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Abstract: Location-based services for smartphones are becoming more and more popular. The core
of location-based services is how to estimate a user’s location. An INS/floor-plan indoor localization
system, using the Firefly Particle Filter (FPF), is proposed to estimate a user’s location. INS includes
an attitude angle module, a step length module and a step counting module. In the step length
module, we propose a hybrid step length model. The proposed step length algorithm reasonably
calculates a user’s step length. Because of sensor deviation, non-orthogonality and the user’s jitter,
the main bottleneck for INS is that the error grows over time. To reduce the cumulative error, we
design cascade filters including the Kalman Filter (KF) and FPF. To a certain extent, KF reduces
velocity error and heading drift. On the other hand, the firefly algorithm is used to solve the particle
impoverishment problem. Considering that a user may not cross an obstacle, the proposed particle
filter is proposed to improve positioning performance. Results show that the average positioning
error in walking experiments is 2.14 m.

Keywords: indoor localization system; INS; floor plan; KF; FPF

1. Introduction

Location services using smartphones have attracted more and more attention in recent years.
How to estimate the location of a user is the core of a location service. Satellite navigation systems
provide reliable outdoor positioning. Due to the obstruction of obstacles, such as walls, satellite signals
are severely degraded in an indoor environment, leading to unreliable indoor positioning that relies on
satellite signals. With smartphone sensors, some indoor positioning technologies have received
the endorsement of many scholars [1–4]. Unlike mature outdoor satellite positioning schemes,
indoor positioning techniques, using smartphones, cannot provide real-time, long-term meter-level
positioning accuracy.

Using fingerprints for indoor positioning is a popular method [5–8]. Commonly-used fingerprints
include magnetic fields and radio frequency signals (e.g., WiFi, Bluetooth, radio frequency identification).
In the off-line phase, a surveyor needs to collect the fingerprint signals of a predefined trajectory in
advance. To build a position fingerprint database, a constant speed assumption is necessary. In the online
phase, the position of a user is estimated by calculating the similarity between the measured signals and
the fingerprint in the database. Single-point matching [9] and sequence matching [10] are commonly-used
techniques for computing two sequence similarities. Different positioning accuracy depends on different
positioning environments, sensors and testers. RADAR [11] obtained a positioning accuracy of 2–5 m
on the second floor of a three-story building. WLS [10] obtained a positioning accuracy of 2.03 m under
calling, dangling, handheld and pocket gestures. MaLoc [3] obtained a positioning accuracy of 1–2 m in
four scenes (hall, conference, corridor and library). The premise of fingerprint matching is that the signal
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is affected by the spatial position, resulting in different signal strengths at different positions. Taking into
account that the changes in the indoor environment have a great impact on fingerprint positioning,
researchers need to update the fingerprint database within a certain period of time. Another bottleneck
is that fingerprint matching costs excessive computation. Limited smartphone battery power poses a
challenge for continuous positioning over an extended period.

Unlike for fingerprint matching, INS is less affected by the environment. INS depends on an
accelerometer and a gyroscope to collect a user’s data. The user’s position is estimated by integrating
acceleration and angular velocity [12]. Considering the relatively inexpensive sensors of smartphones,
direction drift is the biggest obstacle to the development of INS. Zheng et al. [12,13] designed KF
to estimate vertical velocity error when zero velocity update was detected. To improve indoor
positioning accuracy, Yu et al. [14] combined the two-layer KF/auxiliary Particle Filter (PF) with a
map. In an auxiliary PF technique, particle weights are set to zero when the particles cross the wall.
Zero-weighted particles reduce the diversity of particles and easily cause a reduction in the number
of particles. To increase the diversity of particles, a Firefly Algorithm (FA) [15] is integrated into PF.
FA shows that fireflies with high brightness attract fireflies with low brightness. By attracting low light
fireflies, they move to high brightness fireflies. Combined with a floor plan, an INS/floor-plan indoor
localization system using FPF is proposed.

Compared with a fingerprint matching algorithm, our system does not need to construct the
fingerprint database in advance. Our system is robust to changes in the environment. Likewise,
the computational burden is relatively small, thereby saving a limited amount of phone power.
In general, the main innovation points are as follows:

(1) The horizontal displacement in a smartphone is estimated by using a pure INS algorithm
without using a foot-mounted attachment. Meanwhile, the system does not require the installation of
infrastructure, greatly reducing the time and economic costs of indoor positioning systems.

