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Abstract: A segmented processing approach of eigenvector spatial filtering (ESF) regression
is proposed to detect the relationship between NDVI and its environmental factors like DEM,
precipitation, relative humidity, precipitation days, soil organic carbon, and soil base saturation
in central China. An optimum size of 32 × 32 is selected through experiments as the basic unit for
image segmentation to resolve the large datasets to smaller ones that can be performed in parallel
and processed more efficiently. The eigenvectors from the spatial weights matrix (SWM) of each
segmented image block are selected as synthetic proxy variables accounting for the spatial effects
and aggregated to construct a global ESF regression model. Results show precipitation and humidity
are more influential than other factors and spatial autocorrelation plays a vital role in vegetation
cover in central China. Despite the increase in model complexity; the parallel ESF regression model
performs best across all performance criteria compared to the ordinary least squared linear regression
(OLS) and spatial autoregressive (SAR) models. The proposed parallel ESF approach overcomes
the computational barrier for large data sets and is very promising in applying spatial regression
modeling to a wide range of real world problem solving and forecasting.

Keywords: NDVI; China; spatial autocorrelation; image segmentation; parallel eigenvector
spatial filtering

1. Introduction

Vegetation cover is one of the most important indicators for ecological environment. Thus,
it is important to study vegetation cover indicators and their relations with the influenced factors.
Normalized Difference Vegetation Index (NDVI) has been proved to be an effective indicator for
green vegetation cover on the earth surface, which is defined as NDVI = (NIR − Red)/(NIR + Red),
in which NIR is the reflectance of the near-infrared wavelength band and Red is the reflectance of the
red wavelength band [1]. The relationship has been established well between NDVI and vegetation
cover [2]. Environmental factors for green vegetation growth and the relationship between NDVI
and other factors have been detected. Possible factors come as precipitation, elevation, moisture, soil
compositions, and so on [3–6]. The correlation between NDVI, temperature, and precipitation varies
considerably in different places and in different seasons [3,7–10]. However, conventional analysis
methods are often based on regression analysis with observation data from meteorological stations
or sampling schemes like random, regular, and stratified, which take a subset out to represent the
population from remote sensing imagery data. Absence of spatial information in regression models
may cause variance inflation and increase model uncertainty [11,12]. For example, an algorithm was
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reported to predict NDVI using precipitation data and air temperature data on the earth surface with
a spatial resolution of 0.25◦ × 0.25◦ on the globe [13]. However, it has limited values for inference
and prediction, as the model does not account for spatial autocorrelation; it works only in arid and
semi-arid regions, and the resolution is too coarse for a broad application [13].

In recent years, spatial statistics models considering spatial autocorrelation are being used by
econometrics scientists. From the dynamic classification pattern based on formal concept analysis for
spatial statistics services, the Spatial Autoregressive (SAR) model and Spatial Filtering model can be
used to deal with regression matters containing spatial autocorrelation [14]. However, the usefulness
of the SAR model is limited for large datasets, because the maximum likelihood estimation for
parameters may be computationally prohibitive for large datasets [15]. Eigenvector Spatial Filtering
provides a flexible approach with which to solve the problem of spatial autocorrelation in regression
by separating spatial effects from the variables’ total effects [16]. In spatial data analysis, enhanced
and robust results can be obtained by spatial filtering [17]. Not only trends and spatially structured
random components can be decomposed from the variable, but spatial noise can be filtered out.
Griffith proposed eigenvector spatial filtering (ESF) methodology to filter out spatial autocorrelation
from the variables’ total effects. Filtering is based on a decomposition of the spatial weights matrix
used for computing the Moran Coefficient (MC) [18]. Spatial autocorrelation can be accounted for
successfully by the ESF method, which can be incorporated to not only OLS but also Generalized Linear
Models and Generalized Linear Mixed Models [19,20]. The usefulness of separating spatial effects
from variables’ total effects by ESF approach has been demonstrated in ecological and socio-economic
fields [21–23] in which ESF regression analysis usually takes administrative units as the study unit
or sampling points to represent the study region. In other words, these applications are vector-based
and today’s computers can handle the amount of computation. Modeling with NDVI, however, is
best done in the raster data model, which in turn is facing the computational problem as the spatial
weights matrix is prohibitively large, because for an n-by-n image, the SWM is n2 × n2. Even though
one can use analytical methods to approximate the eigenfunction for regular lattices [24], the selection
of eigenvectors would take too long to complete within a reasonable duration. A temporal filtering
algorithm was reported to minimize the contamination by cloud and noise in the NDVI time series, but
it does not deal with spatial effects in regression modeling and is suitable in Australia [25]. Although a
Fourier Filter was applied to minimize the influence of high-frequency noise in NDVI classification,
it does not take environmental factors into consideration [26].

