation (3):

δ = exp− (

d

∑
i=1

sobel (X(i))) (3)

where Sobel () represents the Sobel filter that detects the discontinuities in a band image. X(i) denotes
the i-th band of the original data cube X. More details of this method can be found in [16].

In Equation (2), the first term measures the misfit of the data, and the second term facilitates the
smooth solutions weighted by the parameter δ. When no discontinuity exists between the adjacent
pixels to which it is connected, δ is large. Conversely, when discontinuities exist, δ is small [16].

The Roberts cross operator, initially proposed by Roberts in 1963 [37], is one of the first edge
detectors and is used in image processing for edge detection. The basic idea of the Roberts cross
operator is to approximate the gradient of an image by discrete differentiation, which is realized
through calculating the squared sum of the differences between diagonally adjacent pixels. When
the Roberts cross operator appears on the text, it is simple, easy to compute, and more accurate to
detect an edge location. Considering these merits of the Roberts cross operator, we replace the Sobel
filter with the Roberts cross operator in Equation (3). The experimental results on three hyperspectral
datasets show that this substitution can achieve the ideal classification results.

2.2. Multinomial Logistic Regression (MLR)

Unlike the hard classification method, MLR, a probabilistic classifier suggested by Böhning [38],
is a soft classification technique to calculate the posterior class density p(yi|xi) . It indicates that each
pixel of the HSI belongs to different classes with different probabilities. In fact, the classification result
provided by MLR can more accurately reflect the relationship between pixels and classes.

The MLR classifier is modeled by the following:

p(yi = k|xi, ω) =
exp(ω(k)h (xi))

∑k
j=1 exp (ω(j)h (xi))

(4)

where h(x) = [h1(x), · · · , ht(x)]T is a vector of t fixed functions of the input, which is often
termed as features. ω(k) is the set of logistic regressors for class k that can be obtained by the
LORSAL (logistic regression via variable splitting and augmented Lagrangian algorithm) [39], and
ω = (ω (1)T

, · · · , ω(K−1)T
). LORSAL promotes the sparsity of the weights by a Thikonov regularization

and an L1 weight on the priors.
The function h can use linear or nonlinear functions to handle different problems. In [2,39], the

Gaussian radial basis function kernel was adopted to compute the function h. The kernel technique is
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often used to handle linear inseparability in low-dimensional space in machine learning and to classify
remotely sensed hyperspectral data [2,39]. In this work, we prefer to use the following input function
h(xi) in Equation (4) [27,40]:

h(xi) = [||xi||2, ||xT
i U (1)||

2
, · · · , ||xT

i U (K)||
2
]
T

(5)

where U (j) = {u(j)
1 , · · · , u(j)

r (j) ,} is a set of r (j)—dimensional orthonormal basis vectors for the subspace

associated with class j (r (j) � d).

2.3. Local Mean-Based Pseudo Nearest Neighbor (LMPNN)

As a popular algorithm in machine learning, the KNN rule [41] is a simple and effective
classification method. It yields a classification decision by computing the k-nearest neighbors of
an unlabeled sample and a simple vote principle. However, the classification result of the KNN
classifier is sometimes dependent on the choice of the k value. Furthermore, it does not always provide
an optimal solution for an unbalanced dataset. To handle these issues, a multitude of improvements in
KNN-based approaches have been suggested in recent years, such as the weighted k-nearest neighbor
rule [42], pseudo nearest neighbor rule [35], local mean-based k-nearest neighbor rule [34], and local
mean-based pseudo nearest neighbor [31]. The basic idea behind these methods is to assign a greater
weight to the nearest neighbor or replace real neighbors with pseudo neighbors.

