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Abstract: The applicability of main scarp upper edge (MSUE) as dependent variable representation
was performed in a translational slide susceptibility zonation of the Milia and Roglio basins, Italy.
Two landslide inventories were built thanks to detailed geomorphological mapping and aerial
photograph analysis. The landslides were used to create the models before 1975, while those after
1975 were employed to validate the predictive power of the model. Possible landslide-related factors
were chosen from a geomorphological survey. The inventory landslide maps and the landslide-related
factor maps were processed by conditional analysis, producing landslide susceptibility maps with
five susceptibility classes. A comparison between the distribution of landslides after 1975 and those
derived from models provided the predictive power of each model, which in turn was used to define
the best predictive model. Reduced chi-square analysis allowed to define the efficiency of MSUE as
dependent variable representation. MSUE can be applied as dependent variable representation
to landslide susceptibility zonation with appreciable results. In the Roglio basin, slope angle,
distance from streams, and from tectonic lineaments proved to be the main controlling factors
of translational slides, whereas in the Milia basin, lithology and slope angle gave more satisfactory
results as landslide-predisposing factors.
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1. Introduction

If only social and economic parameters are considered when planning urban and industrial
growth, the derived infrastructures (e.g., buildings, roads, factories) may be threatened by natural
phenomena, such as those of a geomorphological nature. As a matter of fact, processes like landsliding
and flooding can cause severe damages and, in many cases, lead to the loss of human lives. The use of
maps able to depict the spatial distribution of a natural hazard or susceptibility to its occurrence has
become crucial for correct territorial planning, risk mitigation and management [1,2]. In this regard,
how to generate maps of landslide susceptibility is a key question, since landsliding is one of the most
common sources of natural risk.

Landslide susceptibility (LS) is the spatial probability of landslide occurrence [3] and differs from
landslide hazard, since it provides no information on the timing and magnitude of predicted landslides.
However, landslide susceptibility is the first step in landslide risk assessment [3–8].

Statistical methods are the most commonly used techniques to assess landslide susceptibility over
medium- and large-scale areas [9–13].
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All statistical methods are based on the common assumption that landslides are more likely to
occur in areas where boundary conditions are similar to areas in which landslides have occurred [14];
however, they necessarily require the knowledge of the factor conditions existing before the landslide
occurrence. With the exception of very recent landslides, the morphometric factor maps available
(e.g., slope angle) represent the post-landsliding condition. Therefore, in most cases it is necessary to
identify the morphometric factor conditions before the landslides.

The authors who have studied at the problem agree that the pre-landslide conditions may be
similar to those found in an external neighborhood of the landslide source area [15–19].

Among the systems of landslide representations that have been applied with notable results,
the main scarp upper edge method (MSUE-Method) [10] allows for easier automatic research of the
factor values in the undisturbed belt external to the rupture zone of the landslide [10,20].

The applicability of the MSUE, however, has been poorly studied. The predictive ability of
MSUE models has been analyzed previously by a validation dataset generated using a random
split method for observed landslides. If the landslides used in the model validation dataset also
require the pre-landslide conditions to be reconstructed, the LS image used to define the maximum
likelihood in the model could not represent the real LS, owing to the degree of subjectivity used
in the reconstruction process. The best predictive model chosen from the validation procedure
may poorly predict future landslides. In this case, following the procedures described in previous
studies [12,21–23], the forecasting model should be implemented by an older landslide inventory, and
more recent landslides should be exploited to evaluate the prediction.

This study represents an attempt to analyze the applicability of MSUE as dependent variable
representation. For the final purpose of this study, the conditional analysis method has been applied
to factor combinations [24], as it has fewer limitations than other systems of statistical analysis.
In particular, this method does not require independence variables and covariate normal distribution.

To achieve the study goal rigorously, it was also necessary to perform the surveys in two different
basins by means of two landslide inventories related to a period preceding and another succeeding
a fixed date. More specifically, the model validation procedure was based on the “wait and see”
concept [25], according to which, in the spatial database, it was assumed that the time of the study
was the year 1975 and that all the spatial data available in 1975 had been compiled, including the
distribution of the MSUEs of the landslides prior to that year. Consequently, the landslides related to a
period before 1975 were used to create the models, while those related to a period later than 1975 were
used to validate the predictive power of the models. Finally, an analysis of reduced chi-square was
performed to define the efficiency of MSUE as a dependent variable.