We explored a parallel ESF method to address the computational problem. The parallel ESF
method resolves the large datasets to smaller ones and utilizes the multicore CPU of personal
computers as workers to construct a cluster to execute the ESF regression process simultaneously [27].
An optimum segmented size of 32 × 32 is selected through experiments as the basic unit for image
segmentation. The large datasets are segmented to a group of datasets of the same size 32 × 32 and
launched together with a new copy of ESF regression code to each worker in the cluster. After the
compute tasks for each segments are completed, the client will collect the results from all worker
sessions [28]. In this way, the resolved smaller datasets can be calculated easily, and the compute
process is accelerated efficiently.

In this study, raster datasets of NDVI and environmental factors including DEM, precipitation
(PREC), relative humidity (RHU), precipitation days greater than 0.1 mm (DAYP), soil organic carbon
(OC), and soil base saturation (BS) content in central China are employed and segmented to squared
blocks to construct the Parallel-ESF regression model. This method is expected to improve the goodness
of fit of the regression model by taking the spatial autocorrelation of variables into consideration and
accelerating the computation process for large raster datasets. The aim is to study the correlation of
environmental factors for NDVI in central China, which will consider the spatial effects that existed in
variables. Moreover, this paper attempts to provide the feasible access of the segmented processing
approach to solve the problem of spatial autocorrelation and the memory insufficiency of eigenvectors
generation using the ESF regression approach for large size raster datasets.
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2. Methodology

The proposed methodology contains 4 steps in this study. The first step is to estimate the optimum
size of the N × N image blocks and segment the large datasets in a mutually exclusive and collectively
exhaustive manner. The second step is to construct the spatial weights matrix based on contiguity
relation for N × N squared blocks and its eigenfunction. The third step is to estimate regression model
with selected eigenvectors included for each segmented blocks. The last step is to compare the model
performance of the local ESF regression models with the conventional multiple linear regression model
and the spatial autoregressive model.

2.1. Raster Segmentation

As indicated earlier, calculation of the eigenfunction and selection of eigenvector through
step-wise regression can be very time consuming, especially for raster data. Tests of linear ESF
are conducted on various size such as 8 × 8, 16 × 16, 32 × 32, 64 × 64, and so on, as Figure 1
shows. The optimum subset size takes both time costs of eigenvectors selection for a single block and
the number of all segmented blocks into consideration. Smaller size of subsets is more efficient for
calculation, but more subsets mean more information loss from more separated pixels. Time costs of
eigenvector selection in various size images are obtained to choose acceptable elapsed time for a single
image block. The result shows that the computer is stress-free for the raster of the sizes 8 × 8, 16 × 16,
and 32 × 32 to generate eigenvectors from spatial weights matrix, and it takes a few minutes for size
64 × 64 to generate eigenvectors. However, in the process of identifying eigenvectors, especially the
permutation test in stepwise regression, the computer exports no result, causing computers to halt for
the size 64 × 64. Considering the number of segmented blocks and loss of efficiency in task and data
transmitting procedure, size 32 × 32 is selected as the basic unit for image segmentation. Once the
optimum subset size is determined, the image datasets representing the dependent variable and the
predictor variables are segmented to a group of squared blocks. Note that preprocess of resize should
be conducted to ensure all datasets have the same resolution.
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Figure 1. An illustration of image segmentation. (The large datasets are segmented to smaller ones
with the size N × N. The optimum N is determined by tests of linear ESF for a single small block.).

2.2. Eigenvector Generation Based on SWM

Topology-based spatial weights matrix for the image block serves as the base for representing
spatial relationship in regression models [18]. For square tessellations, queen contiguity is adopted to
construct the binary spatial weights matrix C with cij = 1 if the two cells are neighbors and cij = 0
otherwise [29]. The spatial weights matrices are the same for all segmented blocks and can be calculated
only once, because the image blocks have identical spatial weights matrices. The spatial weights matrix
is subsequently centered through the projection matrix as follows:(

I − 11T/n
)

C
(

I − 11T/n
)

(1)

in which 1 is an n × 1 vectors of ones. The symbol T donated the matrix transpose operator.
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The eigenfunction, containing eigenvectors and associated eigenvalues, is calculated from
decomposition of the modified spatial weights matrix [30]. The decomposition can be expressed as

MCM = EΛET (2)

in which M =
(
I − 11T/n

)
. The character Λ is an n × n diagonal matrix of eigenvalues (λ1, λ2, . . . , λn)

in descending order. E = (E1, E2, . . . , En) are the eigenvectors corresponding to the eigenvalues Λ [22].
For being orthogonal and uncorrelated, each eigenvector can portray distinct map patterns with
achievable level of spatial autocorrelation for a given geographic landscape [31]. The function relation
has been detected between MC value for a mapped eigenvector and its corresponding eigenvalue
as follows:

MCj =
n

1TC1
λj (3)

Based upon these properties, the eigenvectors can be interpreted as follows: The first eigenvector
E1 is the set of real numbers that has the largest MC achievable by any set for the geographic
arrangement defined by the spatial connectivity matrix C. The second eigenvector E2 is the set of real
numbers that has the largest achievable MC by any set that is orthogonal and uncorrelated with E1.
So on through the nth eigenvector En, which is the set of real numbers that has the largest negative MC
achievable by any set that is orthogonal and uncorrelated with the preceding (n − 1) eigenvectors [32].
Being mutually orthogonal and uncorrelated, these eigenvectors can cause the emergence of latent
spatial autocorrelation in variables [21], and those eigenvectors that are significant can be filtered out
and act as proxies in explanatory variable to capture its spatial stochastic component [19].

