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Abstract: Mapping with surveying equipment is a time-consuming and cost-intensive procedure that
makes the frequent map updating unaffordable. In the last few years, much research has focused on
eliminating such problems by counting on crowdsourced data, such as GPS traces. An important
source of information in maps, especially under the consideration of forthcoming self-driving vehicles,
is the traffic regulators. This information is largely lacking in maps like OpenstreetMap (OSM) and
this article is motivated by this fact. The topic of this systematic literature review (SLR) is the detection
and recognition of traffic regulators such as traffic lights (signals), stop-, yield-, priority-signs, right of
way priority rules and turning restrictions at intersections, by leveraging non imagery crowdsourced
data. More particularly, the aim of this study is (1) to identify the range of detected and recognised
regulatory types by crowdsensing means, (2) to indicate the different classification techniques that
can be used for these two tasks, (3) to assess the performance of different methods, as well as (4)
to identify important aspects of the applicability of these methods. The two largest databases of
peer-reviewed literature were used to locate relevant research studies and after different screening
steps eleven articles were selected for review. Two major findings were concluded—(a) most regulator
types can be identified with over 80% accuracy, even using heuristic-driven approaches and (b) under
the current progress on the field, no study can be reproduced for comparative purposes nor can solely
rely on open data sources due to lack of publicly available datasets and ground truth maps. Future
research directions are highlighted as possible extensions of the reviewed studies.
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1. Introduction

In recent years there has been an explosion of interest in creating and sharing geographic
information by individuals that have been described as sensors—citizens as sensors who can capture
various measurements at their local environments [1]. Since the establishment of smartphones and
social media, this phenomenon has been growing only bigger and faster and the technology of an
expensive work task being carried out by a group of people, known as crowdsourcing, is here to stay [2].
Interestingly, individuals contribute this information voluntarily, with most known volunteered
geographic information (VGI) initiative the OpenStreetMap (OSM).

Guo et al. [3], discussing Mobile Crowd Sensing (MCS), distinguish two unique features—(1) it
involves both implicit and explicit participation; (2) it collects data from two user-participant data
sources—mobile social networks and mobile sensing. Either with minimum or major awareness
and involvement, in a sensing system (opportunistic and participatory respectively) [4] volunteers
can gather fast lots of geographic information that can be then processed for many purposes.
Agamennoni et al. [5] and Zheng et al. [6] extract context information in form of interesting activities
and places, Li et al. [7] mine road features such as road name and class and Niehöfer et al. [8] compute
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velocity estimates per road segment for recommending routes of minimum predicted duration instead
of shortest ones. Other popular topics based on crowdsourced data concern parking spot occupancy
estimations [9], traffic state estimation [10], environmental noise monitoring [11,12], fuel-efficient map
applications [13], and traffic condition sensing (bumps, potholes, hard braking, honking) based either
on mobile devices [12] or on sensor-equipped vehicles [14], to name a few.

Some of the aforementioned approaches use data from various sensors to meet their purposes.
Nevertheless, the minimum data needed for extracting some sort of geographic or location-aware
information remains the time-ordered locations of a moving object. These locations are obtained as
sequences of GPS recorded logs and compose spatiotemporal trajectories. Some examples of trajectories
of different moving objects (pedestrian, bicycle, car, sailboat) are shown in Figure 1. Trajectories
contain implicit knowledge of objects’ movement regarding the underlying movement patterns and
structure that can be identified with pattern recognition techniques and then can be applicable in
various domains [15]. Traffic condition and patterns can be mined from trajectories [16,17], as well
as intersection travel time [18]. Regarding movement patterns, a conceptual view of trajectories by
identifying stops and moves [19] enable us to discover hidden patterns in object movement [20–22]
or unveil interesting locations for individuals or group of people [23,24]. Other trajectory related
applications concern trip purpose inference [25], sudden event detections such as braking incidents [26],
road user behaviour classification [27], as well as anomaly (outlier) detection in various contexts, like
traffic [28] or route navigation anomalies [29].

A field with much research interest lately is automatic map updating. According to Reference [30],
roads change by as much as 15% a year. Map update refer both to the road network itself and the
various features that come on top of the latter. Dozens of studies have been focused on the automatic
generation of the road network from GPS tracks [31–35] and on subtopics that referred to the latter
as main topic, such as intersection detection [36–39]. However, that interest is not uniform for the
map feature categories that also need to be automatically updated. Such a relatively under-explored
research field is that of traffic regulators.

(a) Walk trajectory (b) Bicycle trajectory

(c) Car trajectory (d) Sailboat trajectory

Figure 1. Trajectories from different movement modes: (a) walking, (b) cycling, (c) driving and
(d) sailing.
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Road network consists of interconnected junctions which are geometrically complex locations.
Such junctions are regulated with certain traffic regulators in sake of traffic participants’ safety. By traffic
regulators we distinguish two types: (a) in-situ traffic rules materialized as physical objects (traffic
signs) and (b) global/general traffic rules such as the right of way priority. Traffic controls obviously
affect the movement behaviour of the objects and might even affect the decisions that they take when
selecting which navigation route to follow, such as avoiding complicated crossings [40].