(2) FA is used to modify the crossing-wall particles, and the improved particle filter (FPF) is
presented to improve the indoor positioning accuracy.

(3) Using handheld motion gesture, we performed the walking experiments in three scenarios at
a local university. An average positioning accuracy of 2.14 m was obtained.

The remainder of this paper is organized as follows: Section 2 introduces related work. Section 3
describes the system model in detail. Section 4 discusses the walking experiments to test different
scenes. Section 5 presents the conclusion and future work.

2. Related Work

Many scholars have used inertial sensors for indoor positioning for many years [16,17]. By integrating
the acceleration and angular velocity of the inertial sensor, the position of a pedestrian is obtained.
As indicated by Foxlin et al. [18], to correct navigation errors, the NavShoe system used a zero velocity
update as a pseudo-measurement integrated into the extended KF. The NavShoe system is suitable only
for the inertial sensor module tied to the shoe. To accurately estimate the location of a user, Zhang et al. [19]
designed an inertial pedestrian navigation system, including dead reckoning and device pose recognition
algorithms. Because inertial sensor drift is not completely eliminated, the navigation system slowly
diverges over a lengthy navigation period. According to Borenstein et al. [20], when a user must be located
in a rectangular-shaped building, the user’s heading is divided into four main directions. A heuristic drift
elimination system, although only for some special shapes of indoor pedestrian positioning, gradually
adjusts the direction to the closest dominant directions. In [21], an improved heuristic drift elimination
with magnetically-assisted dominant headings was used to reduce the direction drift. Considering
the interference of the complex indoor environment to magnetic field readings, many scholars do not
recommend the use of magnetic field correction direction.

Combined with the fingerprint, the cumulative error of the inertial sensor is effectively
reduced [22,23]. Using the magnetometer of a smartphone and an inertial sensor, a practical magnetic
fingerprinting algorithm was used to improve indoor localization accuracy [24]. Some improved
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techniques for the motion model, the measurement model and the resampling model were designed
to minimize localization errors. Experimental results show that the localization system achieved an
average error of 1–3 m in a large building. In an integrated system, including WiFi fingerprinting
positioning and pedestrian dead-reckoning, Chen et al. [25] used an unscented KF algorithm and
an improved k-mean clustering algorithm to improve the indoor positioning performance and
reduce the cost time. The use of a fingerprint database requires two prerequisites: first, fingerprints
need to be collected in advance; second, the database needs to be updated regularly, which adds
excessive maintenance costs. In [26], a fusion technique that integrates map information, pedestrian
dead-reckoning and WiFi fingerprinting localization was used to locate the smartphone user. The WiFi
signal can correct the heading drift of the inertial navigation system. However, the WiFi signal
fluctuates over time, which increases the positioning error. On the other hand, the number and
distribution of the signal access points have a large impact on positioning accuracy. The cost of
installing complex infrastructure is also a barrier to large-scale WiFi business.

With pedestrians unable to cross obstacles (e.g., walls, seats), indoor maps can be used to limit
direction drift. To reduce sensor drift, Tian et al. [27] proposed, based on PF, a hybrid indoor positioning
system combined with map matching. When particles crossed the wall, their weights were set
to zero. Through a resampling process, particles that crossed the wall did not participate in the
next generation of particles. Similar particle weight processing methods are found in [14,28,29].
To keep the total number of particles constant, Pinchin et al. [30] proposed to resample multiple
particles without crossing the wall. Another way, according to Li et al. [31], is that particles that cross
the wall are generated near the living particles. Using map constraints, particles are divided into
crossing-wall particles and non-crossing-wall particles. Crossing-wall particles do not participate in
the next generation of particles, which reduces the diversity of particles and is prone to generate the
particle impoverishment problem.

Yang et al. [32] designed FA to solve multi-objective nonlinear problems. Gao et al. [33] used FA to
track an arbitrary target in various challenging conditions. Experimental results show that, regarding
target tracking, FA is superior to PF and a particle swarm optimization algorithm. Based on a more
in-depth study of FA, Gao et al. [34] used an FA-based PF method for visual tracking and, to mitigate
the particle impoverishment problem, used FA to increase the diversity of particles. So far, FA is used
mainly in the field of target tracking and multi-objective optimization.

Inspired by the above work, we propose FPF for an INS/floor-plan indoor localization system.
Combined with a floor plan, an improved firefly operation is designed to move low-weight particles to
high-weight particles. In addition, a novel particle weight updating algorithm is designed. Finally, the
indoor localization system performance is greatly improved.