2.3. Parallel Eigenvector Filtering

Since the eigenvectors of spatial weights matrix portray a different map pattern exhibiting a
specified level of spatial autocorrelation, a parallel processing approach is adopted to select the
significant eigenvectors Ek in each block as control variables in a linear combination and construct a
global ESF regression model for all the segmented blocks. The identification of Ek can be achieved by a
forward stepwise selection procedure. The criteria to identify eigenvectors contain significance level of
the estimated coefficients and Akaike Information Criteria (AIC) of model at each step.

Before the stepwise selection, a candidate set of eigenvectors, a smaller subset of the entire
eigenvectors, can be demarcated by the properties of eigenvectors to reduce workload. Eigenvectors
whose MC values can be eliminated, because these eigenvectors do not explain much spatial variation.
Second, eigenvectors that represent negative SA can be excluded, because empirical NDVI displays
positive SA. A feasible criterion for eigenvectors identification is λ divided by the largest eigenvalue
λmax that is greater than 0.25 [33].

The parallel processing approach takes segmented dataset in each block and the candidate set
of eigenvectors together to run the stepwise process. For each block, eigenvectors are selected via
conventional stepwise regression procedures from the candidate set of eigenvectors. AIC is a criterion
for stepwise selection that takes both goodness of fit and complexity of the model into consideration.
The parallel ESF regression is conducted simultaneously in each worker and each task for each block
is distributed to workers automatically to search for the model that has the lowest AIC. Forward
selection adds the variable whose inclusion gives the lowest AIC value and repeats this process until
none improves the model to a statistically significant extent. A global ESF model specification exists as
follows. The item Ekiβi stands for the eigenvectors spatial filters in each block.

Y =



Xβ1 + Ek1β1 + ε1

Xβ2 + Ek2β2 + ε2

Xβ3 + Ek3β3 + ε3

. . .
Xβi + Ekiβi + εi

(4)
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After all the blocks finishing the forward selection procedure, the ESFs item Ekiβi are added to
the regression model with a linear combination as missing proxies. The coefficients are estimated by
OLS (ordinary least squared) method and returned to construct global ESF model.

2.4. Validation

Variable selection should be conducted to select explanatory variables with higher correlation for
NDVI before the parallel ESF regression. The raster datasets of the environmental variables, together
with dependent variable of the whole region, are transferred to a column vectors for convenience.
Both Pearson correlation coefficient and stepwise selection are conducted. The stepwise regression
can choose the predictive variables by an automatic procedure. For forward selection, the procedure
starts with no variables in the model. Each variable is considered for addition using a chosen model fit
criterion, and the process is repeated until there are no improvements for the chosen criterion. Pearson
correlation coefficient is selected to measure the linear dependence correlation between NDVI and
other factors, and is defined as

CorrCoe f (A, B) =
1

N − 1

N

∑
i=1

(
Ai − µA

σA

)(
Bi − µB

σB

)
(5)

in which µ and σ are the mean and standard deviation and N is the scalar observations of the A and B
variable. The value of correlation coefficient varies from +1 to −1 corresponding to a high positive
correlation to a high negative linear correlation. While the coefficient relates to 0, it means there is
nearly no linear correlation between X and Y [34].

Conventional ordinary least squared multiple linear regression (OLS) model and Spatial
Autoregressive (SAR) model are selected to compare with ESF model. To ensure consistency and
comparability for the same number of observations, OLS model and SAR model are performed
in segmented block groups. Another reason is that a spatial weights matrix of 65,536 (256 × 256)
observations is extremely large for SAR model. SAR model combines a spatially lagged dependent item
ρWy in the standard regression to account for the influence of nearby in surface scale [35]. The SAR
model takes the form

Y = ρWY + Xβ + ε

ε ∼ N
(
0, σ2 In

) (6)

in which W is spatial weights matrix and β represents the influence of the explanatory variables
X to the dependent variable Y. The parameter ρ(rho) in SAR model can reflect the level of spatial
dependence in dependent variable [36]. Moran Coefficient (MC) is also selected to measure the extent
of spatial autocorrelation in the residuals before and after adding the selected eigenvectors into the
regression model.