Nevertheless, this information is yet largely missing from maps like OSM . This fact has
motivated lately studies to explore how such information can be extracted automatically with
crowdsourced means. Crowd-sourcing traffic regulation information has many benefits, as traffic rules
are important components of maps considering the advances in self-driving vehicle field. Maps that
contain such information can also contribute to driving safety [41] by assisting drivers to regulate
their driving behaviour according to traffic rules through Advanced Driving Assistance Systems
(ADAS). Such an example is the estimation of drivers’ context awareness and issuing relevant
warnings [42–45]. Moreover, fuel efficient route recommendations require such information for
estimating fuel consumption and proposing routes accordingly [13]. Big location based service
providers are also interested in including road signage information in their products. Such an
example is HERE maps, which provides cloud-based service for delivering up-to-date traffic signage
information to connected cars, so that drivers get warnings of changes (e.g., rerouting, traffic speed)
along their routes [46]. Sensor event attributes required for that road sign service include among
others latitude/longitude values, road sign type and road sign values captured by GPS and video
camera devices.

Traffic regulator detection and recognition can be done mainly using data from two different
sources—(a) images and (b) GPS tracks. Research on (a) involves traffic sign classification [47,48]
using camera photos or mobile mapping systems as in Reference [49] where a traffic sign inventory is
being built. Other computer-vision oriented methods try to predict the traffic signal phases [50,51]
or timing [52], for facilitating the faster reach of destination. GPS tracks as a lightweight source of
data that can be easily recorded with no special equipment (e.g., all smartphones nowadays have
GPS receivers) and minimum user involvement in the recording task (no special need for placement a
camera for capturing images) can be seen as a more friendly traffic-regulator crowd-sensing approach
and exactly that is the topic of the SLR presented in this article. A visual depiction of the problem
reviewed here, is shown in Figure 2 and can be shortly summarized in the research question How from
lightweight crowdsourced data can traffic regulators be detected and categorized?

To our knowledge, no review of studies related to traffic regulator detection based on non-imagery
data has been published so far. Given the strong interest in, and practical demand for, up-to-date maps,
this work aims at locating all relevant studies, extracting important aspects of their proposed methods,
assessing their performance and identifying possible research directions that can lead to solutions that
can massively and practically enhance maps with traffic regulators.

(a) Vehicle trajectories crossing an intersection. (b) A traffic-signal controlled junction.

Figure 2. From crowdsourced data (a) to traffic regulator detection and recognition (b).
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In the following sections, we describe the methodology we used to conduct the systematic literature
review (Section 2) and we present the results of the SLR in Section 3. A discussion over the findings is
given in Section 4.

2. Materials and Methods

Although the method of SLR was originally developed within the medicine research field, lately it
has been adopted from various GIS studies [53–56]. Torraco [57] explains that an “integrative literature
review is a form of research that reviews, critiques, and synthesizes representative literature on a topic
in an integrated way such that new frameworks and perspectives on the topic are generated,” which
summarizes the motivation of this SLR. A SLR is a kind of review that needs to be organised around
specific research questions or purposes and have a structure that allows the researcher to develop
criteria for including or excluding research publications from the final synthesis. Such criteria are
determined according to the focus of review which might be research outcomes, methods, theories,
or practices or applications [58]. The focus of this SLR are on the methods of detecting traffic regulators.

Moreover, a SLR makes use of detailed, rigorous and explicit methods [59]. According to Xiao
and Watson [60], although different types of literature reviews can be implemented following various
procedures, all of them in general can be conducted following eight common steps: (1) formulating
the research problem; (2) developing and validating the review protocol; (3) searching the literature;
(4) screening for inclusion; (5) assessing quality; (6) extracting data; (7) analysing and synthesizing
data; and (8) reporting the findings. Equally important elements of a SLR are its validity, reliability
and repeatability [60] and for this reason special attention should be paid on the methodology of
conducting and documenting it.

Adopting this 8-step process, our research problem was formulated in four questions as shown
in Table 1. Mainly, we want to (1) identify what kind of regulators can be detected and recognised
by processing crowdsourced non-image data (RQ1); (2) summarize what kind of methods are being
used for the scope of 1. (RQ2); (3) assess how well those methods perform on predicting the regulator
category (RQ3); and last (4) recognise probable under-explored aspects of the problem that through
this work can become visible to scientific community for further exploration (RQ4).

After that, a protocol was defined according to Prisma 2009 checklist [61] and the literature
search was conducted as described in Section 2.1. The screening and eligibility steps are explained in
Section 2.2. We selected to integrate each of individual studies semi-quantitatively [59] that, contrary
to qualitative ones, combine the results of reviewed studies statistically. That way they provide a
comparative insight of how methods differ. We call our method semi-quantitative, as in some cases
a statistical analysis was not possible, as explained in Section 3. We made a selection of data to be
extracted for the semi-quantitative assessment (Table 6) and the results of the analysis and synthesis
are reported in Section 3.

Table 1. The Systematic Literature Review (SLR) objectives formulated as research questions.

SLR Research Questions

What What traffic regulators have been detected and recognised based on crowdsourced
non-image data?

How What methods have been used for this purpose? Under what settings the methods have
been tested? (dataset, participants, ground truth map )?

