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Abstract: The conventional extracting–transforming–loading (ETL) system is typically operated on
a single machine not capable of handling huge volumes of geospatial big data. To deal with the
considerable amount of big data in the ETL process, we propose D_ELT (delayed extracting–loading
–transforming) by utilizing MapReduce-based parallelization. Among various kinds of big data,
we concentrate on geospatial big data generated via sensors using Internet of Things (IoT) technology.
In the IoT environment, update latency for sensor big data is typically short and old data are not worth
further analysis, so the speed of data preparation is even more significant. We conducted several
experiments measuring the overall performance of D_ELT and compared it with both traditional ETL
and extracting–loading– transforming (ELT) systems, using different sizes of data and complexity
levels for analysis. The experimental results show that D_ELT outperforms the other two approaches,
ETL and ELT. In addition, the larger the amount of data or the higher the complexity of the analysis,
the greater the parallelization effect of transform in D_ELT, leading to better performance over the
traditional ETL and ELT approaches.
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1. Introduction

In recent years, numerous types of sensors have been connected to the Internet of Things (IoT) and
have produced huge volumes of data with high velocity. A large percentage of these sensor big data is
geospatial data, describing information about physical things in relation to geographic space that can
be represented in a coordinate system [1–4]. With the advance of IoT technologies, more diverse data
have now become available, thereby greatly increasing the amount of geospatial big data.

Given the general properties of big data, the unique characteristics of geospatial data create
an innovative challenge in data preparation [5]. Geospatial data typically include position data.
These coordinate data differ from normal string or integer data, requiring the data pre-processing
process to include a lot of floating-point arithmetic computations. Examples include transformation in
geometry, converting coordination reference systems, and evaluating spatial relationships. Among
these, the most well-known aspect of geospatial data is spatial relationship, describing the relationship
of some objects in a specific location to other objects in neighboring locations. The calculation of spatial
relationship is mostly included in spatial analysis and has been generally regarded as a sophisticated
problem [6]. Moreover, processing temporal elements also complicates the handling of geospatial data.

To deal with the challenges in processing and analyzing geospatial big data, several systems
have emerged. Systems designed for big data have existed for years (e.g., Hadoop [7] and Spark [8]);
however, they are uninformed about spatial properties. This has led to a number of geospatial systems
(e.g., SpatialHadoop [9] and GeoSpark [10]) being developed, mostly by injecting spatial data types
or functions inside existing big data systems. Hadoop, especially, has proven to be a mature big
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data platform and so several geospatial big data systems have been constructed by inserting spatial
data awareness into Hadoop. However, it is still not easy for big data software developers to create
geospatial applications. Typically, to generate a MapReduce job for a required operation in Hadoop,
developers need to program a map and reduce functions. Spatial analysis usually requires handling
more than one MapReduce step, where the output of the data from a previous MapReduce step
becomes the input to the next MapReduce step. As the complexity level of spatial analysis is increased,
the number of MapReduce steps is also increased, resulting in augmented difficulties for the developers
to write iterative code to define the increasingly more complicated MapReduce steps.

To resolve this issue, in our previous work [11], we found a way to represent spatial analysis
as a sequence of one or more units of spatial or non-spatial operators. This allows developers of
geospatial big data applications to create spatial applications by simply combining built-in spatial or
non-spatial operators, without having any detailed knowledge of MapReduce. Once the sequence
of operators has been incorporated, it is automatically transformed to the map and reduces jobs in
our Hadoop-based geospatial big data system. During this conversion process, our system controls
the number of MapReduce steps in such a way as to achieve better performance by decreasing the
overhead of mapping and reducing. The challenges for geospatial big data, however, lie in confronting
not only how to store and analyze the data, but also how to transform the data while achieving
good performance.

Currently, a large amount of geospatial data is continuously provided from many spatial sensors.
It is important to analyze this geospatial big data as soon as possible to extract useful insights. However,
the time required to transform massive amounts of geospatial data into the Hadoop platform has
gradually increased. That is, it takes a lot of time to prepare the data required for geospatial analysis,
thereby delaying obtaining the results of spatial analysis results. For example, we found that it took
about 13 hours and 30 minutes to load 821 GB of digital tachograph (DTG) data using the traditional
ETL method. In the ETL process, data are extracted from data sources, then transformed, involving
normalization and cleansing, and loaded into the target data base. The conventional ETL system is
typically operated on a single machine that cannot effectively handle huge volumes of big data [12].
To deal with the considerable quantity of big data in the ETL process, there have been several attempts
in recent years to utilize a parallelized data processing concept [13–15].