2. Geography

The study areas were the Milia and Roglio basins, situated in southern-central and central Tuscany
(Italy), respectively (Figure 1).

The Milia basin has an extension of 101 km2 and an elevation ranging from 39 m to 913 m asl,
with an average elevation of 336 m (standard deviation = 167.5 m), whereas the catchment area of the
Roglio River covers 160 km2 with an elevation ranging from 20 m to 500 m asl, with an average of
130.9 m (standard deviation = 72.1 m). The basins have a predominantly hilly morphology, generally
with not very steep slopes; the connection areas between the valley floor and the slopes are very
extended. In the studied basins, most of the streams show strong vertical and lateral erosion tendencies.
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Figure 1. Location of the study areas (a) and the geological characteristics (b,c).

3. Geology and Geomorphology

A complex sheet stack of Ligurian and Sub-Ligurian units emplaced above the Tuscan Nappe
is the result of the compressional events that characterized the Apennine tectonic history [26,27].
The units of the Ligurian Domain are representative of distal turbiditic and pelagic environments and
of the oceanic crust that formed the ancient Ligurian-Piedmont Basin, while the Tuscany units are
mostly represented by the Mesozoic carbonate succession associated with very few outcrops of the
cretaceous-tertiary turbiditic and hemipelagic sequence. The Tuscany units are overthrusted above the
Monticiano-Roccastrada Unit (Tuscany Autochthonous Metamorphic Unit), which is characterized
by an alternation of phyllites, marbles and quartzite lithotypes. On the whole, four major rock
and sediment types are present in each basin: (i) marine and continental sediments made up of
clay, marly clay, sand, gravel and gravelly sand, (ii) flysch deposits, comprising layered sandstone,
marly limestone, and shale, (iii) carbonate rocks, comprising layered and massive limestone, and (iv)
metamorphic rocks, made up of quartzite and slate. The Palombini Shale Unit (Ligurian unit) mainly
characterizes the Milia basin, instead marine and continental sediments (Pliocene formations) are the
most extensive outcrops in the Roglio basin (Figure 1). Each basin experienced an extensional tectonics
that highly controlled the post-collisional evolution of this part of the Apennines. This tectonic style
began at the end of the Early Miocene [28]. Since the Middle Pleistocene differential uplift, lowering
and tilting phenomena of mountain sectors have caused a rapid incision of the hydrographic networks,
promoting the formation of several fluvial terraces along both basins.

Translational slides, rotational slides, and flows [29] dominate the morphology of the studied
basins. In addition, many Deep-Seated Gravitational Slope Deformations (DSGSDs, [30]) have been
identified in the Milia basin. Their occurrence can be related to the Pleistocene tectonics and to the
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lowering of the local fluvial base level. A Sackung type [31] can be proposed with regard to the
movement. According to the authors [32], DSGSDs in the Milia basin played a significant role as
landslide-predisposing factor. The presence of clayey and clayey-sandy lithologies in the Roglio basin
has promoted the development of badlands and “balze” morphologies. “Balzes” [33] are constituted by
a series of degradation scarps, which interrupt the continuity of the slope profile where an alternation
of sandy and clay layers has occurred (Figure 2a). The numerous badlands and “balze” morphologies,
whose genesis can be correlated to the rainwater erosive action on the Pliocene deposits, are currently
affected by slope processes mainly connected with the development of landslides (Figure 2b).
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Figure 2. Field photographs. (a) The “balze” morphologies in the Roglio basin and the gravity
evolution. The yellow line represents the degradation scarp of the “balze”, whereas the black and
white lines represent the main scarp upper edge and the body of an actual rotational slide, respectively.
(b) The badlands in the Roglio basin and the gravity evolution connected with the development of
the landslides. The black and white lines represent, respectively, the main scarp upper edges and the
bodies of recent translational slides.

Many translational slides have developed from the bodies of older landslides in both basins.

