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Abstract: Accurate urban land-use mapping is a challenging task in the remote-sensing field. With
the availability of diverse remote sensors, synthetic use and integration of multisource data provides
an opportunity for improving urban land-use classification accuracy. Neural networks for Deep
Learning have achieved very promising results in computer-vision tasks, such as image classification
and object detection. However, the problem of designing an effective deep-learning model for the
fusion of multisource remote-sensing data still remains. To tackle this issue, this paper proposes a
modified two-branch convolutional neural network for the adaptive fusion of hyperspectral imagery
(HSI) and Light Detection and Ranging (LiDAR) data. Specifically, the proposed model consists
of a HSI branch and a LiDAR branch, sharing the same network structure to reduce the time cost
of network design. A residual block is utilized in each branch to extract hierarchical, parallel, and
multiscale features. An adaptive-feature fusion module is proposed to integrate HSI and LiDAR
features in a more reasonable and natural way (based on “Squeeze-and-Excitation Networks”).
Experiments indicate that the proposed two-branch network shows good performance, with an
overall accuracy of almost 92%. Compared with single-source data, the introduction of multisource
data improves accuracy by at least 8%. The adaptive fusion model can also increase classification
accuracy by more than 3% when compared with the feature-stacking method (simple concatenation).
The results demonstrate that the proposed network can effectively extract and fuse features for a
better urban land-use mapping accuracy.
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1. Introduction

Urban land-use mapping is of great significance for various urban applications, such as urban
planning and designing, urban-environment monitoring, and urban-land surveys [1,2]. Traditional
methods for urban land-use mapping are based on the visual interpretation of high-resolution
optical remote-sensing imagery and field surveys, which can be quite time-consuming and laborious.
Therefore, it is very important to investigate the automatic classification methods for fragmented and
complex urban land-use types.

With the development of remote-sensing technology, some researchers started to use multispectral
optical imagery and machine-learning methods to automatically extract urban and-cover and land-use
information [3–6]. For instance, Lu et al. [3] combined textural and spectral images with the traditional
supervised classification method for urban land-cover classification based on multispectral QuickBird
remote-sensing data. Powell et al. [4] utilized spectral-mixture analysis for subpixel urban land-cover
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mapping based on Landsat imagery. Pu et al. [5] adopted an object-based method and IKONOS imagery
for urban land-cover classification. However, due to the complicated composition of urban landscapes
and the low spectral resolution of multispectral remote-sensing data, it is very difficult to yield very
high classification accuracy. Compared with multispectral remote sensing, hyperspectral remote
sensing can obtain hundreds of narrow contiguous spectral bands, which is capable of separating
objects with subtle spectral differences. Recent studies also show the great potential of hyperspectral
remote sensing in the differentiation of complex urban land-use types [6,7]. Demarchi et al. [6]
used APEX 288-band hyperspectral data for urban land-cover mapping based on unsupervised
dimensionality-reduction techniques and several machine-learning classifiers. Tong et al. [7] discussed
which features of airborne hyperspectral data to use for urban land-cover classification and showed
that the synthetic use of shape, texture and spectral information can improve the classification accuracy.

Meanwhile, due to the availability of diverse remote sensors, researchers began to integrate
multisource and multisensor data for better characterization of the land surface [8–13]. Since then,
the combined use of HSI and Light Detection and Ranging (LiDAR) data has been an active topic [8–13].
The addition of LiDAR data can provide detailed height and shape information of the scene, which can
improve classification accuracy when compared with the use of hyperspectral data alone. For instance,
roofs and roads that are both made of concrete are difficult to distinguish in hyperspectral images,
but they can easily be separated using LiDAR-derived height information due to the significant
difference in altitude. Based on the above points, researchers investigated the fusion methods of
multisource hyperspectral and LiDAR data. Debes et al. [8] highlighted two methods for hyperspectral
and LiDAR data fusion, including a combined unsupervised and supervised classification scheme,
and a graph-based method for the fusion of spectral, spatial, and elevation information. Man et al. [9]
discussed both the pixel- and feature-level fusion of hyperspectral and LiDAR data for urban land-use
classification and showed that the combination of pixel- and object-based classifiers can increase
the classification precision. Moreover, the fusion of hyperspectral and LiDAR data has also been
applied in many other fields, such as forest monitoring [10,11], volcano mapping [12], and crop-species
classification [13].

As for the approaches of multisource remote sensing data fusion, the widely used methods mainly
include feature-level fusion and decision-level fusion. Specifically, in the procedure of feature-level
fusion, remote sensing data from different sources are firstly processed to extract the relevant features
and then fused through feature stacking or feature reconstructing. Man et al. [9] stacked LiDAR
features, i.e., nDSM, Intensity and HSI features, i.e., spectral indices and textures to improve the
performance of urban land-use classification. Gonzalez et al. [14] also stacked multisource features
from color infrared imagery and LiDAR data for object-based mapping of forest habitats. Similar feature
stacking approaches can be also found in the studies of Sankey et al. [11] and Sasaki et al. [15]. Different
from above studies, Debes et al [8] utilized a fusion graph to project all the original multisource
features into a low-dimensional subspace to increase the robustness of the fused features. Compared
with feature-level fusion, multisource datasets are separately classified and then fused or integrated in the
process of decision-level fusion to generate the final classification results. Sturari et al. [16] proposed a
decision-level fusion method for the fusion of LiDAR and multispectral optical data, where the LiDAR
classified objects were used as a posteriori in the object rule-based winner-takes-all fusion step.