How well What is the performance of these methods?
Other Are there any under-explored aspects of the topic?
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2.1. Literature Search

2.1.1. Channels for Literature Search

There are three main sources for obtaining a complete list of literature [60]—(1) electronic
databases; (2) backward searching; and (3) forward searching. We searched these three sources
as following. We selected two of the biggest multidisciplinary scientific citation and abstract indexing
databases (Table 2), namely Scopus [62] and Web of Science [63], each having more than 69 millions
records. Having created an account in these two citations services, the search queries and the retrieved
list of documents were saved and exported in separate files as part of the documentation that the
SLR protocol calls for [61]. As explained later in Section 2.1.2, these databases provide advanced search
of documents based on personalised criteria. Therefore before using such advanced search to query
articles based on certain criteria, special attention was given on carefully reading the search instructions
and the various examples provided by the two service carriers.

The number of articles at each step of the SLR Screening process are indicated in the Step columns
of Table 2. Step 1 indicates the initial number of articles that the search engines returned after the
search string was given. At Step 2 the articles from the previous step are screened based on their Title.
Similarly, at Step 3, Step 4, articles are screened according to their Abstract and Full-text respectively.
Articles with the same topic from the same author(s) are screened at the Step 5, where the latest and
usually most advanced article is selected for the final list of the under review articles.

Table 2. Electronic databases and search engines used in the SLR.

Source URL Step 1 Step 2 Step 3 Step 4 Step 5
(Title) (Abstract) (Full-text) (Author)

Scopus https://www.scopus.com/ 603 171 36 8 6
Web of Science https://apps.webofknowledge.com/ 326 57 9 6 4
Total 929 228 45 14 10

The Backward search, known also as snowballing [64], involved identifying relevant work cited by
articles, making use of the list of references placed at the end of an article. The Forward search was
also used for the same purpose by locating articles that have since cited the articles reviewed. We used
Google Scholar for conducting the Forward search. The process of Backward and Forward search is
explained in detail in Section 2.2.3.

Last, as an additional channel of literature we used our personal knowledge, that is, according
to Reference [64], related to what we already knew and who we knew, for example, our existing
knowledge and resources, our personal academic contacts and networks, as well as serendipitous
discovery, such as locating a relevant paper when looking for something else. We refer to this channel
of literature as other sources in the rest of the article.

2.1.2. Query Terms

The selection of the terms for querying articles is of high importance as it significantly affects the
number of articles that are retrieved and determines their relevance to the topic. Neither an enormous
amount of found articles nor a small one is a good starting point of an SLR in the first case the screening
process may take way too long time to be accomplished within a reasonable time-frame and human
resources and in the second case, the review may lack of sufficient source of input for reaching a quality
level that ensures a broad and complete enough assessment of the current state of the literature. This
means that query terms can both eliminate and broaden the results of the search and, for this reason,
they should be carefully selected.

For selecting the set of query terms we used the following strategy. First we created a list of
all possible terms (also synonyms) that corresponds to the concept of traffic rules, recording also
all the possible forms (grammatic and spelling) within the context of a phrase (e.g., plural forms,

http://www.latex-tutorial.com
https://apps.webofknowledge.com/
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combined words separated with hyphen like traffic-signal, etc). Then, by using the advanced search of
the two databases and each term separately, we examined the number of articles and the first pages
of the retrieved list, for assessing the quantitative and qualitative result of the search. Moreover,
we experimented with searching terms within only the text of the title, within the abstract and then
in combinations of title-abstract-keywords. Thereby, we found out that since the number of articles
related to the term traffic signals was enormous (some thousands), we had to restrict the findings to
those that include both the terms traffic sign and GPS, either in the title text or in the abstract or in the
keyword part of the articles. For the other terms we eliminated the search only within the title text.
That way, both the number of found articles and their content was matched better to our requirements.

For implementing the aforementioned strategy we used the logical operators “OR” and “AND”
for combining different search queries and the asterisk “*” for retrieving words with variant zero to
many characters. These operators have similar function at both databases. Double quotations though
work differently (loose phrases in Scopus and exact in Web of Science). Also in Scopus, punctuation is
ignored (hyphen is treated as punctuation and therefore ignored if it is not in exact phrases) and plural
and spelling variants are included (traffic sign includes traffic signs). Web of Science by default uses
lemmatization, which means it “makes use of dictionaries that define pairs and clusters (e.g., defense,
defence) of words with the same meaning or with a shared morphological structure” [63]. Synonyms
and lemmatized terms are turned off when quotation marks are used or wildcards. In Table 3 are
shown the search terms that were used for article retrieval. The final search string is shown in Table 4.

Table 3. Query terms that were used for searching the Web of Science and Scopus for the two SLC
concerning concepts.

Query Terms

traffic regulator * traffic rule *
traffic restriction * turning restriction *

crowdsourc * traffic crowdsens * traffic
intersection classification intersection regulation

intersection control * intersection regulat *
junction control * junction regulat *
junction regulat * junction classification

traffic sign * GPS

Table 4. The Query string that was used in Scopus search engine.

Search Query String

TITLE (“traffic regulator *” OR (“traffic rule *”) OR (“traffic restriction *”) OR (“turning restriction *”)
OR (“crowdsourc * traffic”) OR (“crowdsens * traffic”) OR (“intersection classification”) OR (“intersection
regulation”) OR (“intersection control *”) OR (“intersection regulat *”) OR (“junction control *”) OR (“junction
regulat *”) OR (“junction regulat *”) OR (“junction classification”) ) OR TITLE-ABS-KEY (“traffic sign *”
AND “GPS”)

Last, three extra filters were applied. The range of the publication year was set from 1999 to
2019, the language of the documents to English and the subject category (subject area in Scopus and
Web of Science Categories caterories) by excluding the irrelevant ones (e.g., medicine, biology, social
sciences, etc).