3. System Model

As shown in Figure 1, an INS module and an FPF module compose the indoor positioning system.
In an INS module, angular velocity is used to estimate the user’s gesture through a quaternion vector
and a direction cosine matrix. Vertical acceleration is extracted from the acceleration and gravitational
acceleration. If zero vertical velocity is detected, we construct KF using a pseudo-observed value
with zero vertical velocity and zero change in heading. The estimated error is used to compensate
for the hybrid step length and heading angle. Dead-reckoning is often used to calculate the user’s
position. In an FPF module, heading angle and step length are used to construct a PF motion model.
The floor plan in the database is designed to construct the measurement model. In the resampling
model, the floor plan is designed to detect the effectiveness of the particles. If the particles cross the
obstacle, FA is used to move particles that have crossed an obstacle to particles that have not crossed
an obstacle. Subsequently, the particle weights are updated based on an exponential function. Finally,
FPF is used to estimate the user’s position.
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Figure 1. System model.

3.1. INS for an Indoor Positioning System

INS is composed of three parts: attitude angle estimation, a hybrid step length module and a step
counting module. We will introduce these three modules in detail.

3.1.1. Attitude Angle Estimation

The attitude of the smartphone is usually estimated using gyroscope readings. The main
techniques include Direct Cosine Matrix (DCM), quaternion and Euler angle. We update the quaternion
vector q = [q1, q2, q3, q4] using the angular rate measurements from gyroscope readings. After that, we
use the update quaternion to get the attitude of the navigation system in terms of Euler angle. In [35],
the relationship between DCM and quaternion was expressed as Equation (1).

Cn
b =

 q2
1 − q2

2 − q2
3 + q2

4 2q1q2 − 2q3q4 2q1q3 + 2q2q4

2q1q2 + 2q3q4 −q2
1 + q2

2 − q2
3 + q2

4 2q2q3 − 2q1q4

2q1q3 − 2q2q4 2q2q3 + 2q1q4 −q2
1 − q2

2 + q2
3 + q2

4

 (1)

The attitude angle (θ, φ, ψ) in terms of DCM can be calculated as follows [35]:

θ = tan−1 −Cn
b (3, 1)√

(Cn
b (3, 2))2 + (Cn

b (3, 3))2

φ = tan−1 Cn
b (3, 2)

Cn
b (3, 3)

(2)

ψ = tan−1 Cn
b (2, 1)

Cn
b (1, 1)

where θ, φ and ψ are the pitch, roll and yaw from the smartphone, respectively.

3.1.2. Hybrid Step Length Module

A simple strategy is to assume that a user’s step length is a constant when walking. However,
this is not practical. Different users have different step lengths. Even the step length of the same user
changes over time. The triangle model [10] is designed to calculate the step length. L represents the
height of the smartphone from the ground when the pedestrian is stationary, as shown in Figure 2.
(L− H) represents the height of the smartphone from the ground when the pedestrian is walking.
The vertical displacement of the smartphone is H, which is calculated as follows:

H =
∫ t2

t1

∫ t2

t1

azdtdt (3)

where t1 and t2 represent the start and end times of each step; az is the vertical acceleration. According
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to the Pythagorean theorem, the step length is calculated as follows:

SLtri(k) = 2
√

L2 − (L− H)2 (4)

Forward

Vertical

Lateral

L-H
L

SL/2

H

Figure 2. Step length model.

The main drawback of the triangle model is that the double integral easily enlarges the error of the
step length. Another drawback is that the triangle model does not take into account the influence of
the walking frequency on the step length. Taking into account the influence of the walking frequency
and the acceleration variance, the step length based on training model is calculated as follows:

SLtra(k) = α · f + βv + γ (5)

f =
1

t(k)− t(k− 1)
, v =

t(k)

∑
n=t(k−1)

(an − a)2

Na
(6)

where α, β and γ are weighting parameters for step length estimation. f denotes the walking frequency.
a and a denote acceleration and the mean value, respectively.