RSE (residual standard error) is a criterion evaluating the difference between the observed value
and the estimated value of dependent variable. In this study, RSE is calculated to measure the difference
between the exact values and the estimated values by OLS, ESF, and SAR model. R-Squared, also
being called coefficient of determination, can represent the ratio of the dependent variable fitted from
the model. Adjusted R-Squared can take account of the increase by adding extra explanatory variable,
the filtered eigenvectors, to the model. This study takes both R-Squared and Adjusted R-Squared to
represent the goodness of fit of the three regression models. AIC is also taken to estimate relative
information loss in regression models, which is based on information theory. A smaller AIC value
represents a better model for relative information lost. All these criteria are adopted to evaluate the
performance of parallel ESF model.
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3. Experiment

3.1. Study Area and Datasets

The region is a squared region in central China, between 100–115◦ east longitude and 25–40◦

north latitude, covering most Shaanxi province and part of Gansu, Ningxia, Shanxi, Sichuan,
Chongqing, Hubei, and Hunan province, containing Loess Plateau and part of Qinling Mountains and
covering two main basins in China. The region covers an area of 1000 km × 1000 km under the WGS
1984 UTM Zone 48N projection coordinate system and contains plains, basins, hills, mountains, and
lakes, and lies across the Yangtze River Basin and the Yellow River Basin. The climate in the study
area is classified as humid subtropical [37], with NDVI ranges from 0.01 to 0.99 whose period is from
1 October to 1 September in 2009.

The study area is selected for its coverage of vegetation and wide range of terrain and climate,
which ranges from loess plateau with arid climate and poor vegetation cover to Sichuan Basin with
abundant precipitation and fertile soil [38]. Qinling Mountains, located in the central part of the study
area, is the transitional zone from subtropical region to temperate and boundary of the climate both
north and south China [39]. The region is mainly covered by cultivation and broadleaf shrubs and
woodlands, partly covered by evergreen broadleaf forest, deciduous broadleaf forest, broadleaf and
needle-leaf mixed forests, evergreen needle-leaf forests, and temperate grasslands [40,41]. Location of
the study area and NDVI distribution are shown in Figure 2. Some details of original datasets used in
the experiment are described in Table 1.
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Figure 2. The study area and NDVI distribution (NDVI is from monthly compositing dataset of MODIS
Terra (MODND1D) in August 2009, which takes the maximum from 1 August to 1 September in 2009.
The datasets are provided by International Scientific & Technical Data Mirror Site, Computer Network
Information Center, Chinese Academy of Sciences. Projection Coordinate System: WGS 1984 UTM
Zone 48N).

The original NDVI is from monthly compositing datasets of MODIS/Terra (MOD13A3) in August
2009. Pixels of water body are removed and interpolated by the average of the nearest 8 pixels for
a more accurate regression analysis. There are monthly and seasonal variations for NDVI; hence,
we take the monthly NDVI of August to substitute yearly NDVI, because monthly NDVI reaches
maximum values in August in China [42], so as to keep the same time frame with meteorological
datasets. DEM is from the SRTM (NASA Shuttle Radar Topographic Mission), which has a resolution
of 90 m at the equator. No-data regions of DEM have been filled by a hole-filling algorithm [43].
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The dataset of precipitation (PREP), relative humidity (RHU), and daily precipitation ≥ 0.01 mm
days (DAYP) are downloaded from Dataset of Yearly Values from China Meteorological Data Service
Center. 569 surface meteorological stations are selected within and around the study area from the
Surface Meteorological Stations, and 555 stations remain after data cleaning. Kriging Interpolation
Tool in ArcToolBox is utilized to generate raster datasets for PREP, RHU, and DAYP from points of
meteorological stations. These meteorological datasets are interpolated by ordinary Kriging method
with spherical semivariogram model and search radius of 12 points.

Table 1. The details of original data sets for study area.

Variable Meaning Resolution Raster Size Source

NDVI assess the cover level of green vegetation on the
earth surface 1 km 848 × 848 pixels MODIS/Terra

DEM a digital representation of ground-surface
topography or terrain 90 m 6001 × 6001 pixels STRM

PREC
the total quantity of rainfall to the ground at a site
within a year, which supplies most of the water that
plants need to absorb

1 km 848 × 848 pixels Meteorological
Stations

RHU moisture in the atmosphere, which influences the
exchange of water between plants and atmosphere 1 km 848 × 848 pixels Meteorological

Stations

DAYP the number of days for daily precipitation ≥ 0.1 mm 1 km 848 × 848 pixels Meteorological
Stations

OC a good indicator to access health condition of the soil,
a good criterion for soil fertility 30 arc seconds 601 × 601 pixels HDWS

BS
total ratio of exchangeable cations (nutrients) Na, Ca,
Mg, and K. Access the capacity of absorbing
nutrients in the soil

30 arc seconds 601 × 601 pixels HDWS

Note: PREC standard for sum of precipitation of the year 2009. HUMI is abbreviation of average relative humidity
of the year 2009. DAYP is abbreviation for number of daily precipitations more than 0.1 mm. PREC, RHU, and
DAYP image data are interpolated from 555 surface meteorological stations within and around the study area by
Kriging method under WGS-84 Coordinate System.