One study [14] proposed ETLMR using a MapReduce framework to parallelize ETL processes.
ETLMR is designed by integrating with Python-based MapReduce. This study conducted an
experimental evaluation assessing system scalability based on different scales of jobs and data
to compare with other MapReduce-based tools. Another study [15] compared Hadoop-based ETL
solutions with commercial ETL solutions in terms of cost and performance. They concluded that
Hadoop-based ETL solutions are better in comparison to existing commercial ETL solutions. The study
in [16] implemented P-ETL (parallel-ETL), which is developed on Hadoop. Instead of the traditional
three steps of extracting, transforming, and loading, P-ETL involves five steps of extracting, partitioning,
transforming, reducing, and loading. This study has shown that P-ETL outperforms the classical ETL
scheme. Many studies, however, have focused on big data analysis, but there have been insufficient
studies attempting to increase the speed of preparing the data required for big data analysis.

In this paper, we continue our previous study on storing and managing geospatial big data
and explain our approach to enhance the performance of ETL processes. Specifically, we propose a
method to start geospatial big data analysis in a short time by reducing the time required for data
transformation under the Hadoop platform. A transformation is defined as data processing achieved
by converting source data into a consistent storage format aiming to query and analyze. Due to
the complex nature of transformations, performance of the ETL processes depend mostly on how
efficiently the transformations are conducted, which is the rate-limiting step in the ETL process. Our
approach allows MapReduce-based parallelization of the transformation in the ETL process. Among
the various sources of geospatial big data, we concentrate on sensor big data. With the increasing
number of IoT sensing devices, the amount of sensor data is expected to grow significantly over
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time for a wide range of fields and applications. IoT-based sensor data are, however, essentially
loosely structured and typically incomplete, much of it being directly unusable. In addition, in the IoT
environment, the update period—the time between the arrival of raw data and when meaningful data
are made available—occurs more frequently than for typical batch data. These difficulties require that
considerable resources are used for transformation in the ETL process.

This paper extends our research work presented in [11] and suggests a way to increase performance
of the transformation functionality in the ETL process by taking advantage of the MapReduce framework.
First, in Section 2 we briefly explain our previous work on constructing a geospatial big data processing
system by extending the original Hadoop to support spatial properties. We focus particularly on
explaining automatically converting a user-specified sequence of operators for spatial analysis to
MapReduce steps. Section 3 describes up-to-date ETL research followed by our approach on improving
performance of transformation in the ETL processes based on MapReduce. Our conducted experimental
settings and results are described in Sections 4 and 5, respectively. Section 6 concludes our work and
presents our plans for future research.

2. Geospatial Big Data Platform

In our previous study [11], we developed a high performance geospatial big data processing
system based on Hadoop/MapReduce, named Marmot [17]. In Marmot, spatial analysis is defined as a
sequence of RecordSetOperators, where a RecordSet is a collection of records and a RecordSetOperator
is a processing element using a RecordSet, similar to a relational operator in Relational Database
Management System (RDBMS). A sequence of RecordSetOperators is defined as a Plan, as shown in
Figure 1.
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Figure 1. Representation of spatial analysis in Marmot: A sequence of one or more units of spatial or
non-spatial operators.

In Marmot, a RecordSetOperator is classified as three possible types: RecordSetLoader,
RecordSetFunction, or RecordSetConsumer. RecordSetLoader is a non-spatial operator loading
source data and transforming it to a RecordSet; RecordSetFunction is a spatial or non-spatial operator
taking a RecordSet as source data and producing a new RecordSet as output data; RecordSetConsumer
is a non-spatial operator storing a finally created RecordSet as a result of a given spatial analysis outside
of Marmot.

To process a given spatial analysis, a developer creates a corresponding Plan by combining
spatial operators and non-spatial operators and injects the Plan into Marmot. Marmot processes each
RecordSetOperator one by one and automatically transforms the given Plan to map and reduce jobs,
as shown in Figure 2.
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Figure 2. Automatic transformation of a Plan into MapReduce jobs. (a) A Plan having
a RecordSetFunction divided into mapping and reducing operators; (b) An automatically
transformed Plan.