Different step length models contain errors due to the user’s mobility and sensing capability. It is
very important to determine the appropriate step length in order to improve the positioning accuracy.
Therefore, we establish a new algorithm that uses two different measurements to find a reasonable
step length for a user. The core idea of the algorithm is to select the appropriate step length based
on the correlation of the two step length models and the fluctuation of the step length of a triangular
model. The proposed algorithm is expressed as follows:

SL(k) =


ω123 ∗ (ω1 ∗ SLtri(k) + ω2 ∗ SLtra(k) + ω3 ∗ SL(k− 1)) SLcor

∆ ≤ SLcor
τ , SLstep

∆ ≤ SLstep
τ

ω12 ∗ (ω1 ∗ SLtri(k) + ω2 ∗ SLtra(k)) SLcor
∆ ≤ SLcor

τ , SLstep
∆ > SLstep

τ

SL(k− 1) SLcor
∆ > SLcor

τ , SLstep
∆ ≤ SLstep

τ

ω23 ∗ (ω2 ∗ SLtra(k) + ω3 ∗ SL(k− 1)) SLcor
∆ > SLcor

τ , SLstep
∆ > SLstep

τ

(7)

where:

ω123 = (ω1 + ω2 + ω3)
−1

ω12 = (ω1 + ω2)
−1

ω23 = (ω2 + ω3)
−1

SLcor
∆ = |SLtri(k)− SLtra(k)|

SLstep
∆ = |SLtri(k)− SLtra(k− 1)|

(8)

Note that ω1, ω2 and ω3 represent weighting factors on SLtri, SLtra and SL, respectively.
The thresholds SLcor

τ and SLstep
τ are designed to determine the correlation SLcor

∆ and variation SLstep
∆ ,

respectively. Figure 3 shows the cumulative distribution function (CDF) of positioning results with
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different step length models. The improved step length algorithm combines the advantages of different
step length models and reasonably uses the triangular model and training model in different stages.
Therefore, the improved step length algorithm is obviously superior to the other two step length models.
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Figure 3. Step length model.

3.1.3. Step Counting Module

When a user walks, vertical acceleration has a certain periodicity. The steps are counted by
detecting the peak of the vertical acceleration. Two peaks are taken as a step. Vertical acceleration is
calculated as follows:

az = −
(a− g) · g
|g| (9)

where a and g represent acceleration and gravitational acceleration, respectively. When a vertical
acceleration is the maximum in the local area, we regard it as a peak. One problem is that, due to noise,
there are many false peaks, which lead to overload statistics. A variance threshold is used to remove
false peaks. Therefore, two detection conditions, defined as follows, are presented to improve the
performance of the step counting model:

R1(k) =

{
1 az(k) > az(k− 1) & az(k) > az(k + 1)
0 others

(10)

R2(k) =

{
1 az_var(k) > THD
0 others

(11)

where az(k) and az_var(k) denote the vertical acceleration and the vertical acceleration variance at time k,
respectively. THD is a threshold. If both detection results are “1”, we believe that the real peak is detected.

3.2. KF for Indoor Positioning Systems

KF has been successfully applied in indoor localization systems to improve positioning
accuracy [12,13,36]. In a handheld smartphone positioning system, KF is often used to estimate
the vertical velocity error [12]. When zero vertical velocity is detected, pseudo-observations are used
to construct a KF. A nine-element error state vector is defined as:

δXk = [rz, vz, roll, pitch, yaw, εvz , εroll , εpitch, εyaw]
T
k (12)

where rz, vz represent the vertical displacement and the vertical velocity, respectively; roll, pitch, yaw
denote the user’s attitude angle; εvz represents the bias for the vertical velocity; εroll , εpitch, εyaw

represent the bias for the attitude angle.
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During a user’s walking, the inertial sensors collect the user’s acceleration and angular velocity
at a predetermined sampling frequency. The motion equation for the inertial sensor error model is
constructed as follows [37]:

δXk = Fk−1δXk−1 + ωk−1 (13)

where δXk−1 is the system state error vector at time k− 1. ωk−1 represents the transition noise vector
with covariance matrix Qk = E(ωkωT

k ). The state transition matrix Fk−1 is calculated as follows:

Fck−1 =


0 1 O(1, :) 0 O(1, :)
0 0 St(3, :) 1 O(1, :)

O(:, 1) O(:, 1) O O(:, 1) −Rb2t
0 0 O(1, :) 0 O(1, :)

O(:, 1) O(:, 1) O O(:, 1) O

 (14)

Fk−1 = eye(size(Fck−1)) + Ts× Fck−1 (15)

where Rb2t is the rotation matrix from the body frame to the navigation frame. O is the 3× 3 zero
element matrix. Ts is the sampling interval. The eye(n) function returns an n-by-n identity matrix
with “ones” on the main diagonal and “zeros” elsewhere. St denotes the anti-symmetric matrix of the
specific force vector, as expressed by Equation (16).