The LMPNN rule can be described by the following steps [31]:
(1) For the unlabeled sample x, search for the k-nearest neighbors from each class of the training

set; xi
1, xi

2, · · · , xi
k denote the k-nearest neighbors selected from the i-th class and are arranged in the

ascending order according to their distances from x.
(2) Compute the local average xi

j of the first j-nearest neighbors of sample x from the i-th class

xi
j =

1
j ∑j

s=1 xi
s. (6)

(3) Assign weight 1/j to the local mean value xi
j (j = 1, 2, . . . , k).

(4) Calculate the distance from the sample x to the i-th class by Equation (7)

d
(

x, xi
)
= d

(
x, xi

1

)
+

1
2

d
(

x, xi
2

)
+ · · ·+ 1

k
d
(

x, xi
k

)
(7)

where d(x, xi
j) denotes the distances from x to xi

j and d
(

x, xi
)

the distance from x to the i-th class.
(5) Determine the class label of sample x. The sample x belongs to the c-th class if the following

is true.
c = arg min

i
d
(

x, xi
)

. (8)

2.4. The Proposed Method

It is known that classification results obtained by semi-supervised approaches generally depend
on the volume of the training set. For limited training samples, certain semi-supervised classification
methods do not always provide satisfactory classification results. Obviously, the acquisition of a
number of labeled samples is difficult and sometimes even impossible.

In this subsection, we suggest a semi-supervised technique for HSI classification based on the
DPR strategy. The proposal will be introduced in following three steps.

Step 1: Data Pre-Processing
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In this step, the DPR strategy is used to denoise hyperspectral data. Unlike the DPR technique
proposed by Li et al. [16], in this study, the Sobel filter is replaced by the Roberts cross operator in
Equation (3). It can be rewritten in the following form:

δ = exp− (∑d
i=1 Roberts (X(i))). (9)

For each band in the dataset X, we use Equation (10) to update it constantly as follows:

x̃ (t+1)
is =

(1− γ)xis + γ ∑xj∈N (xi)
δj x̃

(t)
js

(1− γ) + γ ∑xj∈N (xi)
δj

(s = 1, 2, . . . , d) (10)

where x̃ (t)
is denotes the value of the s-th band of the pixel xi in the t-th iteration.

The update process terminates if Equation (11) is met.

||E (t+1)
s − E (t)

s || < ε, E(t+1)
s =

||x̃(t+1)
∗s − x̃(t)∗s ||
||x̃(t)∗s ||

(11)

where x̃∗s indicates the s-th band image of the HSI and ε is a predetermined threshold.
The experimental results show that the substitution of the edge detection operator can improve

the classification accuracy.

Step 2: Classification

The proposed semi-supervised classification method includes two stages: pre-classification
and classification.

In the pre-classification stage, two classifiers, MLRsub and LMPNN, are used to predict the
class labels of unlabeled pixels using limited training samples per class. Pre-classification can also be
considered as a technique for automatically labeling samples or expanding the training set in terms of
a few labeled instances.

Specifically, for any unlabeled pixel xi, we use the MLRsub classifier and LMPNN classifier
together to obtain its class label provided that pixel xi belongs to the k-th class by the MLRsub
algorithm, denoted as yMLR = k, and the s-th class by the LMPNN method (i.e., yLMPNN = s). If
yMLR = yLMPNN = k, subsuently pixel xi is stamped on the label of the k-th class (i.e., yi = k).
Otherwise, sample xi is placed into a set in which the class labels of all samples are to be further
determined. This procedure is termed pre-classification in our study.

We empirically discovered that it is effective to automatically acquire more labeled samples in
terms of a few labeled instances per class. It is inevitable that some pixels are mislabeled during
pre-classification. Therefore, this procedure is not executed iteratively to avoid more samples
being misclassified.

For samples that have not been labeled during pre-classification, we apply the MLRsub method
again to label them based on those labeled samples obtained in pre-classification along with the initial
training set. Currently, we have obtained the final classification result.

Step 3: Post-Processing

To improve the classification accuracy, it is necessary to reprocess the obtained classification result.
In this step, we employ the DPR strategy introduced in Section 2.1 to correct the class labels of some
misclassified samples.