While parsing a given Plan, when Marmot meets a RecordSetFunction that can be separated
into mapping and reducing operators (e.g., ReduceByGroupKey), as shown in Figure 2a, Marmot
decomposes the RecordSetFunction into the mapping operator and reducing operator, and eventually
transforms the Plan into MapReduce jobs consisting of map and reduce phases, as shown in Figure 2b.
During this transformation, Marmot controls the number of MapReduce phases in a way to achieve
better performance by decreasing the overhead of mapping and reducing. To describe how Marmot
handles such processes in detail, an example of spatial analysis to retrieve subway stations in a city is
shown in Figures 3 and 4.
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Figure 3. An example code for searching subway stations per city.

Figure 3 is a Marmot code for an example of spatial analysis. The analysis is represented as a Plan
consisting of five RecordSetOperators: Load, Update, SpatialJoin, ReduceByGroupKey, and StoreAsCsv.
As shown in Figure 4, using the Load operator, Marmot reads the boundaries of each subway station and
computes their center coordinates. The calculated center points are then utilized as the representative
locations of each subway station via the Update operator. For each subway station, using the SpatialJoin
operator, Marmot identifies the city that is the center point of the subway station. Finally, the number
of subway stations per city is calculated via the ReduceByGroupKey operator and the results are stored
in a CSV file named “result” via the StoreAsCsv operator.
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During the process of transforming the Plan to a sequence of MapReduce jobs, ReduceByGroupKey
is decomposed into GroupBy and Reduce as a mapping operator and a reducing operator, respectively.
Accordingly, Load, Update, SpatialJoin, and GroupBy are executed during the Map phase; Reduce and
StoreAsCsv, during the Reduce phase.

3. Our MapReduce-Based D_ELT Framework

As mentioned in the previous section, we constructed the Marmot, high-performance data
management system that enables developers with no specific knowledge of big data technologies to
implement improved performance spatial analysis applications to geospatial big data. The issues
concerning geospatial big data, however, lie not only in how to efficiently manage the data for fast
analysis, but also in how to efficiently transform the data for fast data preparation.

DTG data, for example, have been used to analyze the status of transportation operations to
identify improvement points and to identify disadvantaged areas in terms of public transportation.
Transportation authorities, e.g., the Korea Transportation Safety Authority, collect DTG data from
commercial vehicles and apply analytics to such big data to extract insights and facilitate decision
making. Often, the results of data analysis must be derived periodically within a specific time, e.g.,
every single day, to be prepared for emergent cases. In this situation, to complete the given analysis
in time, not only the data analysis speed, but also the data preparation speed is a critical factor
affecting the overall performance. In the IoT environment, update latency for sensor big data, the focus
of this paper among various sources of geospatial big data, is typically short and old data are not
worth further analysis, making data preparation speed even more important. Moreover, sensor big
data is machine-generated; therefore, the source data contains more noise or errors compared to
human-generated data, complicating data preparation even more.

Traditional ETL [18–20] can no longer accommodate such situations. The ETL is designed for
light-weight computations on small data sets, but is not capable of efficiently handling massive amounts
of data. Figure 5a describes the data preparation and analysis in the ETL process. In this approach,
data are extracted from various sources and then transformed on an ETL server, which is typically
one machine, and loaded into a Hadoop distributed file system (HDFS). The loaded data are finally
analyzed in a big data platform for decision-making. In this approach, an analysis operation is processed
in a parallel/distributed way using MapReduce [21,22], which guarantees reasonable performance,
but bottlenecks can occur during a transform operation. In fact, transform is the most time consuming
phase in ETL because this operation includes filtering or aggregation of source data to fit the structure
of the target database. Data cleaning should also be completed for any duplicated data, missing data,
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or different data formats. Moreover, in big data environments, due to heterogeneous sources of big
data, the traditional transform operation will create even more computational burdens. The overall
performance of the ETL processes, therefore, depends mainly on how efficiently the transform operation
is conducted.
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for load, and “A” stands for analysis.