4. Basic Theory, Database Building and Procedures for LS Zonation

4.1. MSUE-Conditional Analysis Method

The conditional analysis method applied to factor combinations [24] is based on Bayes’
Theorem [34] for which the likelihood of landslide occurrences conditioned by the occurrence of
different combinations of environmental factors (conditioning events) can be defined by computing
the landslide density within each different conditioning event (Unique Condition Unit, UCU) [14].
More specifically, the method considers a number of environmental factors, thought to be strictly
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connected with landslide occurrence. The data layers, where each factor is subdivided into classes,
are crossed to obtain all possible factor combinations (UCU-maps). For each of these factor
combinations, landslide density is then quantified within each UCU by crossing the relative UCU-map
with the landslides chosen as model training dataset. Considering that landslide density is assumed to
be equivalent to the future landslide probability at a specific UCU [14], from this process we obtain a
number of LS models equal to the number of possible factor combinations. The best model is chosen
by comparing the distribution of landslides used as validation dataset and of those derived from the
models. This method tends to assess the most suitable combination for defining the LS zonation with
the highest predictive ability.

In this study the landslides have been identified by the MSUEs. Consequently, to consider the
UCUs present in the external neighborhood of the landslide source area (which could be representative
of the geo-environmental conditions existing before the development of landslides), an upstream 10 m
buffer of is used for each MSUE. This buffer extension is the highest threshold value for which we can
avoid the buffer areas passing over the divide line.

Therefore, the method applied to the LS zonation of the Milia and Roglio basins assumes the
conditional probability of landslide occurrence for a given UCU as the ratio between the MSUE buffer
area affecting UCU and the area of UCU [19].

4.2. Landslide Dataset

Geological and geomorphological field surveys were conducted using the Tuscany Region
topographic maps (scale 1:10,000) and the Tuscany Region orthophotos (1 m ground-sample-distance
ortho-imagery rectified to a horizontal accuracy of within ±4 m) dating back to 2006 and 2003 for the
Milia and Roglio basins, respectively. A geomorphological field survey was also carried out with the
aid of GPS point acquisition (accuracy ≤3 m, precision ≤1 m) and of the stereoscopic interpretation of
1975 aerial photographs (flight EIRA75).

The landslides of each basin were split into two temporal groups by stereoscopic analysis of the
aerial photographs relating to 1975 (Figure 3). The landslides that occurred before 1975 were used
as a model training set, whereas the landslides that occurred after 1975 have been used as a model
validation set. In agreement with Guzzetti et al. [5], LS analysis should be performed for different
types of landslides. For this reason, the landslides were grouped into separate datasets based on
movement typology. Following the division proposed by Keefer [35], we only considered deep-seated
(≥3 m) landslides in order to avoid the introduction of shallow and easily degradable landslides into
the model validation dataset.

A total of 2039 landslides were identified in the Milia basin (Figure 3a). The landslides covered a
surface of about 22.6 km2, representing 22.4% of the whole basin area. On the basis of the observations
made during the field work, these 2039 landslides were divided into three typologies: translational
slide (1577), flow (155), and rotational slide (307). Among these, 128 translational slides, 31 flow and
46 rotational slides have occurred since 1975.

In the Roglio basin a total of 4137 deep-seated landslides were identified, which occupied a
surface of about 20.7 km2, representing 12.5% of the whole basin area. The landslides were classified
into three typologies: translational slide (3174), flow (873), and rotational slide (90). Among these,
233 translational slides, 109 flow and 19 rotational slides have occurred since 1975 (Figure 3b).

Overall, the studied basins were affected mainly by translational slide-type landslides. The aim of
this study was to analyze the applicability of MSUE as dependent variable representation by using a
statistical approach. For this reason, only the translational slides were used for analysis, to ensure that
the predictive model could be adequately trained because of the abundance of landslides.

For each basin, the maps of the MSUEs relative to the training and validation datasets were
obtained from the geomorphological maps previously digitized in ArcGIS (MSUEs pre- and post-1975).
The maps of the buffers were achieved in polygonal vector format from the MSUE maps by using the
ArcInfo 9.2 (ESRI: Redlands, CA, USA) buffer tool of 9 m. The landslide datasets used in this study can



ISPRS Int. J. Geo-Inf. 2018, 7, 336 6 of 15

be downloaded from the Supplementary Material. The files can also be unlocked by using open-source
GIS software.
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4.3. Possible Landslide-Predisposing Factor

The variables used in this study were selected on the basis of our geomorphological and
geological knowledge of the two basins. Lithology, slope angle, slope aspect and distance to
hydrographic elements, to tectonic lineaments and to degradation scarps were considered possible
landslide-predisposing factors.