In addition, all the above studies are based on shallow architectures and hand-crafted feature
descriptors, which cannot obtain the fine and abstract high-level features of a complex urban landscape.
Deep learning, on the other hand, is capable of modeling high-level feature representations through
a hierarchical learning framework [17]. Abstract and invariant features, together with the classifiers,
can be simultaneously learned with a multilayer cascaded deep neural network, which outperforms
hand-crafted shallow features in computer-vision tasks, such as image classification [18,19], object
detection [20], and landmark detection [21,22]. Deep-learning methods have also been a hot topic in
remote sensing [23], and have been successfully applied to building and road extraction [24], wetland
mapping [25], cloud detection [26], and land-cover classification [27].
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Recently, researchers have started to utilize deep learning for multisource remote-sensing data
fusion [28–30]. A typical framework for multisource data fusion based on deep learning is to construct a
two-branch network [28–30]. Features from different data sources are first separately extracted via each
branch and then fused through feature stacking or feature concatenation. The fused features are passed
to the classifier layer to generate the final classification results. For instance, Xu et al. [28] proposed a
two-branch convolutional neural network (CNN) for multisource remote-sensing data classification,
and the network can achieve better classification performance than existing methods. Huang et al. [29]
used a two-branch CNN for extracting both spatial and spectral features of urban land objects for
improved urban land-use mapping performance. Hughes et al. [30] adopted a pseudo-Siamese CNN,
which also had a two-branch structure, to identify corresponding patches in SAR (Synthetic Aperture
Radar) and optical images.

Nevertheless, the above studies that use a two-branch network have two drawbacks that could be
improved. Firstly, the data-fusion method of simply stacking or concatenating different features does
not consider the importance or contribution of each feature to the final classification task, which could
be improved by assigning a specific weight to each feature. Secondly, the backbone of the network is
conventional, e.g., AlexNet [18], which can be replaced by other recent network structures.

To tackle these problems, this paper modified the original two-branch neural network [28] to
adaptively fuse hyperspectral and LiDAR data for urban land-use classification. The proposed model
mainly consists of three parts, i.e., the hyperspectral-imagery (HSI) branch for spatial–spectral feature
extraction, the LiDAR branch for height-relevant feature extraction, and a fusion module for the
adaptive feature fusion of the two branches. Specifically, the HSI branch and LiDAR branch share the
same network structure, which is based on the cascade of a new multiscale residual block in order to
reduce the burden of network design. During the training procedure, each branch is first separately
trained, and the whole network is then fine-tuned based on each trained branch.

The rest of the paper is organized as follows. Section 2 introduces the study area and dataset.
Section 3 presents the detailed architecture of the modified two-branch network. Section 4 shows the
experimental results and discussion, and Section 5 provides the main concluding remarks.

2. Study Area and Dataset

The study area was the University of Houston campus and its neighboring urban areas, which are
located in the southeast of Texas, United States. The hyperspectral and LiDAR data were from the 2013
IEEE (Institute of Electrical and Electronic Engineers) GRSS (Geoscience and Remote Sensing Society)
Data Fusion Contest [8]. Specifically, the hyperspectral imagery was acquired on 23 June 2012, which
consisted of 144 spectral bands ranging from 380 to 1050 nm, with a spectral resolution of 4.8 nm.
The spatial resolution was 2.5 m, while the height and width were 349 and 1905 m, respectively.

The LiDAR data were acquired on 22 June 2012 and had already been co-registered with
hyperspectral imagery. The spatial resolution of the LiDAR-derived DSM (Digital Surface Model) was
also 2.5 m. Figure 1 shows a true-color composite representation of the hyperspectral imagery and the
corresponding LiDAR-derived DSM.
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Figure 1. Datasets, training, and testing samples used in this study.

All the training and testing samples are from the Data Fusion Contest. The spatial distribution of
training and testing samples are depicted in Figure 1c,d, respectively. There are 15 classes of interest in
this study: grass-healthy, grass-stressed, grass-synthetic, tree, soil, water, residential, commercial, road,
highway, railway, parking lot 1, parking lot 2, tennis court, and running track. It should be noted that
parking lot 1 includes parking garages at both the ground level and elevated areas, while parking lot
2 corresponds to parked vehicles.

The numbers of training and testing samples together with colors for each class are shown in
Table 1. As can been seen, the number of training samples is quite limited, which makes it very difficult
to achieve high classification accuracy.

Table 1. Details of training and testing samples for classification.

No. Class Name Training Set Testing Set Color

1 Healthy grass 198 1053
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3. Methods

3.1. Overall Workflow

The architecture of the proposed modified two-branch neural network is depicted in Figure 2,
which consists of the hyperspectral branch for the spatial–spectral feature extraction and the LiDAR
branch for height-relevant feature extraction. The feature-fusion module was utilized to adaptively
fuse the features from each branch, and the class label was determined after the fully connected (FC)
layer and the softmax classifier.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  5 of 17 

 

10 Highway 191 1036  
11 Railway 181 1054  
12 Parking lot 1 192 1041  
13 Parking lot 2 184 285  
14 Tennis court 181 247  
15 Running track 187 473  

Total 2832 12,197  

3. Methods 

3.1. Overall Workflow 

The architecture of the proposed modified two-branch neural network is depicted in Figure 2, 
which consists of the hyperspectral branch for the spatial–spectral feature extraction and the LiDAR 
branch for height-relevant feature extraction. The feature-fusion module was utilized to adaptively 
fuse the features from each branch, and the class label was determined after the fully connected (FC) 
layer and the softmax classifier. 

 
Figure 2. Architecture of the proposed two-branch convolutional neural network. 

3.2. Hyperspectral Branch 

The architecture of the proposed hyperspectral branch is depicted in Figure 3. The input of the 
HSI branch is a square patch centered at the pij pixel with a side length k. Since the hyperspectral 
data have 144 bands, some of which are highly corelated, we adopted Principle Component Analysis 
(PCA) and selected the first 10 components, which accounts for more than 99% of the total variances. 
Therefore, the input of the HSI branch was a patch with a size of k × k × 10. 