To overcome the drawbacks of traditional ETL and to speed up the data preparation process,
the processes of ELT was devised [23–25]. The nature of traditional ETL is to perform transform
immediately after the extract operation and then start the load operation. In contrast, the basic idea of
ELT is to conduct the load operation immediately after the extract operation, and perform the transform
after storing the data in the HDFS, as shown in Figure 5b. This approach has several advantages over
ETL. The transform operation can be done at the run time when needed and it is possible to use transform
even multiple times to handle changing requirements for data. In addition, this approach eliminates a
separate transformation engine, the ETL server, between the source and target and makes the overall
system less costly. Above all, ELT allows raw source data to be loaded directly into the target and
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also leverages the target system to perform the transform operation. In that sense, ELT can speed up
transform using parallelization/distribution supported in the Hadoop-based big data platform.

Despite these advantages, ELT still has limitations in handling big data. The ELT framework
can speed up transform using MapReduce, but analysis is initiated only after the transform has been
completed. In this approach, it is difficult to optimize transform in conjunction with analysis because
the transform is performed in a batch regardless of the context of analysis. For example, in the case
of geospatial data, one of the high computational overheads in conducting transform occurs during
type transformation, such as converting the x–axis and y–axis of plain-text into (x,y) coordinates of
the point and coordinate system transformation for conducting spatial analysis. If analysis does not
require such tasks, it is possible to identify them at the transform phase and load only the required data.
By doing so, the system can eliminate unnecessary transformations and speed up performance.

To achieve better scalability and performance in conducing transform on geospatial big data,
this paper offers a new approach for data preparation called D_ETL—in the sense that the decision of
how to perform transform is delayed until the context of analysis is understood. As shown in Figure 5c,
in our approach, transform is executed in parallel/distributed with analysis within our geospatial big data
platform, Marmot. In Marmot, the operators for transform are considered a type of RecordSetOperator
and are also composed of a Plan, along with the existing RecordSetOperator designed for analysis.
This approach has the advantage that data preparation and analysis processes are described using the
same data model. Application developers, therefore, can be free from the inconvenience of having to
get used to implementing both processes.

Regarding the operators required to conduct transform, the application developer specifies them
in the D_ELT script. In this way, the developer can implement both data preparation and analysis
simultaneously, without having to modify the existing code for conducting analysis. The D_ELT script
consists of the names of operators and a list of the key-values of the parameters, as shown in Figure 6.
For convenience, if a developer needs a new operator for conducting transform, the operator can be
separately implemented as a form of plug-in and can be used in Marmot, in the same way as for
existing operators.
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To perform a spatial analysis, Marmot first loads the D_ELT script to determine what operators
need to be executed for transform. Then, Marmot (1) examines the operators needed to be executed for
analysis, (2) loads only the required data based on the need of analysis, and (3) executes both transform
and analysis in a parallel distributed way. At this time, part of the transformed data can be used for
analysis and not have to wait for all the data to finish being transformed. Figure 7 shows the sequence
of operators executed for transform and analysis and their composition as a form of a plan. In this
example Plan, “ParseCSV” is the operator for transform and “Filter” is the operator for analysis. They
are allocated in the Map phase and executed in a parallel distributed way. The outputs from the Map
phase are combined during the Reduce phase and the results are written in the output file.
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The reason why we implemented D_ELT using MapReduce instead of Spark, another well-known
engine for big data processing, is that our previously developed geospatial big platform is based
on Hadoop and we had the goal of improving the data transformation time in that environment.
In addition, the data we are currently handling is a large amount of DTG data, generating 20–30 TB every
month. Using Spark, when running spatial analysis based on this large size of data, we anticipated
that unexpected problems may occur (e.g., disk swapping), but to our knowledge, concrete solutions
have not yet been proposed.

It is also important to note that ELT and D_ELT are identical in terms of performing data
transformation during the MapReduce phase in Hadoop. The difference between ELT and D_ELT is as
follows. In ELT, once raw data are uploaded to Hadoop, the data are transformed using MapReduce.
After completely finishing the transformation, analysis is then started using another MapReduce.
In D_ELT, however, data transformation is not conducted, although all of the raw data are uploaded
to Hadoop but delayed until the time of conducting the analysis. That is, the transformation task is
piggybacked onto the analysis task and both tasks are performed together using the same MapReduce.
In this way, part of the transformed data can be used for analysis immediately without having to wait
for all the data to be transformed.