St =

 0 −az ay

az 0 −ax

−ay ax 0

 (16)

where [ax, ay, az] denotes the acceleration in the navigation frame.
In the process of walking, when a smartphone is at the highest or lowest point in the vertical

direction, a moving platform is stationary relative to the Earth. Therefore, the vertical velocity and the
change of direction should be zero. If zero vertical velocity is detected, the measurement equation for
the inertial sensor error model is constructed as follows [29]:

δzk = HkδXk + υk (17)

where υk is the measurement noise vector with covariance matrix Rk = E(υkυT
k ). The observation

matrix Hk is defined as:

Hk =

(
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0

)
(18)

The KF calculation process consists of two parts: time update and measurement update. The time
update begins when the inertial sensors collect acceleration and angular velocity. The measurement
update is triggered when the zero vertical velocity is detected; otherwise, the measurement update
does nothing. To improve localization accuracy, KF is applied to estimate the inertial sensor error.
The calculation sequence for KF is shown as Algorithm 1.

3.3. FPF for Indoor Positioning Systems

PF is independent of the system model, which is used for a variety of non-linear and non-Gaussian
models. PF plays an important role in many fields [38–40], such as pedestrian tracking, robot navigation
and process monitoring. The main bottleneck of PF is the particle impoverishment problem, caused by
a reduction in particles. Increasing the number of particles is one way to solve this problem. However,
the computational complexity is also increased significantly. For an INS/floor-plan indoor localization
system, too many crossing-obstacle particles fail to estimate the real location of a user. FA points out that
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high brightness fireflies attract the low brightness fireflies. With FA as an inspiration, the main idea of this
paper is to move crossing-obstacle particles to non-crossing-obstacle particles.

Algorithm 1 KF.

Input: Acceleration and angular velocity from the inertial sensor
1. Extract the vertical acceleration.
2. Detect zero vertical velocity point.
3. Loop KF
4. Use estimated sensor error to compensate measurements.
5. Update the quaternion based on the angular velocity.
6. Use the update quaternion to calculate the attitude of the navigation system.
7. Update the state transition matrix.
8. Calculate KF gain when zero vertical velocity is detected.
9. Update the filter state covariance matrix.
10. End KF
11. Calculate the step length.
12. Calculate a user’s position using dead-reckoning.

3.3.1. The Basic Principle of PF

The conventional PF system is defined as [40]:

xk = f (xk−1, ωk)

yk = h(xk, υk)
(19)

where f (.) and h(.) denote the known state and measurement functions, respectively.
Let x0:k = {x0, ..., xk} and y1:k = {y1, ..., yk} represent the state sequence and observation

sequence, respectively. In PF, the key problem to be solved is the posterior density function.
To solve this problem, Park et al. [41] proposed the following two popular choices: posterior function
q(xk|xk−1, yk) = p(xk|xk−1, yk) and prior function q(xk|xk−1, yk) = p(xk|xk−1). For a nonlinear system,
it is difficult to solve the analytical solution of a posterior distribution for PF. An effective method is
to use an approximate solution instead of an analytic solution. We use a large number of particles
to approximate posterior distribution. The recurrence formula for importance weight from each
generation of particle is calculated as follows:

wi
k =

p(x0:k|y1:k)

q(x0:k|y1:k)
∝ wi

k−1
p(yk|xi

k)p(xi
k|x

i
k−1)

q(xi
k|x

i
0:k−1, y1:k)

(20)

wi
k is normalized to w̃i

k. Therefore, the posterior distribution p(x0:k|y1:k) is approximately calculated as:

p(x0:k|y1:k) ≈
N

∑
i=1

w̃i
kδ(x0:k − xi

0:k) (21)

3.3.2. Motion Model

Because of sensor bias, non-orthogonality and temperature drift, heading drift cannot be avoided.
KF reduces a part of the error when zero vertical velocity is detected. However, the positioning error
still accumulates over time without boundaries. The step length and direction for a user, which include
noise during walking, satisfy the Gaussian distribution with zero mean. Step length and direction are
designed as follows: {

θ̂(k) = θ(k) + Gθ

ŜL(k) = SL(k) + GSL
(22)
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where θ(k) and SL(k) represent the direction and step length at time k, respectively. θ̂(k) and ŜL(k)
represent the estimated direction and step length at time k, respectively. Gθ and GSL represent Gaussian
noise. According to the previous position, the current position of a user is recursively calculated as follows:{

xx(k + 1) = xx(k) + ŜL(k) ∗ sin(θ̂(k))

yy(k + 1) = yy(k) + ŜL(k) ∗ cos(θ̂(k))
(23)

where [xx(k), yy(k)] denotes a user’s estimated position at time k.