Figure 2. Architecture of the proposed two-branch convolutional neural network.

3.2. Hyperspectral Branch

The architecture of the proposed hyperspectral branch is depicted in Figure 3. The input of the
HSI branch is a square patch centered at the pij pixel with a side length k. Since the hyperspectral
data have 144 bands, some of which are highly corelated, we adopted Principle Component Analysis
(PCA) and selected the first 10 components, which accounts for more than 99% of the total variances.
Therefore, the input of the HSI branch was a patch with a size of k × k × 10.

The input and output size of each layer of the HSI branch is illustrated in Table 2.
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Table 2. Configuration of the proposed HSI branch.

Layer Name Input Size Output Size

Input 11 × 11 × 10 -
Conv1 11 × 11 × 10 11 × 11 × 64
Conv2 11 × 11 × 64 11 × 11 × 128

Maxpooling1 11 × 11 × 128 6 × 6 × 128
Residual block-A1 6 × 6 × 128 6 × 6 × 128
Residual block-A2 6 × 6 × 128 6 × 6 × 128

Maxpooling2 6 × 6 × 128 3 × 3 × 128
Conv3 3 × 3 × 128 3 × 3 × 256

Residual block-B1 3 × 3 × 256 3 × 3 × 256
Residual block-B2 3 × 3 × 256 3 × 3 × 256

GAP 3 × 3 × 256 1 × 1 × 256
FC 1 × 1 × 256 1 × 1 × 128

Softmax 1 × 1 × 128 1 × 1 × 15

As depicted in Figure 3 and Table 2, the proposed HSI branch mainly consists of three
convolutional blocks and two maxpooling layers. The first convolutional block includes two
convolutional layers, i.e., Conv1 and Conv2, which have 64 and 128 filters, respectively. The second
and third convolutional blocks both consist of two residual blocks, i.e., Residual block-A and
Residual block-B, whose structure and parameters are shown in Figure 4. Meanwhile, an additional
convolutional layer, Conv3, was utilized to increase the dimension of the feature map from the second
Residual block-A, which is 128, to match the dimension of the input of the first Residual block-B, which
is 256.
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As can be seen from Figure 4, the input dimensions of Residual block-A and B are 6 × 6 × 128 and
3 × 3 × 256, respectively, while the output dimensions are the same as that of the input. The output
dimensions of each convolutional layer are also depicted in Figure 4. As for the design of Residual
block-A and -B, we referred to the hierarchical, parallel, and multiscale residual block proposed by
Bulat [21], which can increase the receptive field size and improve gradient flow at the same time.
The residual block shown in Figure 4 has already been successfully used in the field of face landmark
detections and showed state-of-the-art performance [21]. The usage of two cascaded residual blocks
were inspired by the Face Alignment Network (FAN) [22], which adopted cascaded Hour Glass
networks for the extraction of more robust and representative features. Therefore, in this study, we also
cascaded the two residual blocks to increase its capability for extracting robust and multiscale features
from origin pixel values. Meanwhile, to reduce the risk of overfitting, we utilized L2 regularization for
the parameters of all the convolutional layers of the HSI branch. Batch Normalization (BN) [31] was
also used after each convolutional layer for a stable training process and to avoid overfitting at the
same time.

In addition, the determination of optimum patch size k is very important. A series of experiments
were done with different patch sizes, ranging from 9 to 29, according to the spatial resolution of the
data and the size of the interested objects. The following figure illustrates the curve of patch size k
versus overall accuracy. As depicted in Figure 5, the overall accuracy achieved the highest value of
91.87% when k = 11. When the patch size was larger than 11, the overall accuracy decreased with
some fluctuations. This is mainly because a larger patch size could bring more noise than contextual
information for the convolutional neural network. Another demerit of a larger patch size is that it
could result in the undersegmentation of the remote-sensing data.
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3.3. LiDAR Branch

The input of the LiDAR branch is also a square patch centered at the pij pixel with a side length
k = 11. Inspired by the bilinear network [32], which utilized two identical neural networks to learn
features with different scales in the field of fine-grained classification, we made the LiDAR branch
share the same network structure as the HSI branch. In fact, designing two separate networks could
significantly increase the time cost. By unified-designing the HSI and LiDAR branches, it is now quite
fast and convenient to formulate the final two-branch neural network. As the LiDAR branch already
consisted of cascaded residual blocks, it could also extract the robust and multiscale features from the
LiDAR-derived DSM data as expected.

3.4. Squeeze-and-Excitation Module for Adaptive Feature Fusion

Feature-level fusion should be conducted after the extraction of spatial–spectral features and
height-relevant features from the HSI branch and the LiDAR branch, respectively. Feature stacking or
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feature concatenation is often used as the feature-fusion method in previous studies. However, the
method of simply stacking different features together does not consider the importance or contribution
of each feature to the final classification task, which could be improved by assigning a specific
weight to each feature. Inspired by Squeeze-and-Excitation Networks (SENet) [19], which ranked
first in the image-classification task of the 2017 ImageNet Large-Scale Visual-Recognition Challenge
(ILSVRC), we utilized the Squeeze-and-Excitation module to adaptively learn a specific weight for
each feature, thus achieving a more robust and effective feature-fusion method than feature stacking.
The architecture of the feature-fusion module is illustrated in Figure 6.
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The configuration of the feature-fusion module is depicted in Table 3, which shows the input and
output size of each layer.

Table 3. Configuration of the adaptive feature-fusion module.