The factor maps related to lithology and to the distance from hydrographic elements, from tectonic
lineaments and from degradation scarps were attained in vector format from the geological map.
For lithology, different classes were extracted from the geological map on the basis of lithological and
structural analogies (Figure 4). Considering that many landslides in the study areas occurred from the
body of precedent landslides and from DSGSDs [32], it was also necessary to insert these elements into
specific classes.
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Figure 4. Lithological factor maps of the Milia (a) and Roglio (b) basins. Landslides are reported.

Degradation scarps were indistinctly considered as the edges of the badlands and of the “balze”
morphologies. Faults and main thrusts were considered for tectonic lineaments, whereas the main
and secondary channels were evaluated for the correlation analysis between landslides and the fluvial
activity. The maps related to the distance from hydrographic elements, tectonic lineaments and
degradation scarps were performed by subjecting the relative linear feature-class to a process of
buffering with the construction of four distance classes based on percentile criteria.

By exploiting the 3D Analyst and Spatial Analyst extensions of ArcInfo, slope angle and slope
aspect maps were derived from the 5 × 5 m2 pixel resolution DEM, obtained by transforming a
TIN (Triangulated Irregular Network) into a GRID. The TIN was generated by the interpolation of
digital contour lines and elevation points extracted from the Tuscany Region topographic maps (scale
1:10,000) dating back to 1975. The slope angle was reclassified into six classes with similar areas
(percentile criteria), while the slope aspect was reclassified into the eight most frequently adopted
classes corresponding to the angular sectors, 45◦ wide and clockwise from north (equal interval criteria).

Table 1 shows the class extension for each factor and the relative MSUE density.
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Table 1. Area (km2), mean area, area standard deviation (σ), and Main Scarp Upper Edge MSUE density (m2/km2) for each class of the factors used in the analysis.
The values are reported for each studied basin.

Roglio Milia

Factor Class Area (km2)
Mean Area

(km2) σ (km2)
MSUEs Density

(103 m2/km2) Class Area (km2)
Mean Area

(km2) σ (km2)
MSUEs Density

(103 m2/km2)

Lithology (L) Clayey sand 4.3 0.090 0.197 0 Sand 5.6 0.140 0.701 0
Gravelly sand 30.3 0.248 1.713 1.0 Gravelly sand 3.1 0.038 0.088 2.6

Landslide body 16.7 0.004 0.007 8.5 Landslide body 22.4 0.012 0.016 16.7
Sand and clay 50.6 0.568 1.983 37.7 DSGSD 6.2 0.270 0.468 32.7

Clay 36.7 0.260 1.194 21.8 Gravel 8.7 0.103 0.143 38.4
Sand 18.1 0.541 2.643 24.2 Marly clay 0.3 0.018 0.016 52.2

Marly limestone 0.6 0.021 0.054 23.9 Shale 29.2 0.219 0.922 41.9
Shale 0.5 0.033 0.040 27.9 Marly limestone 4.0 0.114 0.211 35.3

Sandstone 0.1 0.005 0.006 28.4 Sandstone 1.5 0.151 0.198 12.0
Limestone 1.5 0.081 0.142 18.9 Quartzite 1.3 0.262 0.414 7.1

Slate 0.6 0.312 0.175 26.9 Limestone 19.1 0.515 2.248 5.2

Slope angle (S) [0–2◦] 25.7 0.038 0.122 2.9 [0–4◦] 16.5 0.018 0.041 11.1
[2–7◦] 28.2 0.011 0.014 5.4 [4–10◦] 16.3 0.034 0.011 16.7

[7–11◦] 26.4 0.063 0.004 10.6 [10–12◦] 18.1 0.023 0.005 24.6
[11–15◦] 27.1 0.056 0.003 20.1 [12–15◦] 16.6 0.015 0.003 32.3
[15–21◦] 26.2 0.011 0.003 33.4 [15–20◦] 17.7 0.018 0.004 31.6
[21–77◦] 26.5 0.057 0.004 55.8 [20–90◦] 16.1 0.039 0.040 26.4

Slope aspect (A) [0–45◦] 26.9 0.036 0.017 14.8 [0–45◦] 19.6 0.021 0.016 19.0
[45–90◦] 13.8 0.027 0.008 23.7 [45–90◦] 6.3 0.018 0.008 37.9
[90–135◦] 13.3 0.039 0.013 28.8 [90–135◦] 8.6 0.020 0.002 23.8