Soil Organic carbon (OC) has a close relationship with vegetation, because the abundance of
organic carbon in the soil affects and is affected by plant production and organic carbon as soil fertility
for vegetation growth in return [44]. Soil Base Saturation (BS) is calculated as a percentage of total
cation exchange capacity [45]. OC and BS are downloaded from Harmonized World Soil Database
(HDWS) to act as factors to fit regression model for NDVI [46]. The preprocessed datasets are loaded
in ArcMap software like Figure 3 shows.
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Images of all variables are resampled to the same size raster of 256 × 256 pixels by ArcToolBox for
the convenience of segmentation. Datasets of all variables are resampled by bilinear technique, which
is suitable for continuous data. After the resampling, the cell size has a resolution of 3.91 km × 3.91 km.

3.2. Variable Selection

A stepwise regression procedure is conducted to select significant environmental variables.
The result of stepwise is shown in Table 2. From the table, the 6 variables are all statistically significant,
since the p-value for t-statistics of coefficient estimates is less than 0.05 at 95% confidence level.

Table 2. Stepwise regression for variable selection results. All criteria calculated here are from global
observations of the whole study area.

Variable β SE tStat p-Value
Residual

RSE RSqu Adj.R2 F-Stat p-Value
MC p

Intercept 0.15 0.01 22.87 0.00

0.70 0.00 0.13 0.51 0.51 1148 <2.2 × 10−16

DEM 0.04 0.00 8.30 0.00
PREC 0.48 0.01 71.18 0.00
DAYP 0.47 0.01 38.47 0.00
RHU 0.06 0.02 3.48 0.00
OC 0.17 0.04 4.31 0.00
BS 0.04 0.00 14.85 0.00

Pearson Correlation Coefficient of each primary variable from the global observations of the
whole study area is shown in Table 3. The result of correlation analysis shows that the correlation
between (NDVI and PREC), (NDVI and RHU), and (NDVI and DAYP) is positive and higher than
others. The correlation coefficient of (NDVI and DEM) has a negative correlation. The correlation
of (NDVI and BS) is negative, while the correlation of (NDVI and OC) is positive but not significant.
Only precipitation, relative humidity, and precipitation days are relatively significant in the factors
that we assumed relating to vegetation cover before. So, all these environmental factors are included
in explanatory variables.

Table 3. The correlation matrix among all variables.

NDVI DEM PREC RHU DAYP OC BS

NDVI 1
DEM −0.26 1
PREC 0.70 −0.44 1
RHU 0.66 −0.36 0.85 1
DAYP 0.62 −0.01 0.81 0.82 1

OC 0.07 0.17 0.07 0.08 0.19 1
BS −0.29 0.11 −0.44 −0.42 −0.44 −0.17 1

3.3. Parallelization of ESF

In this study, the resized image datasets are all 256 rows × 256 columns, since 32 × 32 size
is selected as the basic unit for image segmentation; that is to say, the whole raster data of both
independent and explanatory variables is segmented into image blocks of the size 32 × 32, which
is mutually exclusive and collectively exhaustive. Thus, there are 64 groups of image blocks of
32 × 32 pixels.

R software provides feasible and simple API interface, not only for statistics application but for
parallelization as well. The “parallel” package in R software provides simple parallel programming
approach by mapping structure. The identification procedure of ESFs is conducted by parLapply
function in R software. Before the parallel identification, a cluster for distributed computation should
be constructed by makeCluster function in R software, and the number of workers is confirmed by cores
of personal computer. The forward selection procedure for ESF regression and model fitting procedure
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for the other two regression models OLS and SAR are encapsulated into a new function. When run the
code for parallel computation; the computer makes new copies of the new function and distributes
them automatically to the workers in the cluster, together with segmented datasets. After the parallel
computation for all workers has been completed, the results of each segmented dataset can be collected
together and stored in computer. The eigenvectors extracted from the candidate set of each segmented
block are added to the explanatory variables as synthetic proxy variables with a linear combination.
All blocks are summarized simultaneously to construct a global ESF regression model. Criteria of both
segmented regression models and global models are compared in the following section.

4. Results

4.1. Comparison of 3 Models in Each Block

The number of filtered eigenvectors is shown as Table 4. Only part of the ESF model of the
segmented blocks and filtered eigenvectors is selected to the table due to there being limited space.
The procedure selects an average of 92 eigenvectors for all blocks.

Table 4. Filtered eigenvectors (partly) and number of eigenvectors selected in each block.