Layer Name Input Size Output Size

HSI branch output 3 × 3 × 256 -
Lidar branch output 3 × 3 × 256 -

GAP 3 × 3 × 256 1 × 1 × 256
FC1 1 × 1 × 256 1 × 1 × 64
FC2 1 × 1 × 64 1 × 1 × 256

Sigmoid 1 × 1 × 256 1 × 1 × 256
Flatten 3 × 3 × 256 1 × 1 × 2304
Concat 1 × 1 × 2304, 1 × 1 × 2304 1 × 1 × 4608

FC3 1 × 1 × 4608 1 × 1 × 128
Softmax 1 × 1 × 128 1 × 1 × 15

As shown in Figure 6 and Table 3, the input features of the fusion module are extracted from the
HSI and the LiDAR branches, both of which have the same dimension of 3 × 3 × 256. The original
features are separately passed through two parallel SE blocks, after which they are recalibrated or
reweighted. As can be seen, the recalibrated features from both branches still have the same dimensions
of 3 × 3 × 256. Afterward, they are flattened to the dimensions of 1 × 1 × 2304, respectively, and then
concatenated to generate a feature vector with dimensions of 1 × 1 × 4608. Next, the concatenated
vector is passed through a fully connected layer with 128 neurons and finally fed into the softmax
layer to generate the predicted class labels.

The structure of the SE block is described as follows. For any given features U, they are first
passed through a global average pooling (GAP) layer to produce a channel descriptor, which embeds
the global distribution of channel-wise feature responses. This is followed by two FC layers and a
sigmoid layer, in which the channel-specific weight can be learned through a self-gating mechanism
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based on channel dependence. The output features of the SE block were already recalibrated or
reweighted, leading to adaptively emphasizing the informative features and suppressing the less
useful ones. Compared with the traditional feature-stacking fusion method, the SE module in this
paper can provide a more effective and rational way for feature-level fusion of multisource data.

3.5. Data Augmentation and Network Training

As is known, training a deep CNN model needs a large quantity of labeled data. However,
for remote-sensing applications, it is laborious and time-consuming to obtain enough labeled data.
To address this issue, data augmentation was utilized in this study. Original training patches were
rotated 90◦, 180◦ and 270◦, flipped left and right, up, and down to increase the number of training
samples. Furthermore, classes with fewer training samples were oversampled to tackle the problem of
class imbalance.

All the parameters of the proposed two-branch network need to be trained to generate the best
model for urban land-use classification. In this study, a two-step training strategy was used to train
the whole network. Firstly, the HSI and LiDAR branches were separately trained with a larger initial
learning rate of 10−4. Secondly, the pretrained HSI and LiDAR branches were merged through the
adaptive feature-fusion module, and the whole network was fine-tuned with a smaller initial learning
rate of 10−5. The Adam optimizer [33] was used due to its capability of automatically adjusting the
learning rate, which could result in a faster and more stable training procedure.

Focal loss [20] was utilized as the loss function in this study instead of traditional cross-entropy loss.
This is mainly because focal loss has the merits of downweighing the loss assigned to well-classified
examples, which prevents the vast number of easy examples from overwhelming the classifier during
training [20].

In this study, 90% of the training set was randomly selected to optimize the parameters of the
proposed two-branch neural network. The remaining 10% of the training samples were used as the
validation set to justify the performance of the network during training process. As for the testing set,
it was only used for calculating the final overall accuracy and the confusion matrix after the network
was well-trained.

The proposed two-branch network was trained with the TensorFlow library [34] on Ubuntu 16.04
operation system with an Intel CORE i7-7800 @ 3.5 GHz CPU and an NVIDIA GTX TitanX GPU with
12 GB memory.

3.6. Accuracy Assessment

In order to assess the performance of the proposed two-branch network for urban land-use
classification, both visual evaluation and a confusion matrix were adopted in this study. Visual
inspection was used to check the visual effects, while the confusion matrix, derived from the testing
samples, was used to quantitatively assess the classification accuracy of the proposed method. It should
be noted that all the testing samples are from the 2013 IEEE GRSS Data Fusion Contest, which are the
same as in Reference [28].

4. Results and Discussion

4.1. Results of Urban Land-Use Classification

In order to evaluate the performance of the proposed two-branch neural network for urban
land-use mapping, a series of classification maps are depicted in Figure 7 including the following cases:

(a) HSI branch only, i.e., using only HSI data and the HSI branch for classification;
(b) LiDAR branch only, i.e., using only LiDAR data and the LiDAR branch for classification;
(c) the proposed two-branch CNN.
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It is evident that the synthetic use of HSI and LiDAR data leads to a classification map with a
better visual effect and higher quality when compared with the results of only the HSI branch and
only the LiDAR branch.

Meanwhile, the HSI branch yields a better classification map with fewer errors than that of
the LiDAR branch. However, due to the large spectral variance of different urban land-use types,
hyperspectral data alone could also result in inaccurate classification results. For instance, the eastern
area of the image is covered by some clouds, which leads to the spectral distortion of certain land-use
types, resulting in more classification errors. The LiDAR data alone also do not contain enough
information to differentiate complicated urban objects, especially for different objects with the same or
similar elevation. Nonetheless, the fusion of HSI and LiDAR data can avoid the above demerits and
benefit from both the spectral characteristics of the HSI image and the geometric information of the
LiDAR data, which could lead to a better classification map.

4.2. Accuracy-Assessment Results

In order to quantitatively evaluate the proposed approach in the study, the confusion matrix,
together with the overall accuracy (OA) and Kappa coefficient, were calculated based on the testing
samples. Results are shown in the Table 4.
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Table 4. Confusion matrix of the proposed method.