[135–180◦] 18.3 0.026 0.012 27.8 [135–180◦] 12.9 0.023 0.011 25.0
[180–225◦] 19.1 0.028 0.014 23.5 [180–225◦] 13.7 0.021 0.009 25.2
[225–270◦] 22.6 0.018 0.011 18.5 [225–270◦] 14.0 0.022 0.011 22.1
[270–315◦] 23.6 0.040 0.013 19.8 [270–315◦] 13.6 0.023 0.012 21.8
[315–0◦] 22.7 0.022 0.012 20.1 [315–0◦] 12.7 0.024 0.012 27.3

Distance to hydrographic elements (Di) [0–49 m] 39.5 39.461 0.000 9.1 [0–50 m] 26.6 5.322 9.041 11.1
[49–105 m] 41.9 0.551 3.409 26.7 [50–110 m] 24.8 0.419 1.242 32.6
[105–181 m] 40.3 0.183 0.764 25.9 [110–194 m] 25.4 0.153 0.429 25.5
[181–890 m] 38.6 0.107 0.372 22.9 [194–793 m] 24.5 0.142 0.394 26.3

Distance to tectonic lineaments (Df) [0–335 m] 39.7 5.763 8.709 23.4 [0–102 m] 24.6 0.491 1.189 29.7
[335–829 m] 41.5 2.965 8.025 21.1 [102–275 m] 26.3 0.239 0.775 25.4

[829–1629 m] 40.0 6.671 12.436 20.3 [275–550 m] 24.4 0.669 2.862 23.5
[1629–7555 m] 38.9 5.563 11.354 20.2 [550–2002 m] 25.1 1.689 2.283 18.1

Distance to degradation scarps (Ds) [0–60 m] 38.3 0.416 0.803 30.5 N.P. / / / /
[60–201 m] 41.9 0.115 0.639 21.3 N.P. / / / /
[201–454 m] 40.9 0.584 4.585 17.9 N.P. / / / /

[454–1898 m] 39.1 1.563 3.265 15.6 N.P. / / / /
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4.4. Procedure for Selecting the Best LS Model

A Python program (script) in the Model-Builder of ArcInfo was created, in which all the possible
combinations of landslide-related factors (UCU maps) were initially computed for each basin. The UCU
maps were then intersected with the buffer maps of the MSUEs belonging to the pre-1975 dataset.
For each UCU the ratio of the sum of the UCU area that falls within the MSUE buffer and the total area
for that UCU can be calculated. The UCUs are thus grouped into five density classes (LS classes) on the
basis of the ratio value (UCU density). A similar method, already applied by Clerici et al. [20], is used
for class definition. The classes are defined on the basis of MSUE mean density (if, prior probability)
obtained by dividing the total MSUE buffer area by the basin area. This value is the middle point of
the middle class. More precisely, the class interval on which LS maps are created is Ci = (If/5) × 2 and
the susceptibility class intervals are the following: 0–Ci (Very Low), Ci–2Ci (Low), 2Ci–3Ci (Medium),
3Ci–4Ci (High) and 4Ci–5Ci (Very High).

The validation procedure was performed in the Model-Builder to choose the best model.
Considering that the validation procedure is based on the “wait and see” concept, the distribution
of the pre-1975 MSUEs (training set) is compared to that of the post-1975 MSUEs (validation set).
More specifically, the absolute value of the difference between the pre-1975 and post-1975 MSUE
percentage is computed for each LS class. The sum of the latter values, Validation Error (VE), is reported
for each LS model. The VE assesses the predictive power of each model built and its value ranging
from 0 (the best predictive power) to 200 (worst predictive power).

According to Clerici et al. [20], a good model should have a great dispersion around the landslide
mean density value to distinguish among significantly different landslide density conditions. Therefore,
we computed the mean deviation (MD) of the UCU density for each model and we used the ratio
MD/(0.01 + VE) (Best Model Index, BMI) to choose the best LS model, which should have the highest
BMI value.

The procedure proposed by Clerici et al. [20] to select the best model is very similar to that
proposed by Chung and Fabbri [23], frequently used in recent researches [8,11,36,37]. Considering
that UCU ordering within a Success Rate Curve (SRC) should be made according to landslide density
(conditional probability), the higher the UCU-density mean deviation (MD), the greater the area under
the curve (AUC) of the SRC. Furthermore, the lower the VE model, the smaller the AUC difference
between the Prediction Rate Curve (PRC) and the SRC of the model. As a whole, the higher the value
of the BMI, the better the fitting performance and prediction skill of the LS model.