2.2. Screening and Eligibility Check

Having as input all the articles that were retrieved from the two databases, the next step of the
SLR was the screening and eligibility check, according to explicitly defined criteria. First the articles
were eliminated based on their title. All the articles that referred roughly to computer vision methods
or whose scope was related to accidents, regulation violation detection, driving intention prediction,
localization or formalisation of traffic rules in the context of autonomous vehicles, were excluded. That



ISPRS Int. J. Geo-Inf. 2019, 8, 491 7 of 25

way the number of articles that passed to the next stage was small enough so that their abstracts could
be read within reasonable time. The articles that were eligible according to the inclusion criteria were
passed to the next step, where they had to be fully read. The same articles retrieved from different
databases were read once. After this step, a list of papers came up that was enriched with an article
found from other sources (Section 2.1.1). We ended up with a pre-final review list that we searched
Backward and Forward for relevant articles. That step was very important as we spotted studies that
we had not located with the previous time-consuming process. The resulting articles made up the final
review list.

2.2.1. Inclusion and Exclusion Criteria

As mentioned in the previous paragraph (Section 2.2), the elimination of the articles was done
based on criteria that were defined along with the research questions. By having formulated the scope
of the SLR in very specific research questions, determining the inclusion and exclusion criteria ended
up to be straightforward. These criteria are enlisted in Table 5.

We regarded three mainlines for including a study in the review list—(1) the first is related with
the study object itself (What from RQ1) and with the method employed for pursuing that objective
(How from RQ2). Studies not directly related with the topic were excluded, such as References [65,66],
which focus more on traffic regulation violation detection. Reference [67] was also excluded as it
focuses on enriching maps for traffic sign compliance. We found some other articles with objectives
close to the SLR topic, such as References [18,27,68], but since their topic did not really coincide with
the latter, they were also excluded. (2) The objective, the methodology as well as results of the tested
method should be clearly given in the the body of the article. There were cases of articles talking
about the usage of a certain method for detecting traffic regulations without providing evidence from
quantitative results coming from experiments and testing, for example, References [22,41,69]. These
articles were not included due to invalidity of the Incl2 criterion. (3) Last, only the more advanced
article from the same authors on a certain topic was included in the review list, while earlier and more
often shorter versions were excluded [70–73]. That way we eliminated duplicate studies.

Table 5. The defined inclusion and exclusion criteria that were applied during the Screening and
Eligibility steps of the SLR.

Incl1 The article is relevant with the detection and recognition of traffic regulators using non imagery
crowdsourced gps tracks.

Incl2 The article describes in a clear way the objectives, methods and results of the research.
Incl3 The article is the most recent work of an author that has written earlier a short paper or a similar

article on exactly the same topic, decribing the same method.
Excl1 The article refers to a computer-vision based traffic-regulator detection approach, e.g., detection based

on camera or satellite image.
Excl2 The article lacks of clarity in depicting its objectives, methods and results or\and it mentions the

applicability of their method on SLR’s objective but it does not report any results on that.
Excl3 Authors have published a more detailed or advanced article on the same topic with the same objective

and method.

2.2.2. Applying the Inclusion and Exclusion Criteria

The decision for including or excluding an article came after three rounds of scanning, where
for each the validity of the inclusion-exclusion criteria was checked and articles were either passed
for a further scanning or definitely excluded from the review process. These distinct processing steps
are depicted in Figure 3. With title screening, basically articles that possibly matched the Incl1 were
passed to the next phase. Since criteria Incl2 (Excl2) and Incl3 (Excl3) regard the methodology and
result of the proposed approaches, they were not expected to filter out articles at this stage. Those
successfully screened by title were assessed based on Incl1(Excl1) and Incl2(Excl2) by their abstract
and unless not excluded, by their full text. Until this point, the articles’ eligibility was validated for
Incl1 (Excl1) and Incl2 (Excl2) criteria. Duplicates were eliminated according to Incl3 (Excl3) and the
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review list of articles come from the first channel of literature search was finalised. This list was then
promoted for Backward-Forward search.

2.2.3. Snowballing Search and Personal Knowledge Enrichment

The article list from the previous screening step (Figure 3) was first enriched with articles from
our personal knowledge and then all of them were searched Backward and Forward. Here there is an
iteration of the screening steps explained before, for the articles cited by the selected ones (backward)
or from later published studies that cite the aforementioned (forward). The final review list was finally
compiled containing eligible articles from all channels of literature, as presented earlier in Section 2.1.1.

Figure 3. PRISMA Flow diagram [61] of the literature search and articles’ selection for the SLR.
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2.3. Information Extraction

According to Reference [57], the best literature reviews examine the literature with a particular lens
defined by the article’s objectives. This means that they rarely examine all aspects of previous research
but rather this lens points the author and reader to certain aspects of studies that indeed are critically
examined and evaluated. In this SLR the aspects to be further analysed came up after examining
the research questions and the problem of classification itself. We are interested in identifying how
a classifier can be built for regulator classification, how well it can predict different categories, how
sufficiently it can perform on an other than the training geographic context, how many samples are
needed for learning the various labels, what kind of data can be used for the scope, and all these
questions we would like to answer under the prism of identifying methods or characteristics that can
be reproduced in order to practically enrich maps with that important information. Ultimately, we want
to answer (a) whether someone with today available tools and data could detect regulators and, if yes,
which of them and under what limitations, (b) what the “recipe” would be for that, and (c) what still
remains unexplored or under-explored. The aspects that are analysed in this SLR are enlisted in Table 6
and are explained in more detail in the next paragraphs.