Testing Data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 UA

1 875 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100
2 0 894 0 0 0 0 0 0 0 0 0 0 0 0 0 100
3 0 0 504 0 0 0 0 0 0 0 0 0 0 0 0 100
4 15 0 0 1020 2 0 9 6 5 0 0 3 0 0 0 96.2
5 0 0 0 0 1051 0 0 0 10 0 0 0 0 0 0 99.0
6 0 0 0 0 1 143 0 0 0 0 0 0 0 0 0 99.3
7 9 0 0 32 1 0 968 8 12 22 0 5 0 0 0 91.6
8 0 11 0 0 0 0 14 989 0 97 0 5 0 0 0 88.6
9 0 0 0 2 0 0 21 0 904 2 5 5 0 0 0 96.3

10 80 6 0 2 0 0 0 0 66 838 1 0 8 0 0 83.7
11 74 152 0 0 0 0 57 32 13 77 1020 0 12 0 0 71.0
12 0 0 0 0 0 0 0 11 47 0 21 1014 0 0 0 92.8
13 0 1 0 0 1 0 0 5 2 0 7 9 265 0 0 91.4
14 0 0 0 0 0 0 0 1 0 0 0 0 0 247 0 99.6
15 0 0 1 0 0 0 0 1 0 0 0 0 0 0 473 99.6
PA 83.1 84.0 99.8 96.6 99.5 100 90.3 93.9 85.4 80.9 96.8 97.4 93.0 100 90.3
OA 91.87 Kappa 0.9117

1: Healthy grass; 2: Stressed grass; 3: Synthetic grass; 4: Tree; 5: Soil; 6: Water; 7: Residential; 8: Commercial; 9:
Road; 10: Highway; 11: Railway; 12: Parking lot 1; 13: Parking lot 2; 14: Tennis court; 15: Running track.

The proposed two-branch network shows good performance, with an OA of 91.87% and a Kappa
of 0.9117. However, the highway class had the lowest producer accuracy (PA) with 80.89%, while all
the other classes had a higher PA of more than 83%. This could be due to the spectral mixture between
highway and other impervious surface types, such as railway and commercial areas, since they all
consist of concrete materials. It should also be noted that all highway training samples are outside the
cloud-covered regions, while nearly half of the highway testing samples are from the cloud-covered
regions. This could cause the spectral inconsistency between training and testing samples of the
highway class, which could result in relatively lower classification accuracy.

In addition, the confusion matrix indicates that most classification errors occurred among the
following land-use types: Highway, railway, road, and parking lot 1. This is mainly because all those
land-use categories belong to impervious surfaces that share similar spectral properties. Highway,
railway, and road also share similar shape features, which could increase the difficulty in separating
between them using a patch-based CNN model, since the CNN takes spatial contextual information
into consideration when classifying each pixel. Other errors occurred where several healthy-grass
and stressed-grass pixels were misclassified as the railway. This is uncommon in remote-sensing
image classification, since grass and railway share different spectral characteristics. However, when
checking the classification map, it is in the eastern cloud-covered regions that several grass areas were
misclassified as railway. This is mainly because the existence of heavy cloud distorted the spectral
curves of the grass, which led to the uncommon classification errors.

4.3. Ablation Analysis

To further evaluate the performance of the proposed method, a series of ablation experiments were
done including: (a) only the HSI branch, (b) only the LiDAR branch, and (c) feature-stacking (i.e., using
stacked or concatenated features of HSI and LiDAR instead of adaptive fusion for classification).
The results of class-level classification accuracy are illustrated in Table 5 including all the above three
cases together with the proposed two-branch network.
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Table 5. Class-level classification accuracy.

No. Class Name Only HSI Branch Only LiDAR Branch Feature-Stacking Proposed

1 Healthy grass 82.05 47.39 82.33 83.09
2 Stressed grass 84.02 33.46 84.96 84.02
3 Synthetic grass 96.04 91.49 99.80 99.80
4 Tree 86.27 74.53 89.58 96.59
5 Soil 94.51 33.81 99.62 99.53
6 Water 79.02 58.74 98.60 100.00
7 Residential 95.06 57.65 83.96 90.30
8 Commercial 72.17 90.69 85.84 93.92
9 Road 82.06 37.39 86.31 85.36

10 Highway 65.35 42.08 69.88 80.89
11 Railway 71.82 75.90 90.61 96.77
12 Parking lot 1 92.03 25.46 93.56 97.41
13 Parking lot 2 85.61 61.40 91.58 92.98
14 Tennis court 97.17 74.49 100.00 100.00
15 Running track 95.06 57.65 83.96 90.30

OA (%) 83.83 53.42 88.25 91.87
Kappa 0.8244 0.4967 0.8725 0.9117

Table 5 indicates that the LiDAR branch alone achieved the lowest classification accuracy with an
OA of 53.42% and a Kappa of 0.4967. This is mainly due to the fact that height information alone can
hardly separate different land-use types in complicated urban regions. Meanwhile, the HSI branch
alone achieved much higher accuracy than that of only the LiDAR branch, with an OA of 83.83% and a
Kappa of 0.8244. The reason why the HSI branch alone outperformed the LiDAR branch alone is that
HSI images can provide much more abundant spectral and spatial information of land surfaces than
LiDAR-derived DSMs, leading to a higher capability of differentiating complex urban land-use types.

Table 5 also indicates that, when compared with single-source data alone, the integration of
multisource HSI and LiDAR data leads to a significant improvement of classification accuracy for
almost each urban land-use class. This is reasonable since the separability of urban objects could
increase if we simultaneously integrate multiple spectral and elevation features. Compared with
hyperspectral data alone, the integration of LiDAR data improved OA by 4.42% and 8.04% through
feature-stacking and the proposed two-branch network, respectively. In terms of class-level accuracy,
the main contribution of LiDAR data was in the following classes: Synthetic grass, tree, soil, water,
commercial, railway, and parking lot 1 and 2. This is due to some of the classes (e.g., grass and tree)
sharing very similar spectral characteristics but having different height values; therefore, the inclusion
of LiDAR-derived DSMs could significantly improve the separability between these classes.