However, in areas such as the Roglio and Milia basins, where a large portion of the basin surface
is covered by landslides, it is impossible to obtain steep Success Rate Curves [38].

The conditional analysis method applied to factor combinations does not require the
inter-correlation analysis between predisposing factors. If some of the factors introduced in the
analysis are strictly related to each other, providing redundant information, the models attained
from the combination will have a lower BMI than that of the models built from spatial independent
predisposing factors.

Since BMI unifies the two types of errors (false positives and false negatives), and false negatives
are more dangerous for susceptibility analysis, the validation system proposed by Clerici et al. [20]
was here also supported by the analysis of the model receiver operating the characteristic (ROC)
curve [12,23,39–41].

4.5. Statistical Significance of the Best Model

Independently of the procedure chosen for the best LS model selection, all the methods used
to select the LS model performance gave us the best LS model among those built without any clues
regarding the possibility of obtaining a better model for the same input landslide datasets (training and
validation). More specifically, the procedure chosen for the best LS model selection did not provide us
with any information about the possibility of obtaining a better LS model by changing the terrain map
unit, factor map quality, and the procedure used for factor-classes subdivision, landslide-predisposing
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factors, and statistical analysis method. In other words, we cannot define how statistically significant
is the assertion according to which the best possible LS model is the one chosen from our study.

An analysis of the reduced chi-square (
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2 maximum likelihood among the landslide groups used for
model construction and validation. Independently of the system (statistical methods, landslide-relating
factor, model validation procedures and map units) used to divide the territory and to reclassify it into
five susceptibility classes, the reduced chi-square allowed us to obtain models with a higher likelihood
degree than those obtained in the study. The

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  11 of 16 

 

statistically significant is the assertion according to which the best possible LS model is the one chosen 

from our study. 

An analysis of the reduced chi-square (Ӽ2) was performed to define how the predictive ability of 

the best model actually represents the Ӽ2 maximum likelihood among the landslide groups used for 

model construction and validation. Independently of the system (statistical methods, landslide-

relating factor, model validation procedures and map units) used to divide the territory and to 

reclassify it into five susceptibility classes, the reduced chi-square allowed us to obtain models with 

a higher likelihood degree than those obtained in the study. The Ӽ2 value for a model defines the 

probability of finding a likelihood between the observed and the expected probability of a certain 

event A, which is better than that defined by the model itself [42–44]. Considering that the forecasting 

model should be made by using an older landslide inventory, and that more recent landslides should 

be used to evaluate the prediction [21–23,38], for each model the percentage of landslides belonging 

to the validation group that fall into a susceptibility class must be necessarily considered as the 

expected values of the landsliding probability in that class. 

Therefore, in this study the chi-square value is calculated as follows: 

Ӽ2  =
1

n − 1
∑

[(% MSUE buffer area pre − 75)i − (% MSUE buffer area post − 75)i]2

(% MSUE buffer area post − 75)i

n

i=1
  

where n is the LS model class number. 

5. Results and Discussion 

A total of 63 and 31 translational slide susceptibility models were made for the Roglio and Milia 

basins. Table 2 shows the 10 models with the highest area under the ROC curve (AUC) for both 

basins. The best model of each basin is related to the environmental factor combination (FC) 

characterizing the first row of the table, which also shows the highest BMI. In the Milia basin, the 

combination of the lithology-slope angle (LS) factors represents the best model with an AUC = 87.3 

and a BMI = 2513.1 (Table 2). In the Roglio basin, the combination of aspect–distance to hydrographic 

elements and distance to tectonic lineaments (ADiDf) factors represents the best model with an AUC 

= 87.9 and a BMI = 575.0 (Table 3) 

The two best models provide satisfactory results (Figure 5). For the first model of the Roglio 

basin, at the cutoff probability level of 0.009, 84.8% of the UCUs are correctly classified (model 

efficiency), whereas in the Milia basin, at the cutoff probability level of 0.015, the efficiency of the best 

model reaches 84.5%. Both cutoff values correspond to the limits between high and very high 

susceptibility classes of the best two models. 

Table 2. The 10 best models of landslide susceptibility obtained for each basin. FC: Factors 

combination (L: Lithology, S: Slope angle, A: Slope aspect, Di: Distance to hydrographic elements, Df: 

Distance to tectonic lineaments, Ds: Distance to degradation scarps); VE: Validation error (%); MD: 

Mean deviation (m2/km2); BMI: Best model index (km2/m2); ROC AUC (%); Area Under the ROC 

Curve; ROC: receiver operating characteristic curve. 