Table 6. Comparison aspects (dimensions) of the reviewed articles in terms of their proposed methods,
experimental settings and performance.

Dimensions Description

Regulator category Regulators for which a detection methodology is proposed
Number of regulators Diversion of regulator categories
Study area Country, City
Participants Number of participants whose data are crowdsourced
Dataset type Publicly available dataset or not
Dataset size Size of crowdsourced data
Dataset timespan Time range of the dataset used in the study
Ground truth map source Acquisition method of ground truth map (on-site inspection, official

public or non-public provider)
Cross-city testing Results from cross-city testing are provided in the study or not
Minimum number of samples Minimum number of crossings per junction needed for sufficient

classification performance
Classification method Classification methods that were used for learning to detect and

recognise regulators
Classification features Features used for classification
Classification Accuracy Classifier’s accuracy (best performance)

Regulator (Categories and Diversion)—Ideally a method could identify all different regulator
categories, but in most of the cases each method focuses on a certain subset of traffic rules, mainly as
discussed later due to limitations imposed by dataset availability. For each article we identified the
traffic rules that the proposed approach relates to.

Area of Study—In the GIS field context, often research takes place in or concerns different
geographic locations for studying the effect of location on the examined variable. In the context
of this research, although traffic regulations have the same meaning no matter the geographic context,
we extracted the country and the city(cities) that the study deals with, so that we can identify whether
the same method (if any) can perform equally well in different geographic context.

Participants—The focus of this SLR is limited to crowdsourced non-image data and the motivation
for that comes from the advantages that crowdsourcing in general offers. As Heipke [2] points out,
the field is constantly growing and has lots of potential for mapping, mainly due to two reasons:
(a) the technology is mature enough to stay for long, (b) other means of mapping are too slow or too
expensive. We exported the numbers of participants whose data were recorded and contributed to
study’s dataset and varies from 1 to several individuals.

Dataset Type—The type of the dataset can be publicly available (e.g., an open dataset) or not. Here
we denote as dataset both GPS tracks (or non GPS data exported from OSM) and ground truth maps.
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Therefore, we categorized datasets into publicly and non-publicly available. We regard this piece of
information as important, as we want to find out whether today someone can download a dataset,
train and test the method on that and then use the classifier on newly crowdsourced data without the
need to discover the ground truth map for the new data, which is in general a time-consuming process.

Dataset Size—Dataset size information is extracted in form of number of trips (trajectories) and
number of junctions sampled from the traces. This information shows how extended the study is and
sheds light on the generalisations that can be drawn up from the results.

Dataset Timespan—The timespan of the dataset is important to assess seasonal limitations and
examine possible extensions of the methods regarding the repetition of the detection process.

Ground truth Map Acquisition Method—We exported the acquisition method of ground truth map.
If stated in the article, we noted the source or the method that has been used, else we noted it as
non-stated. Without knowing the ground truth map neither classifiers can be trained nor classification
results can be validated from any selected classification method, either involving training or not.

Cross-City Testing—It is important to know whether a classifier trained and tested on city A can
equally perform on city B. Not all studies explore this aspect of the problem, so we categorise them
according to it.

Number of passes—This information is related obviously with the dataset size, but here the
motivation is to identify the minimum amount of crossings per junction needed for classifier’s
optimization. We exported the minimum number of samples documented by authors if they conducted
such experiments, else we noted this piece of information as non-explored.

Classification Method—The type of classification methods are exported from the studies to find
out how different is one approach from the other (if they use different classifiers) and spot those that
perform better than others.

Classification Features—Physical values as well as statistical ones are used as features that feed
classifiers. Those measures were exported to examine the variety of features that have been used so far
and to discover possible combinations or new features that have not been tested so far.

Accuracy—The accuracy of predicted regulators was also exported for evaluating the progress on
the field. Since accuracy is a measure of how sufficiently a method can categorize junctions according
to regulators, we used this information to find out possible directions that need further exploration for
improving the current results.

3. Results

As was explained in Section 2, we searched the two literature databases leading us to locate,
in total, 929 articles (Figure 3). These articles were first screened based on their title. In total, 701 of
them were excluded as not relevant to the topic and 228 were passed to the next eligibility screening.
The abstracts of those 228 articles were read and only 45 were judged eligible for full-text analysis.
From a full-text reading only 10 were classified as eligible for SLR. Four articles out of 10 were excluded
as they were identified as duplicates (Table 7). In the 6 remaining articles, 1 article was added from
other sources and the 7 articles were searched Backward and Forward. The latter search identified
4 more articles. Therefore, 11 papers complete the final review list, which are listed in Table 8 in
chronological order.

Table 7. Eligibility processing steps after full-text reading.