3. Experimental Results

We conducted some experiments to validate the performance of our proposal. Two airborne
visible/infrared imaging spectrometer sensor (AVIRIS) HSI datasets (i.e., Indian Pines and Salinas)
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were chosen to illustrate our method. As a benchmark, these two datasets are often used to test the
performance of classification algorithms for HSIs. The performance of the proposed algorithm was
also compared with four competing classification techniques.

In our experiments, the initial small-size training sets have been obtained by randomly selecting
5, 10, and 15 samples from each class, respectively. To reduce the deviation of randomly labeling for
the classification result, all experiments were performed over 10 independent trials with a random
choice of the training set. The final result is obtained by the mean value of the result and its standard
deviation. To properly assess the classification results of the HSI, two popular indices, the overall
accuracy (OA) and kappa coefficient (KC), were adopted in this study.

To facilitate the reading of the obtained experimental results, we shall introduce the following
shorthand notations.

PMKM: Pre-processing + MLRsub + KNN + MLRsub.
PMLM: Pre-processing + MLRsub + LMPNN + MLRsub.
PMKMP: Pre-processing + MLRsub + KNN + MLRsub + Post-processing.
PMLMP: Pre-processing + MLRsub + LMPNN + MLRsub + Post-processing.

3.1. Datasets and Classification Results

The Indian Pines image was captured at the Indian Pines test station in northwestern Indiana,
United States of America (USA), in 1992. The scene is composed of crops, forests, and other natural
perennial vegetation. It has 220 successive spectral channels that range from 400 nm to 2500 nm
and 145 pixels by 145 pixels with a spatial resolution of 20 m/pixel. Owing to the atmospheric
water absorption, the spectral bands 104–108, 150–163, and 220 are removed to prevent them from
affecting the classification performance, resulting in 200 available spectral bands. A total of 16 classes
of terrestrial objects are available in the ground-truth map. The false color composition image and
ground truth of the Indian Pines dataset are shown in Figure 1.
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The Salinas dataset was gathered by the AVIRIS sensor over the Salinas Valley in California, USA,
with a geometric resolution of 3.7 m per pixel. The size of the Salinas image is 512 × 217 × 224, where
20 water absorption spectral bands with insufficient information were removed; thus 204 available
spectral bands remained. A total of 16 classes of ground-truth are included in the reference image.
Figure 2 depicts the false-color composite image and the ground-truth image of the Salinas dataset.

These two hyperspectral datasets are available from http://www.ehu.eus/ccwintco/index.php/
Hyperspectral_Remote_Sensing_Scenes.

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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Based on the initial training sets and the proposed method, the classification results on the Indian
Pines and Salinas datasets are reported in Table 1. For Indian Pines dataset, the best classification
accuracy over OA is 91.18% on average, in the case of randomly selecting 15 instances from each
class. In other words, this result is obtained from approximately 2.3% of the total labeled samples.
The classification accuracy of this dataset may not be as high as anticipated because of its serious
data disequilibrium. The perfect classification result on the Salinas dataset has been obtained even if
only 0.15% of the samples are labeled (label 5 samples per class). This fact successfully demonstrates
that the proposal is valid for HSI classification with very small training sets. Table 1 also indicates
that the classification result provided using the LMPNN classifier is better than that achieved by
applying the KNN method of pre-classification. It is noteworthy that the application of post-processing
technology has significantly improved the classification result. The classification accuracy and the
standard deviation of each class in the Indian Pines and Salinas datasets are recorded in Tables 2 and 3,
respectively. In Figure 3, we present the classification map obtained by PMLMP with different numbers
of labeled sample.

Table 1. Classification results of the Indian Pines and Salinas datasets by different methods with
different label proportions.