It should be noted that the proposed two-branch network, which uses adaptive feature fusion,
outperforms the traditional feature-stacking method by improving OA from 88.25% to 91.87%, with an
increase of 3.62%. This is because, when simply stacking all features together, the values of each
feature can be significantly unbalanced, and the information carried by each feature may not be equally
represented. Therefore, we introduced the adaptive squeeze-and-excitation module to automatically
assign a weight to each feature according to its importance, which could integrate multiple features in
a more natural and reasonable way, resulting in the accuracy improvement of 3.62%.

Since the proposed approach used a pixel-centered patch as input to the networks, more
comparative experiments should be done to compare the performance between the pixel-based
and patch-based classification, and to investigate the effect of the PCA and non-PCA approaches.
Therefore, a series of ablation experiments were performed, and the comparison results are shown in
the following table.

Specifically, since the input was changed to 1D pixel vectors, all the 2D convolutional layers of
the original patch-based two-branch CNN were replaced by 1D convolutional layers in the pixel-based
CNN, while all parameters remained the same. As can be seen from Table 6, the patch-based models
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outperformed the pixel-based ones with an accuracy increase of 7.89% and 5.82% for the non-PCA and
PCA-based approaches, respectively. This is mainly because, when compared with the patch-based
model, the pixel-based model only considers the spectral characteristics of the land object. However,
the patch-based model can take both the spectral and spatial contextual information into account,
leading to more discriminative and representative features which are essential for classification.
When compared with non-PCA approaches, the usage of PCA has a positive effect on classification,
leading to an accuracy increase of 4.56% and 2.49% for the pixel-based and patch-based-models,
respectively. This is due to the fact that PCA can effectively reduce the data redundancy of the original
hyperspectral imagery, which can reduce the overfitting risk of the convolutional neural network and,
thus, improve its generalization ability when predicting on new datasets.

Table 6. Comparison with pixel-based and non-Principle Component Analysis (PCA) methods.

Method OA Kappa

Pixel-based and non-PCA 81.49% 0.8001
Pixel-based and PCA 86.05% 0.8486

Patch-based and non-PCA 89.38% 0.8849
Patch-based and PCA 91.87% 0.9117

Additionally, the proposed approach can be considered as a reference framework for multisource
data fusion in the remote-sensing field.

4.4. Comparison with Other Methods

To further justify the performance of the proposed approach, it should be compared with other
widely used machine-learning methods, such as random forest (RF) [35], support vector machines
(SVM) [36], and state-of-the-art methods.

For RF, the Gini coefficient was used as the index for feature selection. For SVM, the Radial Basis
Function (RBF) was used as the kernel function. As for the determination of the hyperparameters of
RF and SVM, we utilized the grid-search method to find the optimal values. Specifically, the ranges of
used parameters for RF are as follows. The number of trees ranged from 50 to 500 with a step of 10,
while the max depth had a range of 5 to 15 with a step of 2. For SVM, gamma ranged from 0.001 to 0.1
with a step of 0.001, while punishment coefficient C had a range of 10 to 200 with a step of 10. After the
procedure of grid search, RF achieved the best overall accuracy of 83.97% when the number of trees
was 200 and the max depth was 13. Meanwhile, SVM achieved the best accuracy of 84.16% with a
gamma of 0.01 and a C of 100.

Meanwhile, we selected Xu’s model [28] as a strong baseline since it first utilized a two-branch
CNN for HSI and LiDAR data fusion, and achieved an OA of 87.98%, also on the 2013 IEEE GRSS Data
Fusion Contest testing dataset. All the above methods were trained and tested with the same training
and testing samples as the proposed method to maintain fairness. The accuracy comparison results are
listed in Table 7.

Table 7. Accuracy comparison with other methods.

Method OA Kappa

Random Forest 83.97% 0.8264
Support Vector Machine 84.16% 0.8282

Xu et al. [28] 87.98% 0.8698
Our two-branch CNN 91.87% 0.9117

Table 7 indicates that our proposed modified two-branch CNN outperformed both RF and SVM
with an OA improvement of 7.90% and 7.71%, respectively. This was expected since, when compared
with traditional machine-learning methods, the CNN could learn high-level spatial features of
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complicated and fragmented urban land-use types, which led to a more robust and accurate
classification result.

When compared with Xu’s state-of-the-art model, the proposed method in this study improved
OA from 87.98% to 91.87%, with an increase of 3.89%. However, when using feature-stacking,
the modified two-branch CNN in this study only achieved a slight accuracy increase of 0.27% compared
to Xu’s model. This indicates that, when compared with the modification of the network structure,
the introduction of the feature-fusion module contributed more to the increase of classification accuracy.
This is because the feature-fusion module could learn the importance of each feature, which can
emphasize more effective features while suppressing the less informative ones, leading to a more
reasonable and robust fusion strategy for multisource remote-sensing data. The backbone of the
modified two-branch CNN is less effective than the feature-fusion strategy and does not show superior
performance to that of Xu’s model.

As stated above, the fusion method of this study is more effective than the model structure itself,
therefore, a more comprehensive comparison with existing methods is necessary. In fact, as stated
in the Introduction, most of the feature-level fusion studies just simply stacked and concatenated
the features from LiDAR and HSI data and then carried out the classification based on machine
learning classifiers such as decision tree, support vector machine and random forest. Relevant studies
include that of Man et al. [9], Gonzalez et al. [14], Sasaki et al. [16]. However, these approaches
gave equal importance to all the features, which could bring in redundant information and extra
noise. Different from those feature-stacking methods, the feature fusion approach in this study takes
the importance of multisource features into account, which could effectively highlight those most
informative features while reduce the noisy ones. Meanwhile, some existing methods designed a
feature fusion model to reconstruct the multisource features to increase the classification performance.
One concrete example is Debes’s study [8], in which a graph-based fusion model was used to re-project
all the features into a low-dimensional subspace to increase the robustness of the fused features.
Actually, the newly reconstructed features were more informative with less noises, however, this
method was not that straight-forward when compared with our approach, where all the original
features were directly re-weighted in our feature-fusion model. Nonetheless, the graph-based fusion
method can be introduced in the deep learning model in future research.