3.3.3. Measurement Model

Because when users walk indoors, it is impossible to cross obstacles, a floor plan is used to check
whether the particles, which represent the location of a user, are effective. When particles do not
cross an obstacle, we think the particles are effective and have high weights; if they cross an obstacle,
the particles are invalid and have low weights.

3.3.4. Resampling Model

Based on the principle of particle resampling, particles with high weights have high sampling
probability. On the contrary, particles with low weights have low sampling probability, suggesting
that the particles with high weights are closer to the real location of the user. Increasing the number
of particles, in addition to improving positioning accuracy, also increases the computational burden.
To reduce computational complexity and improve positioning accuracy, we designed FPF.

FA, derived from simulating the natural phenomenon of fireflies in nature at night, was first
proposed by Yang [32] in 2009. FA shows that fireflies with high brightness attract fireflies with low
brightness. By attracting low light fireflies, they move toward high brightness fireflies. In firefly activity,
each firefly searches for food through the distribution of fluorescein. In general, the brighter the firefly,
the stronger the appeal. Eventually, many fireflies are gathered around some brighter fireflies. In the
artificial firefly optimization algorithm, each firefly is regarded as a solution of the solution space.
The firefly population is randomly distributed in the search space as the initial solution. Three basic
principles for FA are as follows: (1) ignore gender; a high brightness firefly attracts a low brightness
firefly; (2) firefly attraction is proportional to brightness; for any two fireflies, the brighter one attracts
the other; however, brightness decreases as the distance increases; (3) if no one is brighter than a given
firefly, it moves randomly.

The brightness, I, and attraction, β, of fireflies are defined as follows: I(r) = I0e−γr2

β(r) = β0e−γr2 (24)

where I0 and β0 represent the initial brightness intensity and initial attraction, respectively. γ represents
a fixed optical absorption coefficient. r is the distance between two fireflies. Low brightness firefly, i, is
attracted by high brightness firefly, j, according to the following [33]:

fs = fi + β0e−γr2
( f j − fi) + α(rand− 0.5) (25)

where fi and f j represent the location of two fireflies before FA is performed. fs denotes the position of
the new firefly. The second term of Equation (25) represents the attraction of the brightness fireflies.
The third term is random.
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Through floor plan detection, particles are divided into crossing-obstacle particles and
non-crossing-obstacle particles, which are stored in CL and CH , respectively.

P ∈
{

CL crossing an obstacle

CH not crossing an obstacle
(26)

We assume PL and PH are from crossing-obstacle particles, CL, and non-crossing-obstacle particles,
CH , respectively. Ps represents the modified particles. When a crossing-obstacle particle is detected,
FA is triggered. FA is calculated as follows:

Ps = mean(PH) + C1 ∗ (PL −mean(PH)) + α ∗ (rand− 0.5) (27)

where the parameter α is a constant. The parameter, rand, is a random value and is limited in [0, 1].
mean(PH) represents the average of non-crossing-obstacle particles. The calculation method for C1 is
as follows:

C1 =
sign(rand− 0.5)

1 + ||PL −mean(PH)||
(28)

where sign(·) is a symbol function. || · || denotes the Euclidean distance.
After FA is performed, we use a floor plan to detect the particles. The particle weights are updated

as follows:

ωi =

{
0 crossing an obstacle

e−
||Ps−mean(PH )||

2σ2 not crossing an obstacle
(29)

where σ denotes a configuration parameter. ωi represents the i-th particle weight after FA is performed.
FA flow is shown in Algorithm 2.

Algorithm 2 FPF.

1. Collect acceleration and angular velocity.
2. Load a floor plan information in the database.
3. FPF initialization.
4. Particle state transition.
5. According to the position relationship between the particles and a floor plan, the particles are
divided into crossing-obstacle particles and non-crossing-obstacle particles.
6. Use FA to modify the crossing-obstacle particles.
7. Update the particle weights.
8. Resampling.
9. Estimate the location of a user.
10. If the condition is not finished, go to Step 4; otherwise, end FPF.