Dataset Method
5 10 15

OA (%) KC (%) OA (%) KC (%) OA (%) KC (%)

Indian Pines

PMKM 74.85 ± 1.10 71.55 ± 1.43 84.53 ± 1.69 82.48 ± 2.13 88.73 ± 3.99 87.22 ± 4.91
PMLM 75.05 ± 3.57 71.87 ± 4.48 84.57 ± 2.12 82.55 ± 2.67 88.95 ± 1.25 87.48 ± 1.59

PMKMP 76.89 ± 1.36 73.80 ± 1.56 86.45 ± 1.08 84.64 ± 1.36 90.46 ± 4.10 89.17 ± 5.14
PMLMP 77.23 ± 2.85 74.27 ± 3.71 86.69 ± 1.39 84.92 ± 1.72 91.18 ± 2.30 89.98 ± 3.90

Salinas

PMKM 92.16 ± 1.06 91.30 ± 1.28 95.11 ± 5.76 94.58 ± 7.08 96.77 ± 1.29 96.41 ± 1.59
PMLM 95.22 ± 3.65 94.69 ± 4.48 96.02 ± 6.84 95.58 ± 8.45 97.12 ± 2.50 96.80 ± 3.08

PMKMP 93.05 ± 1.68 92.28 ± 2.04 95.90 ± 4.02 95.45 ± 4.93 97.42 ± 5.30 97.13 ± 6.55
PMLMP 96.00 ± 2.98 95.56 ± 3.66 96.82 ± 4.00 96.46 ± 4.99 97.96 ± 3.83 97.74 ± 4.73
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Table 2. Classification accuracy over overall accuracy (OA (%)) and standard deviations for each class in the Indian Pines dataset.

5 10 15

PMKM PMLM PMKMP PMLMP PMKM PMLM PMKMP PMLMP PMKM PMLM PMKMP PMLMP

Alfalfa (46) 93.70 ± 1.90 95.22 ± 2.00 93.48 ± 1.77 92.39 ± 1.85 94.35 ± 2.34 94.35 ± 2.93 94.13 ± 1.47 94.35 ± 2.06 97.61 ± 2.16 96.09 ± 1.71 95.00 ± 2.24 93.91 ± 1.05
Corn-no till (1428) 43.10 ± 10.25 48.40 ± 11.81 45.87 ± 13.45 51.23 ± 12.04 72.25 ± 4.22 68.93 ± 6.29 68.12 ± 10.32 68.93 ± 5.26 76.67 ± 5.45 80.08 ± 5.36 80.86 ± 5.90 84.46 ± 7.66
Corn-min till (830) 60.18 ± 12.57 60.80 ± 13.36 63.00 ± 16.62 68.82 ± 13.69 81.14 ± 8.86 78.88 ± 5.72 85.70 ± 8.58 78.88 ± 5.81 80.48 ± 9.82 83.94 ± 7.43 85.11 ± 8.12 85.16 ± 9.20

Corn (237) 85.15 ± 8.05 75.61 ± 17.69 84.51 ± 8.77 78.99 ± 19.81 83.88 ± 11.39 88.44 ± 9.43 84.94 ± 11.38 88.44 ± 7.78 90.89 ± 4.53 90.55 ± 4.36 90.51 ± 4.85 89.79 ± 6.37
Grass-pasture (483) 75.01 ± 8.56 79.05 ± 9.36 76.87 ± 11.00 73.31 ± 19.42 89.65 ± 3.62 87.74 ± 4.98 91.78 ± 3.85 87.74 ± 4.24 91.16 ± 4.07 89.23 ± 9.05 92.63 ± 3.79 91.93 ± 4.33

Grass-trees (730) 99.74 ± 0.56 99.49 ± 0.50 99.96 ± 0.10 98.59 ± 2.88 99.62 ± 0.64 98.84 ± 2.03 99.82 ± 0.35 98.84 ± 0.59 99.62 ± 0.61 99.71 ± 0.46 99.99 ± 0.00 99.99 ± 0.00
Grass-pasture-mowed