Block No. Filtered Eigenvectors Counts

1 EV6, EV2, EV8, EV3, EV33, EV11, . . . , EV77, EV207, EV74, EV39 129
2 EV32, EV5, EV17, EV21, EV9, EV23, . . . , EV107, EV33, EV98, EV106 113
3 EV1, EV14, EV24, EV16, EV10, EV17, . . . , EV210, EV89, EV8, EV5 94
4 EV3, EV32, EV17, EV10, EV14, EV45, . . . , EV72, EV123, EV64, EV90 95

. . . . . . . . . . . .
63 EV1, EV15, EV9, EV12, EV6, EV5, . . . , EV59, EV175, EV150, EV84 98
64 EV2, EV7, EV14, EV4, EV13, EV38, . . . , EV215, EV10, EV114, EV49 95

Criteria of OLS, SAR, and ESF for the segmented raster image blocks are computed to validate
the goodness of fit for the three models as Figure 4 shows. The RSE of ESF model is smaller than SAR
and much smaller than OLS model. ESF model almost gets the minimum RSE value among the three
models, which means less difference between observed value and predicted value. R-Squared of both
ESF model and SAR model is greater than OLS model, mainly because of the filtered eigenvectors and
spatial interaction component explaining the spatial effects in the regression model. For some blocks,
the R-Squared of SAR is greater than ESF, while in other blocks it is the opposite. Considering the
spuriously increasing effects by adding extra explanatory variables to the model, Adjusted R-Squared
are calculated to modify R-Squared. Adjusted R-Squared of ESF decrease a little bit compared to the
other two models, due to a set of synthetic proxy variables, the filtered eigenvectors, being added to the
explanatory variables. For R-Squared and Adjusted R-Squared, it is hard to say whether SAR is better
than ESF or not. However, what is certain is that both of the R-Squared and Adjusted R-Squared show
an increased proportion of the dependent variable that can be explained by explanatory variables of
regression model. Pseudo R-Squared for the 3 models are calculated, which can measure the goodness
of fit between fitted values and observed values. It is obvious that ESF model gets the greatest value in
all blocks. AIC of the three models are compared, which takes both model complexity and goodness of
fit into consideration. Lower AIC represents better model. ESF model gets the smallest AIC, while
OLS gets the greatest AIC in all blocks. Considering all these criteria, ESF and SAR models are much
better than OLS, owing to their consideration of spatial dependent component. ESF model is better
than SAR model for its better fit and relative high comprehensive comparison.
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of Pseudo R-Squared between OLS, SAR, and ESF; (e) comparison of AIC between OLS, SAR, and ESF.
The X-axis means the serial number of segmented blocks by column.

4.2. Summarized Results

Table 5 summarizes criterion of the three models by calculating mean of parameters from the
segmented blocks. Due to the variations of ESFs in ESF model, only coefficients of environmental
factors are calculated for global ESF model.

The coefficients estimated for explanatory variables vary in the three models. For DEM,
the average estimated coefficients of the three models are similar, together with a similar standard
error average. The p value for SAR and ESF models is less than 0.05, which means a significant
relationship under 95% confidence level. For PREC, the coefficient estimates for OLS model and SAR
model are similar and greater than ESF model. The average standard error for ESF is better than the
other two models. The p values for PREC of the three models are all greater than 0.05, representing
no significance.

For RHU and DAYP, ESF model produces the largest slope value among all three models but gets
a higher standard error for estimated coefficients. The p values are similar and not significant. For OC,
the estimated coefficients show difference, while the standard errors of SAR and ESF models decrease.
The p values of the three models for BS are not significant. Residuals’ MC is an indicator to detect spatial
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autocorrelation in residuals. The smaller residuals’ MC means more spatial structure components are
interpreted by regression model. The residuals’ MC for SAR model decreases compared to OLS model,
but for ESF it decreases nearly to excepted level (E(MC) = − 1

n−1 = −9.78 × 10−4). The p values of
residuals’ MC for OLS and SAR are significant but no more significant for ESF.

Table 6 shows the parameter estimation result in Block Group 35 randomly selected. There are
several differences between the average of all blocks and Block 35. The estimated coefficient for DAYP
is much larger in Block 35. The p value of estimated coefficients for all three models is significant,
except for OC in OLS and SAR, and RHU in ESF.

Criteria of all blocks are summarized to compare the parallel ESF model with OLS and SAR
model. The RSE, R-Squared, Adjusted R-Squared, and Pseudo R-squared are recalculated from the
estimated value and observed value. The mean of AIC value, Residuals’ MC, and degree of freedom
(DF) are calculated. The results are shown in Table 7.

Compare the results from the table, what the integrated results show is in accordance with
the segmented results. The RSE of SAR model is smaller than OLS and for ESF is much smaller,
which shows less difference between fitted values and observed values using the SAR model and
ESF model. Residuals’ MC is an indicator to detect spatial autocorrelation in residuals. It is obvious
that ESF is much more effective than the other two models. R-Squared of SAR model and ESF model
increases compared to OLS model. These environmental factors explain only 30% of the variation
in NDVI, while spatial autocorrelation captured by ESF term explains addtional 30%. This is mainly
because new variables that explain spatial effects are added to global ESF model. Considering the
automatically and spuriously increasing effect by adding extra explanatory variable to regression
model, Adjusted R-Squared of ESF model decreases slightly, because its number of variables is more
than the other two models. The average DF is calculated, representing good performance for OLS
and SAR. Pseudo R-Squared is also calculated, which can reflect the goodness of fit between observed
values and fitted values. It is obvious than ESF model is better than SAR and much better than OLS.
Taking both model complexity and goodness of fit into consideration, AIC gives the best choice. AIC for
ESF is smaller than SAR and much smaller than OLS. Considering all these criteria, it is obvious that
ESF is relatively better than SAR and much better than OLS.
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Table 5. Parameter estimate (mean) for the three models.