5. Conclusions

This paper proposed a modified two-branch convolutional neural network for urban land-use
mapping using multisource hyperspectral and LiDAR data. The proposed two-branch network
consists of an HSI branch and a LiDAR branch, both of which share the same network structure in
order to reduce the burden and time cost of network design. Within the HSI and LiDAR branches,
a hierarchical, parallel, and multiscale residual block was utilized, which could simultaneously increase
the receptive field size and improve gradient flow. An adaptive feature-fusion module based on a
Squeeze-and-Excitation Net was proposed to fuse the HSI and LiDAR features, which could integrate
multisource features in a natural and reasonable way. Experiment results showed that the proposed
two-branch network had good performance, with an OA of almost 92% on the 2013 IEEE GRSS Data
Fusion Contest dataset. When compared with hyperspectral data alone, the introduction of LiDAR
data increased OA from almost 84% to 92%, which indicates that the integration of multisource data
could improve classification accuracy in complicated urban landscapes. The proposed adaptive fusion
method increased accuracy by more than 3% when compared with the traditional feature-stacking
method, which justifies its usefulness in multisource data fusion. The two-branch CNN in this
paper also outperformed traditional machine-learning methods, such as random forest and support
vector machines.

This paper demonstrates that the modified two-branch network can effectively integrate
multisource features from hyperspectral and LiDAR data, showing good performance in urban
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land-use mapping. Future work should be carried out on more datasets to further justify the
performance of the proposed method.

Author Contributions: Q.F. proposed the modified two-branch convolutional neural network of this study, and
contributed to data preprocessing, the experiments, and the writing of the manuscript. D.Z. and J.Y. contributed
to the experiment discussion and manuscript revision. B.L. mainly contributed to the manuscript revision.

Funding: This study was funded and supported by the China Postdoctoral Science Foundation (2018M641529),
and Ministry of Land and Resources Industry Public Welfare projects (201511010-06).

Acknowledgments: Special thanks to the anonymous referees and editors for very useful comments and
suggestions to help improve the quality of this paper. Besides, the authors would like to thank the committee of
the 2013 IEEE GRSS Data Fusion Contest for providing the hyperspectral and LiDAR data, and their efforts in
promoting the development of the multisource remote-sensing data fusion.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, X.; Zhao, H.; Li, P.; Yin, Z. Remote sensing image-based analysis of the relationship between urban
heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [CrossRef]

2. Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of
urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161.
[CrossRef]

3. Lu, D.; Hetrick, S.; Moran, E. Land Cover Classification in a Complex Urban-Rural Landscape with QuickBird
Imagery. Photogramm. Eng. Remote Sens. 2010, 10, 1159–1168. [CrossRef]

4. Powell, R.L.; Roberts, D.A.; Dennison, P.E.; Hess, L.L. Sub-pixel mapping of urban land cover using multiple
endmember spectral mixture analysis: Manaus, Brazil. Remote Sens. Environ. 2007, 106, 253–267. [CrossRef]

5. Pu, R.; Landry, S.; Yu, Q. Object-based urban detailed land cover classification with high spatial resolution
IKONOS imagery. Int. J. Remote Sens. 2011, 32, 3285–3308. [CrossRef]

6. Demarchi, L.; Canters, F.; Cariou, C.; Licciardi, G.; Chan, J.C. Assessing the performance of two unsupervised
dimensionality reduction techniques on hyperspectral APEX data for high resolution urban land-cover
mapping. ISPRS J. Photogramm. Remote Sens. 2014, 87, 166–179. [CrossRef]

7. Tong, X.; Xie, H.; Weng, Q. Urban Land Cover Classification with Airborne Hyperspectral Data: What
Features to Use? IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3998–4009. [CrossRef]

8. Debes, C.; Merentitis, A.; Heremans, R.; Hahn, J.; Frangiadakis, N.; Kasteren, T.V.; Liao, W.; Bellens, R.;
Pizurica, A.; Gautama, S.; et al. Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data
Fusion Contest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2405–2418. [CrossRef]

9. Man, Q.; Dong, P.; Guo, H. Pixel- and feature-level fusion of hyperspectral and lidar data for urban land-use
classification. Int. J. Remote Sens. 2015, 36, 1618–1644. [CrossRef]

10. Dalponte, M.; Bruzzone, L.; Gianelle, D. Fusion of Hyperspectral and LIDAR Remote Sensing Data for
Classification of Complex Forest Areas. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1416–1427. [CrossRef]

11. Sankey, T.; Donager, J.; McVay, J.; Sankey, J.B. UAV lidar and hyperspectral fusion for forest monitoring in
the southwestern USA. Remote Sens. Environ. 2017, 195, 30–43. [CrossRef]

12. Kereszturi, G.; Schaefer, L.N.; Schleiffarth, W.K.; Procter, J.; Pullanagari, R.R.; Mead, S.; Kennedy, B.
Integrating airborne hyperspectral imagery and LiDAR for volcano mapping and monitoring through
image classification. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 323–339. [CrossRef]

13. Liu, X.; Bo, Y. Object-Based Crop Species Classification Based on the Combination of Airborne Hyperspectral
Images and LiDAR Data. Remote Sens. 2015, 7, 922–950. [CrossRef]

14. Gonzalez, R.S.; Latifi, H.; Weinacker, H.; Dees, M.; Koch, B.; Heurich, M. Integrating LiDAR and
high-resolution imagery for object-based mapping of forest habitats in a heterogeneous temperate forest
landscape. Int. J. Remote Sens. 2018, 1–26. [CrossRef]