(28) 99.64 ± 1.13 100.00 ± 0.00 98.21 ± 3.86 100.00 ± 0.00 100.00 ± 0.00 98.57 ± 4.52 87.14 ± 16.43 98.57 ± 14.60 99.29 ± 2.26 100.00 ± 0.00 92.50 ± 10.13 94.29 ± 12.42

Hay-windrowed (478) 93.39 ± 3.91 93.77 ± 3.65 95.31 ± 2.64 95.42 ± 3.52 94.85 ± 4.26 92.76 ± 12.51 95.77 ± 3.67 92.76 ± 12.85 96.51 ± 4.81 96.99 ± 3.18 94.21 ± 0.81 98.37 ± 7.93
Oats (20) 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Soybean-no till (972) 78.77 ± 11.50 82.35 ± 8.19 80.94 ± 12.01 83.08 ± 9.77 89.87 ± 7.02 86.77 ± 5.39 91.97 ± 6.61 86.77 ± 4.64 92.12 ± 5.74 91.87 ± 5.16 92.87 ± 5.13 93.55 ± 5.62
Soybean-min till (2455) 75.82 ± 3.87 71.60 ± 5.59 77.30 ± 5.31 73.57 ± 5.33 78.37 ± 4.98 79.97 ± 4.25 82.65 ± 2.62 79.97 ± 5.07 85.62 ± 3.13 85.92 ± 2.96 88.47 ± 3.58 88.21 ± 3.29

Soybean-clean (593) 69.12 ± 8.33 59.98 ± 15.99 66.31 ± 16.11 66.58 ± 7.46 67.93 ± 14.29 80.12 ± 10.21 73.66 ± 14.83 80.12 ± 10.32 87.74 ± 7.74 82.56 ± 9.52 83.93 ± 6.89 84.65 ± 10.30
Wheat (205) 99.27 ± 0.81 99.32 ± 0.57 99.66 ± 0.33 99.61 ± 0.20 99.46 ± 0.96 99.46 ± 0.74 99.80 ± 0.24 99.46 ± 0.20 99.80 ± 0.35 99.46 ± 0.71 99.66 ± 0.20 99.61 ± 0.24

Woods (1265) 90.84 ± 10.19 92.51 ± 4.89 94.33 ± 7.55 94.96 ± 5.29 98.09 ± 3.12 97.64 ± 3.70 97.95 ± 3.28 97.64 ± 3.10 97.33 ± 2.82 96.93 ± 2.81 98.58 ± 2.17 98.63 ± 2.17
Buildings-Grass-Trees-

Drives (386) 73.76 ± 13.78 79.72 ± 7.94 75.67 ± 14.74 79.27 ± 13.67 91.01 ± 6.32 90.78 ± 7.99 95.13 ± 7.83 90.78 ± 8.95 94.84 ± 4.16 97.98 ± 1.02 95.39 ± 4.17 97.93 ± 6.57

Stone-Steel-Towers (93) 96.24 ± 2.83 93.87 ± 4.97 95.16 ± 4.19 91.72 ± 4.51 96.67 ± 3.53 94.84 ± 2.57 93.01 ± 5.27 94.84 ± 4.18 95.59 ± 2.97 93.66 ± 4.10 93.44 ± 3.50 92.69 ± 3.77

Table 3. Classification accuracy over OA (%) and its standard deviations for each class in the Salinas dataset.