4. Experimental Evaluation

This section explains our evaluation of the improvement in performance achieved by our
proposed approach, D_ELT. In addition, the scalability of three different approaches (traditional ETL,
ELT, and D_ELT) were measured and compared by varying data size and levels of analysis complexity.
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4.1. Experimental Setup

Our experiments were conducted on the four nodes of a Hadoop cluster. Each node was a desktop
computer with a 4.0 GHZ Intel 4 core i7 CPU, a 32 GB main memory, and a 4 TB disk. The operating
system was CentOS 6.9 and the Hadoop version was Hortonworks HDP 2.6.1.0 with Ambari 2.5.0.3.
PostgreSQL 9.5 was used for the database management system along with Oracle JDK 1.8. The 2.7.3
version of MapReduce2 was used.

The test data used in the experiment were DTG data installed in vehicles, which record the driving
record in real time. The structure of the data consisted of timestamp, vehicle number, daily mileage,
accumulated mileage, speed, acceleration, RPM, brake, x_position, y_position, and angle. The data
were classified into three different sizes: small, 9.9GB; medium, 19.8 GB; and large, 29.8 GB, as shown
in Table 1. For the geospatial big data platform, we used our developed system Marmot, as explained
in Section 2.

Table 1. Data size: small, medium, and large.

Data Size

Small 9.9 GB
Medium 19.8 GB

Large 29.8 GB

4.2. Experiment 1: Measurement of Data Preparation Time

In this experiment, we compared the data preparation time of ETL and ELT to our proposed
D_ELT, and the scalability of each approach based on the different data size. The overall results from
this experiment are presented in Table 2.

As shown in Figure 5 in Section 3, the total time for data preparation in the ETL process includes
time for extracting, transforming, and loading. In the case of ELT, the total time spent on data
preparation is the summation of times for extracting, loading, and transforming. While in the ETL
process, transform was conducted on a single machine, which is based on non-MapReduce and transform
in the ELT was performed in a parallel distributed way based on MapReduce.

Table 2. Data preparation time (in seconds): ETL, ELT, and D_ELT.

ETL 1 ELT 2 D_ELT 3

Small 579 413 116
Medium 1158 808 231

Large 1727 1175 345
1 Data preparation time in ETL: E+T+L, where E for extract, T for transform, L for load; 2 Data preparation time in
ELT: E+L+T, where T is executed in a parallel distributed way; 3 Data preparation time in D_ELT: E+L.

In the case of D_ELT, the total time spent on data preparation is the summation of times only for
extracting and loading, but does not include the time for transforming. Transform was simultaneously
executed along with analysis in the data analysis phase, and so that the data preparation in D_ELT does
not include transform but only extract and load.

4.3. Experiment 2: Measurement of Data Analysis Time

In this experiment, we compared the data analysis time of ETL, ELT, and our proposed D_ELT,
and the scalability of each approach based on the different data size. Additionally, this experiment
also included optimized D_ELT, D_ELT_Opt, conducting data analysis by filtering and using only
the required data. In order to see the variation in performance according to the different complexity
levels of analysis, we utilized three analyses—Count, GroupBy, and SpatialJoin—for low, middle,
and high-level complex analysis, respectively. The overall results from this experiment are presented
in Table 3.
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Table 3. Data analysis time (in seconds): ETL(or ELT), D_ELT, and optimized D_ELT.

ETL(or ELT) 1 D_ELT 2 D_ELT_Opt 3

Count
Small 68 96 57

Medium 126 179 104
Large 181 257 143

GroupBy
Small 76 98 87

Medium 139 179 162
Large 203 256 233

SpatialJoin
Small 391 406 406

Medium 772 806 806
Large 1087 1190 1148

1 Data analysis time in ETL or ELT: A, where A is executed in parallel; 2 Data analysis time in D_ELT: T+A, T, where
T, A are executed in parallel; 3 Data analysis time in optimized D_ELT: T+A, where T, A are executed in parallel
using only the required data.

As shown in Figure 5 in Section 3, the total time for data analysis in ETL includes only the analysis,
which is conducted in a parallel distributed way using MapReduce. In the case of ELT, once the data
preparation is completed, the analysis will be conducted in the same way as for ETL. In the cases of
D_ELT and optimized D_ELT, the total time spent on data analysis is the time required to execute
transform and analysis in a parallel distributed way using MapReduce.