Variable

OLS SAR ESF

β SE tStat p-Value Residual
β SE z p-Value Residual

β SE tStat p-Value Residual

MC p MC p MC p

Intercept 0.43 0.17 2.96 0.07

0.31 0.00

0.37 0.17 2.65 0.14

0.20 0.00

0.26 0.22 1.98 0.13

−0.09 0.93

DEM 0.36 0.09 6.41 0.07 0.37 0.08 5.85 0.05 0.35 0.09 4.66 0.04
PREC 0.43 0.18 2.47 0.11 0.45 0.17 2.13 0.14 0.20 0.24 0.15 0.23
RHU 0.01 0.27 0.01 0.16 −0.02 0.26 −0.30 0.11 0.28 0.36 0.41 0.12
DAYP 0.32 0.36 1.33 0.12 0.21 0.34 1.15 0.12 0.46 0.48 1.67 0.13

OC 0.56 0.99 0.82 0.21 0.33 0.93 0.58 0.20 0.65 0.84 0.73 0.20
BS 0.01 0.03 0.01 0.22 0.01 0.02 −0.01 0.26 0.02 0.02 0.52 0.26

Notes: Parameter estimate in this table is calculated by mean of the parameters from the 64 groups of image blocks. β is the estimated coefficient value of explanatory variables. SE is
abbreviation for standard error of the estimate. The parameter tStat is t-statistic for a test that the coefficient is zero. MC is the Moran Coefficient of residuals and p is p-value for
residuals’ MC.

Table 6. Parameter estimate for the three models in Block Group 35.

Variable

OLS SAR ESF

β SE tStat p-Value Residual
β SE z p-Value Residual

β SE tStat p-Value Residual

MC p MC p MC p

Intercept −1.06 0.11 −9.61 0.00

0.39 0.00

−0.05 0.11 −4.79 0.00

0.23 0.00

0.66 0.13 5.23 0.00

−0.11 0.98

DEM 0.61 0.06 10.68 0.00 0.33 0.06 6.04 0.00 0.25 0.08 3.15 0.00
PREC 2.51 0.12 20.50 0.00 1.59 0.16 12.66 0.00 0.44 0.13 3.52 0.00
RHU 2.44 0.31 7.98 0.00 3.05 0.28 10.74 0.00 0.63 0.36 1.86 0.08
DAYP −8.16 0.50 −16.22 0.00 −7.95 0.46 −17.18 0.00 −6.20 0.73 −8.49 0.00

OC 1.31 1.54 0.85 0.39 0.91 1.41 0.65 0.52 2.67 1.29 2.08 0.04
BS 0.11 0.04 2.85 0.00 0.08 0.04 2.30 0.02 0.07 0.03 2.29 0.02
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Table 7. Summarized criteria of OLS, SAR, and ESF. The criteria here are calculated by observed value
and fitted value of the model from the global observations.

Criteria OLS SAR ESF

RSE 0.1576 0.0746 0.0593
Residual’s MC 0.31 0.2 −0.09

R-Squared 0.2993 0.6323 0.6268
Adjusted R-Squared 0.2952 0.6301 0.5891
Pseudo R-squared 0.30 0.37 0.63

DF 1017 1017 925
AIC (Akaike information criterion) −2234.94 −2441.44 −2847.47

4.3. Time Cost Comparison in Parallel Computation

In this study, parallel computation based on different clusters of different number of cores is
conducted to verify the speed-up ratio. The experiment is conducted on an ordinary PC configured
with 4 cores in total. The time cost of parallel computation on different number of workers is shown
as Table 8. It is obvious that the calculation procedure can be accelerated dramatically by adding
workers to cluster; cluster with 4 workers can be 3.2 times faster than cluster with only one worker or
serial computation.

Table 8. Time cost and speed up ratio of clusters containing different cores. The PC is equipped with
Intel(R) Core(TM) i5-4590 CPU @ 3.30 GHz processor, 8.0 GB RAM, and Windows 10 Operating System.

Number of Cores Time Cost (Seconds) Speed-Up Ratio

1 4770.20 1
2 2621.02 1.8
4 1470.16 3.2

5. Discussion

In this study, a parallel ESF regression approach for large size raster datasets of NDVI and its
environmental factors based on segmentation is proposed to solve the problem of inaccuracy and
uncertainty for regression model caused by spatial autocorrelation and insufficiency of calculating
ability for large size raster datasets. The influence of environmental factors and spatial effects to NDVI
in central China is discussed by OLS, SAR, and proposed parallel ESF model.