5 10 15

PMKM PMLM PMKMP PMLMP PMKM PMLM PMKMP PMLMP PMKM PMLM PMKMP PMLMP

Brocoli_green_weeds_1
(2009) 99.67 ± 0.56 99.27 ± 1.87 99.78 ± 0.44 99.40 ± 1.75 99.76 ± 0.28 99.54 ± 0.69 99.93 ± 0.22 99.69 ± 0.51 99.72 ± 0.42 99.79 ± 0.37 99.67 ± 0.48 99.92 ± 0.26

Brocoli_green_weeds_2
(3726) 99.90 ± 0.17 99.81 ± 0.30 100.00 ± 0.00 99.97 ± 0.00 99.82 ± 0.44 99.92 ± 0.14 99.97 ± 0.10 100.00 ± 0.00 99.98 ± 0.00 99.92 ± 0.17 100.00 ± 0.00 99.99 ± 0.00

Fallow (1976) 93.84 ± 9.67 97.02 ± 3.54 95.29 ± 9.86 98.07 ± 3.02 99.89 ± 0.22 99.35 ± 1.15 99.61 ± 1.20 99.72 ± 0.57 99.89 ± 0.22 99.92 ± 0.14 99.98 ± 0.00 99.98 ± 0.00
Fallow-rough-plow (1394) 98.27 ± 0.83 97.70 ± 1.71 98.21 ± 1.20 97.67 ± 2.52 98.42 ± 0.32 98.01 ± 0.63 98.68 ± 0.72 97.96 ± 1.16 97.77 ± 0.84 98.14 ± 0.54 97.71 ± 1.47 98.12 ± 1.01

Fallow-smooth (2678) 95.81 ± 4.48 96.52 ± 2.36 97.68 ± 3.66 97.45 ± 2.03 97.98 ± 1.08 98.85 ± 1.21 99.01 ± 0.82 99.19 ± 0.83 98.69 ± 0.77 97.66 ± 1.66 99.28 ± 0.47 98.41 ± 1.57
Stubble (3959) 99.74 ± 0.22 99.78 ± 0.20 99.96 ± 0.00 99.96 ± 0.00 99.78 ± 0.24 99.73 ± 0.24 99.97 ± 0.00 99.96 ± 0.00 99.88 ± 0.00 99.86 ± 0.10 99.96 ± 0.00 99.97 ± 0.00
Celery (3579) 99.79 ± 0.10 99.80 ± 0.10 99.94 ± 0.00 99.96 ± 0.00 99.84 ± 0.10 99.80 ± 0.10 99.95 ± 0.00 99.95 ± 0.00 99.82 ± 0.14 99.81 ± 0.14 99.95 ± 0.00 99.94 ± 0.00

Grapes-untrained (11271) 78.22 ± 8.09 86.79 ± 2.82 79.95 ± 8.33 88.78 ± 2.48 82.72 ± 3.00 87.91 ± 1.29 85.02 ± 2.89 90.20 ± 0.81 89.55 ± 1.62 84.54 ± 5.18 91.46 ± 1.16 86.69 ± 5.73
Soil-vineyard-develop

(6203) 99.49 ± 0.74 99.65 ± 0.67 99.76 ± 0.55 99.84 ± 0.39 99.99 ± 0.00 99.95 ± 0.14 100.00 ± 0.00 99.99 ± 0.00 99.99 ± 0.00 99.98 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Corn-senesced-green-
weeds (3278) 85.61 ± 5.28 89.99 ± 2.94 87.30 ± 5.68 91.35 ± 2.74 92.30 ± 3.68 92.72 ± 2.51 94.29 ± 2.79 93.49 ± 2.25 94.47 ± 1.65 92.46 ± 6.59 94.96 ± 1.60 92.13 ± 7.74

Lettuce_romaine_4weeks
(1068) 99.30 ± 0.62 99.56 ± 0.56 99.65 ± 0.90 99.78 ± 0.44 99.12 ± 0.88 99.64 ± 0.35 99.50 ± 0.86 99.87 ± 0.35 98.90 ± 1.15 99.54 ± 0.69 99.77 ± 0.36 100 ± 0.00