Eligibility Processing Steps after Full-Text Reading Articles

Articles after full-text reading 10
After duplicate exclusion 6
After adding from other sources 7
After Backward-Forward Search 11
Final 11
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Table 8. Articles selected after the Screening step of the SLR process in chronological order.

a/a Reference Author(s) Title of the Article Type Year Classified Regulator

1 [74] Pribe & Rogers Learning To Associate Observed Driver Behavior with
Traffic Controls

Journal 1999 Stop-Signs, Traffic-Signals

2 [52] Carisi et al. Enhancing in Vehicle Digital Maps via GPS Crowdsourcing Conference 2011 Stop-Signs,Traffic-Signals
3 [75] Hu et al. SmartRoad: Smartphone-Based Crowd Sensing for Traffic

Regulator Detection and Identification
Journal 2015 Stop-Signs, Traffic-Signals,

Uncontrolled
4 [76] Seremi & Abdelzahe Combining Map-Based Inference and Crowd-Sensing for

Detecting Traffic Regulators
Conference 2015 Stops, Traffic-Signals

5 [77] Aly et al. Automatic Rich Map Semantics Identification Through
Smartphone-Based Crowd-Sensing

Journal 2017 Stops, Traffic-Signals

6 [78] Efentakis et al. Crowdsourcing Turning Restrictions from Map-matched
Trajectories

Journal 2017 Turning restrictions

7 [79] Wang Chao et al. Automatic Intersection and Traffic Rule Detection by
Mining Motor Vehicle GPS Trajectories

Journal 2017 Traffic-Signals

8 [80] Méneroux et al. Detection and Localization of Traffic Signals with GPS
Floating Car Data and Random Forest

Conference 2018 Traffic-Signals

9 [81] Munoz-Organero et al. Automatic Detection of Traffic Lights, Street Crossings and
Urban Roundabouts Combining Outlier Detection and
Deep Learning Classification Techniques Based on GPS
Traces while Driving

Journal 2018 Traffic-Signals, Street
Crossings, Roundabouts

10 [82] Qiu et al. Towards Robust Vehicular Context Sensing Journal 2018 Stop-Signs
11 [83] Zourlidou et al. Classification of Street Junctions According to Traffic

Regulators
Conference 2019 Traffic-Signals, Yied/Priority

Junctions, Uncontrolled
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We analysed the articles based on year of publication as can be seen in Figure 4. We made two
observations—(1) after the first article published on the topic (1999), there is a long inactivity period
and only after 2011 we can see that the topic seems to gain again the interest of the scientific community.
After 2015, the interest started increasing and given this study was conducted in the middle of 2019,
no conclusions can be done for the ongoing year.

Moreover, we examined the scientific disciplines that are involved in the studies based on the
journal category. More specifically, we analysed the articles found from Web of Science, after the
abstract eligibility screening. As can be seen from Figure 5, most of the articles are from the Computer
Science discipline and interestingly no paper was published in the Geoinformation or Transportation
Science thematic category journal. This is a contradictory finding to our expectation as the topic itself
is, if not pure, at least geoinformation related.

Figure 4. Number of SLR articles per year of publication.

Figure 5. Treemap visualisation of categories of Web of Science found articles, after full-text screening.

The fact that four out of eleven articles were spotted with the snowballing method and the fact
that most of the articles are published in Computer Science journals, motivated us to analyse further
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the found articles and more specifically their titles. We applied a text analysis to their titles as shown
in Table 9, for identifying the common terms that are used in the title text. This analysis explained
why those five articles weren’t spotted directly from the database search. As the list with the frequent
terms indicates, keywords like “regulator” met only twice in the whole title of the eleven articles
and others like “signal”(s), “light”(s), “control”(s), “junction”(s) and “intersection”(s) only once or
none. Going back to the titles themselves, we can see that articles such as References [74] and [52]
have titles of quite broad meaning, making hard their association with the keyword search (Learning
to associate observed driver behaviour with traffic controls and Enhancing in vehicle digital maps via GPS
crowdsourcing). Regarding the journal category, no doubt the methods involved in regulator detection
and recognition originate from computer science discipline (classification, clustering, etc.) and maybe
the broader-meaning titles explain why most of the articles were not published in geoinformation
related journals. These observations emphasise further the objectives of this SLR that, among others, is,
as stated earlier, to reintroduce the topic to the geoinformation society or at least to make the problems
that the topic involves (more) visible to the geoinformation community. In the following paragraphs,
the results of information extraction according to the identified problem aspects (Table 6) are discussed.

Table 9. Occurrences and frequency of the terms that are found in title text (all title as a single text) of
the SLR selected articles (shown for occurrences greater than two).

Word Occurrences Frequency Rank

traffic 7 6.9% 1
sensing 5 4.9% 2

detection 5 4.9% 2
gps 4 3.9% 3

based 4 3.9% 3
automatic 3 2.9% 4

map 3 2.9% 4
crowd 3 2.9% 4
vehicle 2 2% 5

identification 2 2% 5
regulators 2 2% 5

street 2 2% 5
trajectories 2 2% 5

learning 2 2% 5
smartphone 2 2% 5
combining 2 2% 5

classification 2 2% 5
crowdsourcing 2 2% 5
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3.1. Regulators: Categories and Diversion

We identified six different regulator categories that are detected with crowdsensing means—traffic
lights (TL), stop signs (SS), right of way rules (RW) for uncontrolled intersections, turning restrictions
(TR), priority sign (PS) and yield sign (YS). The regulator category rate across the eleven studies is
depicted in Figure 6a. TL is the more popular regulator within the studies, with 40% percentage, and SS
(30%) and RW (15%) follow. TR is detected only by 10% of studies and less popular regulators are
PS/YS (5%). Here we should note that some studies, except for those on traffic regulators, detect
other map/street elements, such as street crossings and roundabouts in Reference [81] or underpasses,
stairs, escalators, footbridges, crosswalks, elevators, ramps, and so forth, as described in Reference [77].
Since this SLR focuses on intersection controlling categories, we ignored these elements from the study.
Nevertheless, we report in the diversity field in Table 10 in parentheses the total detected subjects.
Similarly, the two studies that detect TR examine subcategories of turning restrictions (e.g., right, left,
straight, U-turn). We denote those subcategories also in parentheses in the diversity field of Table 10.