5.1. Influence for NDVI Distribution

The correlation coefficient in Table 3 shows the correlation of variables for the whole region.
However, the performance in the segmented blocks is not necessarily the same with the whole data.
Strong positive correlations between NDVI and metrological factors (precipitation, humidity, and
precipitation days) are not that strong and are even negative in some segmented blocks. The p values
of estimated coefficient for OLS of the whole region are less than 0.05, and statistical significant, but
insignificant p values exist in some segmented blocks. Therefore, the number of blocks whose p-value
is less than 0.05 in all blocks is counted to see the performance of environmental variables in each
segmented blocks. The percentage of these blocks is also calculated as Table 9 shows.

From Table 9, the percentage of environmental variables whose p value for coefficient estimation
is similar among the three models, except for PREC and BS in ESF model, which is less than 50%.
Table 10 shows the estimated coefficients for all blocks using the OLS, SAR, and ESF models. Cells in
images represent the estimated coefficients of the block corresponding to the site. A red cell stands
for a higher value of estimated coefficient. From the table, OLS and SAR models portray similar
distribution for environmental variables, while the ESF model displays a slightly different distribution.
Both of the high values and low values estimated by the three models for each variable almost have
similar distributions.
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Table 9. Number of blocks and percentage whose p-value < 0.05 in all 64 blocks.

Variable
OLS SAR ESF

Number Percent Number Percent Number Percent

Intercept 53 82.81% 45 70.31% 43 67.19%
DEM 57 89.06% 55 85.94% 56 87.50%
PREC 49 76.56% 44 68.75% 31 48.44%
RHU 44 68.75% 44 68.75% 49 76.56%
DAYP 47 73.44% 40 62.50% 44 68.75%

OC 36 56.25% 34 53.13% 34 53.13%
BS 36 56.25% 34 53.13% 28 43.75%

Table 10. Image of estimated coefficients for OLS, SAR, and ESF models. The X and Y-axis represent
the position of segmented datasets corresponding to the original large dataset.
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5.2. Implementation of Parallel ESF

Parallel ESF regression model is proposed by image segmentation. The segmentation of large
raster datasets to smaller ones with the same size of 32 × 32 provides a feasible approach to solve
the incapable computation of ESF for large raster datasets limited by the computing power of
computers. The eigenvectors spatial filtering procedure can be accelerated remarkably by parallel
computation based on multi-core cluster. Figure 5 shows fitted images for the three models fitted
values. The parallel ESF regression model performs closest to the original NDVI and presents the most
similar characteristics compared with the other two models. Although SAR model is fitted similarly to
the original image, the boundary pixels of each segmented block present obvious differences, which
look like lines segmenting the whole image. OLS model is fitted the worst, both in terms of integrality
and goodness of fit.
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5.3. Drawback

A drawback is that there is no consideration of the contiguity of border pixels between segmented
blocks. The accuracy of regression analysis might have been affected by the isolation between blocks
from segmentation, which may have influenced the estimation of the fitted dependent variable for the
border pixels. Although the influence has not been evaluated, it is likely that the error would decrease
if additional rows and columns included in the segmented blocks. The study of this issue will be
continued in future works.
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6. Conclusions

In this study, the influence of environmental factors and spatial effects on vegetation cover in
central China are studied. A parallel ESF regression model based on raster segmentation is proposed
for regression analysis of large, regular-squared raster datasets and applied to NDVI and its factors of
DEM, PREC, RHU, DAYP, OC, and BS. The influences on NDVI distribution are studied that regional
effects can influence the correlation relation between NDVI and environmental variables. The result
shows that goodness of fit for the parallel ESF model is greatest compared to the conventional OLS
model and the SAR model. Moreover, spatial effects account for nearly 32% variation for NDVI
distribution. By using the proposed parallel ESF regression approach, a more accurate model is
constructed for NDVI and its environmental factors in central China. That is to say, spatial effects,
especially spatial autocorrelation, plays an important role in vegetation cover distribution in central
China. Despite the filtered eigenvectors added to regression model that cause an increase of model
complexity, the parallel ESF model still has the best goodness of fit and the best performance by criteria
as R-Squared, Adjusted R-Squared, Pseudo R-Squared, and AIC, interpreting spatial autocorrelation
and improving the goodness of fit.

The ESF approach can account for influence caused by spatial autocorrelation and improve the
degree of fitting, but it produces no results for large size rasters because of the calculation bottleneck
of eigenvector generation and eigenvector selection. In this study, the parallel approach is proposed
for the long-consuming stepwise process for large size eigenvectors derived from SWM responding to
spatial relation among pixels in the raster image. The large datasets are segmented to smaller ones
and distributed to a multi-core cluster for parallel computation of eigenvector spatial filtering in each
segmented block, which can be extended to a cluster with more cores to improve the computing speed
for much larger datasets. The parallel technique for ESF regression provides a feasible approach to solve
the problem of inaccuracy and uncertainty caused by spatial autocorrelation in regression analysis
for large raster datasets and computational burdens of the eigenvector spatial filtering algorithm,
which can be used not only in NDVI analysis but also to construct more accurate regression models for
variables of large size raster datasets, which is very promising for applying spatial regression modeling
to a wide range of real world problem solving and forecasting.
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