  
ROGLIO 

BASIN 
    

MILIA 

BASIN 
  

FC VE MD BMI 
ROC 

AUC  
FC VE MD BMI 

ROC 

AUC 

 (%) (103 m2/km2) (102 km2/m2) (%)  (%) (103 m2/km2) (102 km2/m2) (%) 

ADiDf 6.3 3.63 5.75 87.9 LS 3.4 8.57 25.13 87.3 

LDiDf 25.2 8.45 3.35 82.1 LDi 9.1 8.78 9.64 85.2 

ADi 5.5 2.34 4.25 81.5 LSDf 11.0 8.89 8.07 84.5 

LDi 20.5 8.96 4.37 80.1 LDiDf 5.6 9.04 16.11 82.0 

LADi 25.5 11.24 4.41 79.1 LA 11.8 8.78 7.43 80.8 

LSADi 29.2 14.14 4.84 78.5 LDf 5.5 8.08 14.66 79.9 

LADiDf 27.9 10.59 3.79 77.2 LSA 11.7 10.49 8.96 79.6 

LSDiDf 25.2 10.31 4.01 75.0 LADi 13.2 10.66 8.07 77.7 

ADfDs 12.1 3.52 2.91 71.6 LSDiDf 16.4 11.03 6.72 77.5 

SDi 24.5 8.20 3.34 68.8 LADf 16.0 9.52 5.95 77.3 

2 value for a model defines the probability of finding
a likelihood between the observed and the expected probability of a certain event A, which is better
than that defined by the model itself [42–44]. Considering that the forecasting model should be made
by using an older landslide inventory, and that more recent landslides should be used to evaluate
the prediction [21–23,38], for each model the percentage of landslides belonging to the validation
group that fall into a susceptibility class must be necessarily considered as the expected values of the
landsliding probability in that class.

Therefore, in this study the chi-square value is calculated as follows:
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where n is the LS model class number.

5. Results and Discussion

A total of 63 and 31 translational slide susceptibility models were made for the Roglio and Milia
basins. Table 2 shows the 10 models with the highest area under the ROC curve (AUC) for both basins.
The best model of each basin is related to the environmental factor combination (FC) characterizing
the first row of the table, which also shows the highest BMI. In the Milia basin, the combination of the
lithology-slope angle (LS) factors represents the best model with an AUC = 87.3 and a BMI = 2513.1
(Table 2). In the Roglio basin, the combination of aspect–distance to hydrographic elements and
distance to tectonic lineaments (ADiDf) factors represents the best model with an AUC = 87.9 and a
BMI = 575.0 (Table 3)

The two best models provide satisfactory results (Figure 5). For the first model of the Roglio basin,
at the cutoff probability level of 0.009, 84.8% of the UCUs are correctly classified (model efficiency),
whereas in the Milia basin, at the cutoff probability level of 0.015, the efficiency of the best model
reaches 84.5%. Both cutoff values correspond to the limits between high and very high susceptibility
classes of the best two models.

Table 2. The 10 best models of landslide susceptibility obtained for each basin. FC: Factors combination
(L: Lithology, S: Slope angle, A: Slope aspect, Di: Distance to hydrographic elements, Df: Distance
to tectonic lineaments, Ds: Distance to degradation scarps); VE: Validation error (%); MD: Mean
deviation (m2/km2); BMI: Best model index (km2/m2); ROC AUC (%); Area Under the ROC Curve;
ROC: receiver operating characteristic curve.

ROGLIO
BASIN

MILIA
BASIN

FC VE MD BMI ROC AUC FC VE MD BMI ROC AUC

(%) (103 m2/km2) (102 km2/m2) (%) (%) (103 m2/km2) (102 km2/m2) (%)

ADiDf 6.3 3.63 5.75 87.9 LS 3.4 8.57 25.13 87.3
LDiDf 25.2 8.45 3.35 82.1 LDi 9.1 8.78 9.64 85.2
ADi 5.5 2.34 4.25 81.5 LSDf 11.0 8.89 8.07 84.5
LDi 20.5 8.96 4.37 80.1 LDiDf 5.6 9.04 16.11 82.0

LADi 25.5 11.24 4.41 79.1 LA 11.8 8.78 7.43 80.8
LSADi 29.2 14.14 4.84 78.5 LDf 5.5 8.08 14.66 79.9