15. Sasaki, T.; Imanishi, J.; Ioki, K.; Morimoto, Y.; Kitada, K. Object-based classification of land cover and tree
species by integrating airborne LiDAR and high spatial resolution imagery data. Landsc. Ecol. Eng. 2012,
8, 157–171. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2005.11.016
http://dx.doi.org/10.1016/j.rse.2010.12.017
http://dx.doi.org/10.14358/PERS.76.10.1159
http://dx.doi.org/10.1016/j.rse.2006.09.005
http://dx.doi.org/10.1080/01431161003745657
http://dx.doi.org/10.1016/j.isprsjprs.2013.10.012
http://dx.doi.org/10.1109/JSTARS.2013.2272212
http://dx.doi.org/10.1109/JSTARS.2014.2305441
http://dx.doi.org/10.1080/01431161.2015.1015657
http://dx.doi.org/10.1109/TGRS.2008.916480
http://dx.doi.org/10.1016/j.rse.2017.04.007
http://dx.doi.org/10.1016/j.jag.2018.07.006
http://dx.doi.org/10.3390/rs70100922
http://dx.doi.org/10.1080/01431161.2018.1500071
http://dx.doi.org/10.1007/s11355-011-0158-z


ISPRS Int. J. Geo-Inf. 2019, 8, 28 16 of 16

16. Sturari, M.; Frontoni, E.; Pierdicca, R.; Mancini, A.; Malinverni, E.S.; Tassetti, A.N.; Zingaretti, P. Integrating
elevation data and multispectral high-resolution images for an improved hybrid Land Use/Land Cover
mapping. Eur. J. Remote Sens. 2017, 50, 1–17. [CrossRef]

17. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
18. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.

In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Lake Tahoe, NV, USA,
3–6 December 2012; pp. 1097–1105.

19. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018.

20. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal loss for dense object detection. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007.

21. Bulat, A.; Tzimiropoulos, G. Binarized Convolutional Landmark Localizers for Human Pose Estimation and
Face Alignment with Limited Resources. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 3706–3714.

22. Bulat, A.; Tzimiropoulos, G. How far are we from solving the 2D and 3D Face Alignment problem? (and a
dataset of 230,000 3D facial landmarks). In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1021–1030.

23. Zhu, X.; Tuia, D.; Mou, L.; Xia, G.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing:
A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [CrossRef]

24. Alshehhi, R.; Marpu, P.R.; Woon, W.L.; Mura, M.D. Simultaneous extraction of roads and buildings in remote
sensing imagery with convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2017, 130, 139–149.
[CrossRef]

25. Rezaee, M.; Mahdianpari, M.; Zhang, Y.; Salehi, B. Deep Convolutional Neural Network for Complex
Wetland Classification Using Optical Remote Sensing Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2018, 11, 3030–3039. [CrossRef]

26. Chen, Y.; Fan, R.; Bilal, M.; Yang, X.; Wang, J.; Li, W. Multilevel Cloud Detection for High-Resolution
Remote Sensing Imagery Using Multiple Convolutional Neural Networks. ISPRS Int. J. Geo-Inf. 2018, 7, 181.
[CrossRef]

27. Rußwurm, M.; Körner, M. Multi-Temporal Land Cover Classification with Sequential Recurrent Encoders.
ISPRS Int. J. Geo-Inf. 2018, 7, 129. [CrossRef]

28. Xu, X.; Li, W.; Ran, Q.; Du, Q.; Gao, L.; Zhang, B. Multisource Remote Sensing Data Classification Based on
Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2018, 56, 937–949. [CrossRef]

29. Huang, B.; Zhao, B.; Song, Y. Urban land-use mapping using a deep convolutional neural network with high
spatial resolution multispectral remote sensing imagery. Remote Sens. Environ. 2018, 214, 73–86. [CrossRef]

30. Hughes, L.H.; Schmitt, M.; Mou, L.; Wang, Y.; Zhu, X. Identifying Corresponding Patches in SAR and Optical
Images with a Pseudo-Siamese CNN. IEEE Geosci. Remote Sens. Lett. 2018, 15, 784–788. [CrossRef]

31. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. arXiv 2015, arXiv:1502.03167.

32. Lin, T.Y.; RoyChowdhury, A.; Maji, S. Bilinear CNN Models for Fine-grained Visual Recognition. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 13–16 December 2015;
pp. 1449–1457.

33. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
34. TensorFlow. Available online: https://tensorflow.google.cn/ (accessed on 3 November 2018).
35. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
36. Chapelle, O.; Vapnik, V.; Bousquet, O.; Mukherjee, S. Choosing Multiple Parameters for Support Vector

Machines. Mach. Learn. 2002, 46, 131–159. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/22797254.2017.1274572
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/MGRS.2017.2762307
http://dx.doi.org/10.1016/j.isprsjprs.2017.05.002
http://dx.doi.org/10.1109/JSTARS.2018.2846178
http://dx.doi.org/10.3390/ijgi7050181
http://dx.doi.org/10.3390/ijgi7040129
http://dx.doi.org/10.1109/TGRS.2017.2756851
http://dx.doi.org/10.1016/j.rse.2018.04.050
http://dx.doi.org/10.1109/LGRS.2018.2799232
https://tensorflow.google.cn/
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1012450327387
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area and Dataset 
	Methods 
	Overall Workflow 
	Hyperspectral Branch 
	LiDAR Branch 
	Squeeze-and-Excitation Module for Adaptive Feature Fusion 
	Data Augmentation and Network Training 
	Accuracy Assessment 

	Results and Discussion 
	Results of Urban Land-Use Classification 
	Accuracy-Assessment Results 
	Ablation Analysis 
	Comparison with Other Methods 

	Conclusions 
	References