5. Results and Discussion

5.1. Results

The first experiment for measuring the data preparation time for each approach reveals the
following points. As shown in Figure 8, D_ELT is about 5 times faster than ETL (116 sec vs. 579 sec for
small data; 231 sec vs.1158 sec for medium data; 345 sec vs. 1727 sec for large data) and about 3 times
faster than ELT (116 sec vs. 413 sec for small data; 231 sec vs. 808 sec for medium data; 345 sec vs.
1175 sec for large data), regardless of the data size. The ELT approach is about 1.4 times faster than
ETL. This is because of the parallel distributed processing effect using Marmot’s MapReduce when
performing transform in ELT.
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The data analysis time is measured by the second experiment and reveals the following points.
Table 4 compares the performance between D_ELT and ETL(or ELT) and optimized D_ELT and ETL(or
ELT). In both cases, the ratio of performance to analysis is almost identical regardless of the data size.
An interesting point is that the data analysis time in the D_ELT process contains time for transform,
while the ETL(or ELT) process does not include this time. Although D_ELT is slower than ETL(or ELT),
there is little difference in performance—D_ELT is up to 1.4 times slower. In the case of optimized
D_ELT, the process is only up to 1.2 times slower than the ETL(or ELT) approach. In D_ELT, in the case
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of simple analysis, the time involved in data transforming is relatively large compared to the analysis
time and consumes a large part of the total execution time. However, in the case of complex spatial
analysis, the time involved in data transforming is relatively small compared to data analysis, and so
the transformation overhead incurred is relatively small.

Table 4. Performance comparison: D_ELT/ETL(or ELT) and optimized D_ELT/ETL(or ELT).

D_ELT/ETL(or ELT) D_ELT_Opt/ETL(or ELT)

Count
Small 1.41 0.84

Medium 1.42 0.83
Large 1.42 0.79

GroupBy
Small 1.29 1.14

Medium 1.29 1.17
Large 1.26 1.15

SpatialJoin
Small 1.04 1.04

Medium 1.04 1.04
Large 1.09 1.06

It is important to note that these have no effect on overall performance degradation, considering
that D_ELT is about 3–5 times faster than ETL(or ELT) during data preparation, as shown in Table 2
in Section 4 and Figure 8. Therefore, the performance of both D_ELT and optimized D_ELT is much
greater than that of ETL or ELT.

Figure 9 compares the performance between D_ELT and ETL(or ELT) during data analysis
according to the different data size and analysis type. As aforementioned, the analysis time in the
D_ELT includes transform as opposed to ETL(or ELT), and so D_ELT is slower than ETL(or ELT),
as shown in Table 3 in Section 4. However, the higher the complexity of the analysis (Count < GroupBy
< SpatialJoin), the smaller the difference between the D_ELT and the ETL(or ELT) performance.
The reason is that the higher the complexity of analysis, the higher the effect of parallelizing the
transform of D_ELT, thereby enhancing the performance of D_ELT.
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Figure 9. Performance comparison of D_ELT/ETL(or ELT) based on the small, medium, and large data
size for each of three analyses: Count, Group-By, and SpatialJoin.

Similarly, Figure 10 compares the performance between optimized D_ELT and ETL(or ELT) during
data analysis, according to different data size and analysis type. Compared to Figure 9, in the case of
two simple analysis cases, Count and GroupBy, optimized D_ELT is faster than D_ELT. This is because
for simple analysis, large amounts of data are often unrelated to the analysis, and so more data can be
included in the optimization target, resulting in an incremental increase in performance of optimized
D_ELT.
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and large data size for each of three analyses: Count, Group-By, and SpatialJoin.

In both cases, the performance ratio of the analysis is very similar regardless of data size. Thus,
we chose only the small data size to compare the performance ratio, as shown in Figure 11. This shows
that the higher the complexity of the analysis, the smaller the performance difference between D_ELT
and optimized D_ELT. This is because the more complex the analysis, the more data is involved in the
analysis, which reduces the scope of optimization. In the case of SpatialJoin, which has the highest
complexity among the three analyses, the two values in Figure 11 converge to almost 1.0, showing that
there is almost no performance difference between D_ELT and optimized D_ELT.
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on the small data size for each of three analyses: Count, Group-By, and SpatialJoin.