The diversity of the rules examined within each study was also analysed and the results are
shown in Figure 6b. By diversity, we mean the number of different regulators that are detected within
the same study. As mentioned earlier, ultimately a study should categorize as many regulators as
possible. The maximum diversity is three and the minimum is one. No study found having diversity
equalled four or five.

(a) Regulator categories. (b) Regulator diversity.

Figure 6. Regulator categories and diversity across SLR reviewed studies.

3.2. Area of Study

One third (33%) of the experiments of the studies used datasets that are sampled in the USA (US)
and 20% in Germany (DE), as can be seen in Figure 7a. One article may have many areas of study.
In terms of area diversity within the same study, as Figure 7b suggests, the maximum is three and
concerns 9.1% of the studies and the minimum is one concerning the majority of studies (72.7%).

(a) Distribution of areas of studies (countries). (b) Diversity of areas of study.

Figure 7. Diversity of areas of studies within the same study.
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Table 10. Extracted information from the reviewed articles.
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1. [74] TL, SS, RW 3 US - No 50 Reg. - Various No No Neural Nets Statist. 100%
2. [52] TL, SS 2 US - Both 32 Inter. 3 Days On site Yes Yes Heuristics Slowdowns,

Standstills
>90%

3. [75] TL, SS, RW 3 US 35 No 463 Reg. 2 Mon. On site No No Random
Forest,
Spectral
Clust.

Statist. >90%

4. [76] TL, SS, RW 3 US 46 Both >1K Inter. - Google
Street
Views

Yes No Random
Forest

OSM, Statist. >95%

5. [77] TL, SS 2(9) EG,SA,US 5 No 24 km foot - On site No No Heuristics Dwell. Dur. Optimal Prec.,
Rec.: 0.8

6. [78] TR 1(4) GR, DE, AT >2K No Mi./Bi. Turns 1 Year Various Yes No Heuristics %Turns 66–77%
7. [79] TR 1(12) CN 5 No 285 Inters. - On site No No Clustering Headings,

Time-Series
Points

-

8. [80] TL 2 JP - No 253 TL Inter. 1 Mon. On site No No Random
Forest

Stop Dur. >85%

9. [81] TL 1(3) ES, DE 1/10 Both 8.1 km, 55 Traj/
23.6 km, 20 TL

- On site No No Deep Belief Net. Speed, Accel. Rec.: 0.89,
Prec.: 0.88

10. [82] SS 1(4) - 6 No 55 Int. 9 Mon. On site No No Heurisitcs Stop patterns Rec.: 0.86,
Prec.: 0.90

11. [83] TL, PS-YS 2 DE - No 31 Inter. - On site No No C4.5 Speed Seq. Rec.: 0.83,
Prec.: 0.31,
F-score: 0.45

∗ TL: Traffic-Lights, SS: Stops-Sign, RW: Right Way Rule, TR: Turning-Restrictions, PS: Priority-Sign, YS: Yield-Sign;5 Country names: US (USA), DE (Germany), GR (Greece),
AT (Austria), CN (China), EG (Egypt), SA (Saudi Arabia), JP (Japan), ES (Spain); � Prec.: Precision, Rec.: Recall.
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3.3. Participants

The number of participants that collect the data is very diverse, from 1 subject to more than 2000.
Also, four out of eleven studies do not report this parameter.

3.4. Dataset Type

Of the studies, 72.73% were conducted using datasets that are not publicly available. The other
27.27% used both publicly and non-publicly datasets. In the latter case, all but one used data acquired
from OSM and only one study [81] reports the (non OSM) data source, which one can use to download
data from. Obviously, even using open data sources like OSM, unless details are given regarding
the data acquisition, one cannot get access to the exact dataset that other studies had previously
used. In one case [76] where data was used from both sources, features were derived from OSM
and combined in classifier’s feature vector along with features computed from own collected data.
In another case [52], open data were used only for testing algorithms but without verifying their results,
most probably due to ground truth map unavailability. Last, the third study that uses both types of
datasets [81], applied the proposed methods separately to each dataset, since for the public dataset
the ground truth map was also provided.

3.5. Dataset Size

The size of the data used in the studies is very diverse as well as diverse in the way that it
is reported in the articles, as can be seen in Table 10. Sometimes it is reported as the number of
intersections, other times as the number of intersection approaches, regulators, length of trajectories,
number of trajectories, recording time, and so forth. In most of the cases not all the aspects that describe
precisely a dataset are given (e.g., number of sampled intersections is given, but not the number of
trajectories that sample the area of interest). Here we should note that due to limitation of space,
in Table 10 only some of the dataset size description aspects are reported that are given in the articles.
Another observation is that more than half of the studies are small-scale according to the size of the
dataset that they use (less than 100 intersections or regulations). The rest of the studies are again
diverse—they use more than 190 intersections, with one study using over 1000 junctions and another
one reporting billions of turn instances at a non-stated number of junctions [73].