4. Experiments and Discussion

To verify the effectiveness of the proposed algorithm, we conducted walking experiments at a
local university. The commonly-used smartphone gesture is handheld. A smartphone was used to
test indoor positioning system performance. A floor plan was constructed from simple line segments.
The real trajectory was measured by a laser rangefinder. Based on the ISO/IEC 18305 suggestion [42],
teaching building, study room and office building were selected as the walking site, as shown in
Figure 4. In Figure 5, the green line denotes the true test track. The red triangle and red square
represent the initial and end points of the test, respectively. The initial and end points overlap each
other in Figure 5a, which requires an explanation. The tester carried the smartphone from the initial to
the end points. The inertial sensor sampling frequency was set to 100 Hz. In FPF, α was set to 0.1 and σ

set to one.



ISPRS Int. J. Geo-Inf. 2018, 7, 324 11 of 18

Figure 4. Different scenarios.

(a) (b) (c)

Figure 5. The walking trajectory: (a) teaching building; (b) study room; (c) office building.

4.1. Weights Experiment

When particles cross an obstacle, we set their weight to zero. Otherwise, we set the weight to one.
Crossing-obstacle particles are treated as low-weight particles. High-weight particles and low-weight
particles are resampled with high and low probabilities, respectively. When too many low-weight
particles participate in resampling, conventional PF often suffers from the particle impoverishment
problem. To mitigate the particle impoverishment problem, we use FA to modify the particles.
To illustrate the effectiveness of the modified operations, the weights before and after performing FA
are shown in Figure 6. As the tester walked along the teaching hallway, we selected the 20th, 60th,
125th and 150th steps for analysis. The left and right subfigures in Figure 6 denote the particle weights
before and after performing FA, respectively. There are 3, 7, 11 and 19 zero-weight particles in the left
subfigures. There are 0, 0, 0 and 0 zero-weight particles in the right subfigures. After FA is performed,
the crossing-obstacle particles are greatly reduced, demonstrating that the particle impoverishment
problem is mitigated.

4.2. Walking Experiment at the Teaching Building

The first walking experiment was conducted in the hallway on the third floor of the teaching
building. The walking distance was about 90 m. With the handheld gesture, the trajectories of the tester
are shown in Figures 7 and 8. In INS, sensor bias, temperature drift and the tester’s jitters all caused
positioning errors to increase over time. According to the characteristic that vertical velocity and
heading change of the tester should be zero at a particular moment, KF was used to reduce the position
error. As seen from Figure 7, although KF reduced the position error, the accumulated error of INS still
grew over time. The walking experiment, illustrated in Figure 7, suggests that additional information
is needed to reduce the INS error. Combined with the floor plan, an indoor localization system using
FPF was proposed to reduce the position error. In FPF, through the FA operation, crossing-obstacle
particles migrated to particles that do not cross an obstacle. As seen in Figure 8, the tester’s locations
are in the hallway. Compared with KF, FPF greatly improved the positioning accuracy.
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The position errors and corresponding CDF are shown in Figures 9 and 10. Indoor positioning
system errors were related to walking time. The position errors of FPF were fewer than those for
KF for the duration of most uses (e.g., 30–150 s). When the position errors were smaller than 3 m,
the probabilities of error for KF and FPF were 62.26% and 0%, respectively, as shown in Figure 10.
Compared with KF, FPF greatly reduced the position error.
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Figure 9. Position errors with different algorithms.
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Figure 10. CDF with different algorithms.

In order to evaluate the performance of the improved algorithm, four performance metrics (the
average error, Root Mean Square Error (RMSE), maximum error and Circular Error Probability (CEP))
are defined as follows:

e(k) =
√
(xx(k)− x̂x(k))2 + (yy(k)− ŷy(k))2, eav =

1
N

Σk=N
k=1 e(k) (30)

eRMSE =

√
1
N

Σk=N
k=1 e(k)2 (31)

emax = max
[

e(1) e(2) · · · e(k)
]

(32)

eCEP(95%) = min {R : R ≥ 0, |e(k) : k = 1, 2, ..., N, ||e(k)|| ≤ R| ≥ 0.95N} (33)

where eav, eRMSE, emax and eCEP(95%) are the average error, RMSE, maximum error and CEP (95%),
respectively. R denotes the radius of the smallest circle. For detailed instructions, please refer to [42]

KF reduced the position error to some extent. However, because there was no additional
information to constrain the cumulative error of the inertial sensors, INS error using KF still grew
unbounded along with the walking time. Combined with the floor plan, the indoor positioning system
using FPF effectively constrained the particle range and reduced the positioning errors. Shown in
Table 1 are the average error, RMSE, maximum error and CEP for KF and FPF. The reductions in the
errors between KF and FPF were as follows: 52.08% for the average error; 53.76% for RMSE; 46.73% for
maximum error; and 50.91% for CEP (95%).
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Table 1. Position errors for KF and FPF (m).