The overall performance of ETL, ELT, D_ELT, and optimized D_ELT is derived by summing the
data preparation and analysis times. Table 5 shows that the overall performance of D_ELT is much
faster than that of the ETL or ELT approaches. D_ELT is up to 3 times faster than ETL and 2 times faster
than ELT. Optimzed D_ELT is up to 4 times faster than ETL and 3 times faster than ELT. The results are
derived from the two simple analysis cases, Count and GroupBy, but not SpatialJoin. In the case of
SpatialJoin, both D_ELT and optimized D_ELT still perform better than ETL or ELT, but there is almost
no difference between the overall performance of D_ELT and optimized D_ELT. Figure 12 shows that as
the complexity of the analysis is increased, the gap between D_ELT and optimized D_ELT is decreased.
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Table 5. Overall performance of ETL, ELT, D_ELT, optimized D_ELT (in seconds), and performance
comparison among ELT vs. ETL, D_ELT vs. ETL, and optimized D_ELT vs. ETL.

ETL
(sec)

ELT
(sec)

D_ELT
(sec)

D_ELT_Opt
(sec)

ELT/
ETL

D_ELT/
ETL

D_ELT_Opt/
ETL

Count
Small 647 481 212 173 0.74 0.33 0.27

Medium 1284 934 410 335 0.73 0.32 0.26
Large 1908 1356 602 488 0.71 0.32 0.26

GroupBy
Small 655 489 214 203 0.75 0.33 0.31

Medium 1297 947 410 393 0.73 0.32 0.30
Large 1930 1378 601 578 0.71 0.31 0.30

SpatialJoin
Small 970 804 522 522 0.83 0.54 0.54

Medium 1930 1580 1037 1037 0.82 0.54 0.54
Large 2814 2262 1535 1493 0.80 0.55 0.53
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5.2. Discussion

There are two conventional methods—ETL and ELT. The traditional ETL method does not use
the distributed/parallel method during data pre-processing, causing problems especially when the
volume of data to be pre-processed is large. The ELT method improves traditional ETL methods to
speed up data pre-processing using the distributed/parallel method. Our proposed D_ELT method
reduces overhead in data pre-processing. In D_ELT, the transformation task is piggybacked onto the
analysis task and both tasks are performed together using the same MapReduce. This way allows one
to conduct the analysis immediately without storing transform results and also excludes unnecessary
transformations that are not utilized in the analysis.

Compared to existing methods, however, the D_ELT method significantly reduces the data
preparation time, but has the disadvantage in the following cases. First, the case that the same kind of
analysis must be conducted repetitively. For example, the D_ELT method results in a 1382-second
reduction (large data, Table 2) in data preparation time compared to that of the conventional ETL
method, but 103 seconds is added (large data, SpatialJoin, Table 3) every time an analysis is conducted.
Therefore, the greater the number of conducting analyses, the more inefficient D_ELT is compared to
traditional methods. In the example above, the D_ELT method is more inefficient than the existing
method when the same analysis is conducted more than 14 times in succession. Second, in the case
that a large amount of input data is invalid, a large amount of data can be removed as a result of the
transform. In D_ELT, the transformation task is piggybacked every time an analysis task is executed,
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a large amount of invalid data is repeatedly read, resulting in unnecessary I/O and computation
burden. Finally, the method proposed in this paper does not consider real-time applications. However,
it provides the advantage that required analysis results can be obtained relatively more quickly than
other conventional methods.

6. Conclusions

This paper presents our proposed D_ELT approach to efficiently transform and analyze data,
thereby making it usable for a large amount of sensor big data, especially geospatial big data. Based on
the experimental results, we made several observations as follows. First, D_ELT outperforms ETL and
ELT during data preparation. Second, D_ELT shows performance degradation during data analysis.
However, the higher the complexity of the analysis, the smaller the performance degradation, resulting
in overall improved performance compared to ETL or ELT. Finally, in the case of simple analysis
increasing the scope of optimization, optimized D_ELT outperforms ELT. In the future, we plan to
further increase the overall performance of our developed system including D_ELT and Marmot by
investigating the spatial index, to better support spatial queries in dealing with geospatial big data.
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