Lettuce_romaine_5weeks
(1927) 97.37 ± 4.58 98.83 ± 2.14 97.25 ± 5.06 98.94 ± 1.83 98.52 ± 2.32 99.69 ± 0.33 99.24 ± 1.50 99.77 ± 0.26 99.75 ± 0.37 99.91 ± 0.14 99.68 ± 0.37 99.83 ± 0.24

Lettuce_romaine_6weeks
(916) 98.84 ± 1.36 97.67 ± 1.79 98.12 ± 1.85 96.62 ± 2.32 99.34 ± 0.47 99.04 ± 0.96 98.40 ± 0.99 98.22 ± 1.46 99.42 ± 0.49 98.89 ± 1.14 98.58 ± 1.24 98.72 ± 1.34

Lettuce_romaine_7weeks
(1070) 97.83 ± 1.27 97.10 ± 3.47 97.54 ± 1.98 96.02 ± 4.97 98.63 ± 0.63 98.30 ± 1.10 97.88 ± 1.18 98.57 ± 1.11 98.47 ± 0.89 98.76 ± 0.89 98.11 ± 1.32 97.84 ± 2.33

Vineyard-untrained (7268) 89.43 ± 7.66 94.72 ± 2.14 90.83 ± 7.50 95.72 ± 1.93 96.62 ± 2.54 94.94 ± 1.85 97.16 ± 2.07 96.11 ± 2.22 97.26 ± 1.66 95.15 ± 5.37 98.16 ± 1.76 96.12 ± 4.9
Vineyard-vertical-trellis

(1807) 92.40 ± 5.64 96.44 ± 3.59 93.56 ± 5.19 97.60 ± 3.07 98.17 ± 1.09 98.57 ± 0.98 98.97 ± 0.85 99.13 ± 0.71 97.75 ± 3.12 97.20 ± 2.94 98.38 ± 2.86 98.38 ± 2.6
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Figure 3. Discontinuity map and classification map obtained by pre-processing + MLRsub + the local
mean-based pseudo nearest neighbor (LMPNN) rule + multinomial logistic regression with subspace
projection (MLRsub) + post-processing (PMLMP) with different numbers of labeled samples. The
above row is for the Indian Pines dataset and the below for the Salinas dataset. (a) Discontinuity map.
(b–d) classification map with 5, 10, and 15 labeled samples per class, respectively.

3.2. Comparative Tests

To objectively compare our method with other competitive approaches, it is necessary to select
the same dataset, labeling proportion, and methods related to the MLR technique. Therefore, we
have performed comparative experiments on the Indian Pines and Salinas datasets for the case of
randomly selecting 15 instances from each class. Table 4 shows the comparison results provided by
MLR, MLR-MLL (multilevel logistic prior) [43], ppMLR, prMLRpr [16] approaches, and the proposed
method. For the Indian Pines dataset, no significant change is shown in the classification accuracy
obtained by ppMLRpr and PMLMP. A similar classification result (OA = 90.44%) has also been achieved
by the MLR + KNN + SNI method [2]. However, for the Salinas dataset, the method we proposed
provides a perfect classification result. The classification accuracy of this study is approximately 4%
higher than that of the ppMLRpr algorithm. Tables 1 and 4 show that the results obtained by the
PMLM and PMLMP techniques are still higher than those acquired by the ppMLRpr method, even
for the random selection of five samples per category. This fact fully demonstrates the validity of the
proposed method for remote-sensing data classification, even for the case of a small sample set.

Table 5 displays the superiority of using the Roberts cross operator over the Sobel filter in the
proposed algorithm. For the random selection of 15 samples per class, the classification accuracies
on both datasets have improved by at least 1%. This explains, to some extent, the rationality of the
replacement scheme in pre-processing and post-processing.
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Table 4. Comparison results of several methods on two hyperspectral datasets.