Error The Average Error RMSE Maximum Error CEP (95%)

KF 3.13 3.46 5.35 4.97
FPF 1.5 1.6 2.85 2.44

4.3. Walking Experiment at the Study Room

In a teaching building experiment, we showed that FPF combined with a floor plan can effectively
constrain the heading drift of INS. PF [13,43] and a map-matching algorithm [44] were used to perform
a comprehensive comparison. The walking distance was about 110 m.

In [13,43], after KF was performed, a PF was used to further reduce the position error. As no
additional information was used, PF was relatively limited in improving positioning accuracy.
To further improve positioning accuracy, a map-matching algorithm was proposed in [44]. Inspired
by [13,43,44], we further propose FPF to improve positioning accuracy. Based on the fact that a
tester cannot cross an obstacle, we divided the particles into two types: crossing-obstacle particles
and non-crossing-obstacle particles. Using FA, the crossing-obstacle particles migrated toward
non-crossing-obstacle particles. Figure 11 shows the positioning result for the handheld gesture.
As seen in Figure 12, using FPF significantly reduced the probability of positioning error. When the
position error is less than 3 m, the probabilities of error for PF, the map-matching algorithm and FPF
were 71.18%, 55.88% and 18.82%, respectively.

 

 

Figure 11. Positioning result for FPF.
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Figure 12. CDF for PF, the map-matching algorithm and FPF.

The average error, RMSE, maximum error and CEP (95%) for PF, the map-matching algorithm
and FPF are shown in Table 2. The errors in FPF, compared to those in PF and the map-matching
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algorithm, are reduced as follows: 71.65% and 63.19%, respectively, for the average error; 69.2% and
63.03%, respectively, for RSME; 54.81% and 47.95%, respectively, for maximum error; 60.87% and
55.27%, respectively, for CEP (95%). Therefore, FPF is superior to PF and the map-matching algorithm.

Table 2. Position errors for PF, the map-matching algorithm and FPF (m).

Error The Average Error RMSE Maximum Error CEP (95%)

PF 6.35 7.37 12.37 12.14
Map-matching algorithm 4.89 6.14 10.74 10.62

FPF 1.8 2.27 5.59 4.75

4.4. Walking Experiment at the Office Building

In order to further prove the feasibility of the improved algorithm, a more complex experiment
was carried out. The walking distance was about 400 m. The positioning result and CDF are shown in
Figures 13 and 14. The experimental results show that the problem of directional drift was well solved.
The average error, RMSE, maximum error and CEP(95%) were 3.12, 3.81, 8.97 and 7.97 m, respectively.
When the position error was less than 3 m, the probability of error for the proposed algorithm was
37.7%. From the results of the walking experiment, it can be seen that the performance of the indoor
positioning system had been improved.

 

 

Figure 13. Positioning result for FPF.
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Figure 14. CDF for FPF.
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5. Conclusions and Future Work

In this paper, two innovations were proposed to improve the accuracy of indoor positioning.
The first was that the hybrid step length model improved the accuracy of step length estimation.
The core of the algorithm was to choose the appropriate step length at different times. The second
was that the improved particle filter improved the indoor positioning performance. Through
experimentation, the performance of our proposed algorithm was demonstrated. Three walking
experiments were performed in a teaching building, a study room and an office building. The errors
for three walking experiments are listed as follows: 1.5, 1.8 and 3.12 m, respectively, for the average
error; 1.6, 2.27 and 3.81 m, respectively, for RMSE; 2.85, 5.59 and 8.97 m, respectively, for maximum
error; 2.44, 4.75 and 7.97 m, respectively, for CEP (95%). The four performance metrics imply that the
improved algorithm improves the performance of the indoor positioning system and can meet the
needs of most users.

However, some problems must still be addressed. Combined with a floor plan and FA,
our proposed PF adds an external procedure, which increases the computational burden. In addition,
how to improve positioning accuracy in harsh environments warrants further consideration.
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