LADiDf 27.9 10.59 3.79 77.2 LSA 11.7 10.49 8.96 79.6
LSDiDf 25.2 10.31 4.01 75.0 LADi 13.2 10.66 8.07 77.7
ADfDs 12.1 3.52 2.91 71.6 LSDiDf 16.4 11.03 6.72 77.5

SDi 24.5 8.20 3.34 68.8 LADf 16.0 9.52 5.95 77.3
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Figure 5. Receiver operating characteristic (ROC) curves for the 10 best models of the Roglio
(a) and Milia (b) basins. Acronyms of Factors Combination: L: Lithology; S: Slope angle; A: Slope
aspect; Di: Distance to hydrographic elements; Df: Distance to tectonic lineaments; Ds: Distance to
degradation scarps.

For the translational slides of the Roglio basin, the best model has a reduced ability to discriminate
the susceptibility of the UCUs compared to the prior probability, although it is characterized by a
low validation error. In this case the MD value equal to 3629 implies a concentration of UCUs in the
medium susceptibility class (Figure 6a).

The
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2observed] ≤ 0.05).
In addition, as all the chosen models have been created with the same number of degrees of freedom
(number of classes of susceptibility −1), the analysis of
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2 allows us to compare the predictive
capabilities of each of these models. Regardless of how the territory was divided and reclassified into
five classes of susceptibility (statistical methods, model validation procedures, and map units used),
the likelihood degree of the models is always calculated on the same
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2 probability distribution curve
(integral function of Pugh and Winslow [42]), which is related to systems with four degrees of freedom
(
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The values obtained were compared to the probability table of
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2 with four degrees of
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2observed.) have been determined for each best
model (Table 3).

From the reduced
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2 analysis, it is possible to see how the best models in the Roglio and Milia
basins show an acceptable predictive power, where the combination of the factors, slope aspect,
distance to the hydrographic elements and distance to tectonic lineaments (ADiDf) for the first,
lithology and slope angle (LS) for the second are the best models with a good statistical significance
level. In other words, the assertion for which in the Milia and Roglio basins the best LS models are the
best possible can be accepted at the 95 percent level.

Table 3. Chi-square statistics of the best models. The chi-square tests were performed with 4 degree of
freedom and 0.05 confidence level (
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2
critic = 0.177) and with 9 degree of freedom and 0.05 confidence

level (
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LS 3.4 0.049 < 0.05 0.261 < 0.05

The good statistical significance level of the two best models does not change by increasing the
degrees of freedom of the chi-square test (Table 3). Moving from four to nine degree of freedom, i.e.,
the maximum value for which we can avoid models class frequency lower than 5%, the probability of
obtaining models with a higher likelihood degree than those carried out from this study are yet less
than 0.05 (
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2
critic = 0.369 for 0.05 confidence level).

Therefore, for the Milia and Roglio basins we have convincing evidences that MSUE is efficient at
yielding relevant LS maps for predicting the translational slide-type landslide.

6. Conclusions

In this study, we analyzed the applicability of the MSUE, as dependent variable representation,
in the LS zonation of two Tuscany basins. The results show how for translational slides the use
of the MSUE yields models with a very high power prediction. Regardless of the mode (statistical
methods, factor map quality, models validation procedures and map units) used to divide the territory
and to reclassify it into five susceptibility classes, the probability of obtaining models with a higher
likelihood degree than those carried out for the translational slides of the studied basins is lower
than 0.05. In particular, the model created for the translational slides of the Milia basin appears
surprisingly exceptional in predicting landslide development with a high spatial resolution. In the
Roglio basin, slope angle, distance from streams and from tectonic lineaments have demonstrated to
be the main controlling factors of translational slides. The high translational slide susceptibility zones
are primarily located in the SE-facing slopes adjacent to streams and to tectonic lineaments. In the
Milia basin, lithology and slope angle gave more satisfactory results as landslide-predisposing factors.
More specifically, the susceptibility map of the translational slides outlines hillslope sections where
shale formations outcrop, with a slope gradient above 33%, as very prone to landslides.

Overall, for translational slide-type landslides, the study results show how MSUE can be applied
as dependent variable representation to landslide susceptibility zonation with appreciable results.

MSUE applicability to other landslide typologies, however, still remains unresolved and it should
be studied in future works together with the MSUE applicability on lithotypes and geomorphological
conditions different from those considered in this study.
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