Method
Indian Pine Salinas

OA (%) KC (%) OA (%) KC (%)

MLR 64.30 ± 2.29 60.03 ± 2.45 85.28 ± 1.51 83.67 ± 1.66
MLR-MLL 75.09 ± 2.86 72.03 ± 3.10 89.02 ± 6.54 87.80 ± 7.28

ppMLR 88.36 ± 1.67 86.88 ± 1.86 93.30 ± 1.70 92.56 ± 1.89
ppMLRpr 91.05 ± 1.87 89.87 ± 2.09 93.79 ± 4.46 93.11 ± 4.91

PMKM 88.73 ± 3.99 87.22 ± 4.91 96.77 ± 1.29 96.41 ± 1.59
PMLM 88.95 ± 1.25 87.48 ± 1.59 97.12 ± 2.50 96.80 ± 3.08

PMKMP 90.46 ± 4.10 89.17 ± 5.14 97.42 ± 5.30 97.13 ± 6.55
PMLMP 91.18 ± 2.30 89.98 ± 3.90 97.96 ± 3.83 97.74 ± 4.73

Table 5. Comparison results of using the Roberts cross operator and Sobel filter in our proposal.

Method Operator
Indian Pine Salinas

OA (%) KC (%) OA (%) KC (%)

PMKM
Sobel 85.15 ± 0.81 83.23 ± 0.96 95.70 ± 0.84 95.23 ± 1.03

Roberts 88.73 ± 2.00 87.22 ± 2.46 96.77 ± 0.65 96.41 ± 0.80

PMKMP
Sobel 86.95 ± 0.49 85.23 ± 0.59 96.60 ± 3.55 96.22 ± 4.39

Roberts 90.46 ± 2.05 89.17 ± 2.57 97.42 ± 2.65 97.13 ± 3.28

PMLM
Sobel 84.74 ± 0.77 82.78 ± 0.93 96.04 ± 1.25 95.60 ± 1.54

Roberts 88.95 ± 0.63 87.48 ± 0.80 97.12 ± 1.25 96.80 ± 1.54

PMLMP
Sobel 86.33 ± 0.84 84.54 ± 1.02 96.90 ± 0.83 96.56 ± 1.00

Roberts 91.18 ± 1.15 89.98 ± 1.95 97.96 ± 1.92 97.74 ± 2.37

3.3. Parameter Analysis

It is arduous to select the optimal parameter value in the classification algorithm. Our experience
shows that the classification result generally depends on the selection of the parameter value. Figure 4
reflects the correlation between the classification result and parameter γ used in the relaxation strategy.
The classification accuracy becomes increasingly better with the increase in γ. The best classification
result is achieved with γ = 0.9, which is consistent with Li’s selection [16]. This shows that the selection
of parameter γ is independent of the selection of the operators. Parameter γ = 1 means that the
boundary operator has complete control while the smoothness is ignored. Figure 3a shows that the use
of the boundary operator cannot determine all the boundaries accurately; therefore, the classification
accuracy is reduced.
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Generally, the choice of the k value has a direct effect on the classification result provided by
the LMPNN classifier or algorithms related to this classifier. To achieve the ideal classification result,
it is clear that different k values need to be prespecified for different datasets. Figure 5 shows the
relationship between the classification accuracy and k value in two datasets. Although the classification
result has a slight change with the increase in k, we can still obtain the best result. Thus, in our
algorithm, k is 2 for the Indian Pines dataset and 3 for the Salinas dataset.
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4. Conclusions

In this study, we developed a novel semi-supervised method for HSI classification based
on the DPR strategy and pre-classification technique. Using the DPR strategy in pre-processing
and post-processing achieves the purpose of denoising and improving the classification accuracy,
respectively. The pre-classification technique is aimed to address the problem of limited training
samples in a semi-supervised classification. Our experimental results using the Indian Pines and
Salinas datasets show that in the DPR strategy, the substitution of the Roberts cross operator with
the Sobel filter can yield better classification results. The comparative test results show that the
proposed method is superior to several existing methods. In particular, the proposal can provide
perfect classification results for limited training samples.
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