3.6. Dataset Timespan

The timespan of data collection in seven out of eleven studies is not reported. From those that
report it, we can deduce that the bigger the timespan is, the bigger the acquired dataset is.

3.7. Ground Truth Map Acquisition Method

The method for acquiring the ground truth map (Figure 8b) in 63.6% of the studies is on-site or
direct observation and 18.2% of the articles use multiple sources for ground truth verification which
may include direct observation and information from the transportation official agency, such as in
Reference [74] or information from satellite images and on site examination, such as in Reference [73].
Given that the on-site observation is also included in these multiple sources, the total percentage of the
methods that use the manual method of ground truth map acquisition is further increased to over 81%.
One study, which corresponds to 9.1% of the total, does not mention the source of ground truth maps
and another one uses street view images from Google Street View. No study reports whether ground
truth map acquisition was done with the same timing or time period with the data collection.
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(a) Type of Dataset. (b) Ground truth map acquisition method.

Figure 8. Dataset: type, ground truth map acquisition source.

3.8. Cross-City Testing

Only 27.3% of the studies (three out of eleven studies) tested the cross city applicability of their
proposed methods (Figure 9a). One did that [73] by applying the same heuristics in different cities.
Carisi et al. [52] also applied heuristics for identifying SS and TL in different regions of California,
from which two datasets had been collected. In both datasets, the accuracy of predictions is reported
as over 90%. In both studies [52,73], testing for cross-city applicability is not explicitly declared. Only
Saremi et al. [76] provide special analysis for this aspect of the problem. They trained a random forest
classifier in city A and tested it in a city B (A and B belong to the same state). They report more than
92% accuracy of testing results. They also tested the case of training in city A of state A’ and testing
in city B of state B’. They achieved an accuracy above 91%. Nevertheless, they point out that the
generalization of their finding might not hold across different countries (train in a city from country A
and testing in another city of country B), as further tests need to be done.

3.9. Number of Passes

Another important aspect of the problem is the number of samples that a classifier needs for
optimizing the categorization task. This aspect, as can be seen in Figure 9b, is explored only by one
study [52]. For a binary classification problem (TL, SS), they found out that 5 samples are needed
for SS reliable detection and 7 for TL. We note that the classification method used in that study is
heuristics-driven and not machine learning oriented.

(a) Cross city testing. (b) Min. number of samples testing.

Figure 9. Tests applied for verification of cross city applicability and for the minimum number of
samples needed by a classifier to perform sufficiently.

3.10. Classification Method

Figure 10 shows the different classification methods that the reviewed studies use. Four of
them use decision trees (such as Random Forest) and an equal number interestingly use heuristics.
By heuristics we mean a set of if-else rules that use threshold values for features that describe
collectively the movement behaviour at traffic regulated locations. For example, Carisi et al. [52]
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examine first each intersection for the case of being stop sign regulated, and, only if the probability
of being a stop sign is below a threshold, they check for a traffic light. Due to missing or incomplete
data, both heuristics might not be able to provide a clear categorization. In such cases they use some
extra logical rules that governs the traffic regulated areas, by taking into account the possible rule
combinations (e.g., an intersection is classified as regulated by a traffic light if at least half plus one
of the incoming ways are marked as a potential traffic light). The movement behaviour at junctions
is analysed in terms of two basic patterns—slow downs (speed less than 5 m/s within 50 m of an
intersection) and standstills (speed less than 4 m/s within a time window of at least 10 sec and its
extremes having at most 20 m spatial distance). An intersection way is regarded a potential stop sign
regulated if at least 80% of the passes (traces) are standstills. If all or all but one ways belonging to a
given intersection are marked as potential stops, the intersection is categorised as stop-sign regulated,
and all the ways previously labelled as potential stops become actual stop signs. Similar heuristics use
the other heuristic-based approaches shown in Table 10.

Figure 10. Classification methods used by the reviewed studies.

Two studies used Neural Networks and one does not report the classification method. Some
studies state that they tested also additional classifiers but the results are not reported either because
they did not differ much from the baseline classifier or they performed worse than the one that is
documented in the article.

3.11. Classification Features

Among others, what makes a classifier powerful at identification tasks is the features it uses. Good
features in general can make a classifier powerful, but certainly bad feature selection can make any
classifier incapable of accomplishing even basic recognition tasks. The variety of features been used by
the studies as shown in Table 10 is big. Nevertheless, all of them are related to the stop or slow down
behaviour near intersections. How this behaviour is encoded in features differs from study to study.
The non-heuristic methods use either statistical features that are estimated per intersection from the
traversals that cross the latter (one study also use OSM map exported features) or other features related
to the stop duration or the speed and acceleration (e.g., sequences of speeds [83]). The heuristic-driven
approaches by conducting various tests, find thresholds for measures that can identify behaviours
triggered by different regulators (e.g., the percentage of slowdowns and standstills at a SS location).
For detecting TR, features again are related with the observed behaviour that is encoded either in form
of percentage of turning instances [73] or towards/fromwards headings [79].

3.12. Classification Performance

The examined studies use different measures (Recall, Precision, Acuracy, etc.) for assessing their
classification performance and therefore a quantitative analysis of the results of all studies was not
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possible. Also, the composition of regulator categories examined by studies is the same only for three of
the studies (TL, SS, RW), so even if performance measures were the same, comparisons could be done
only for classification problems concerning the same composition of regulatory categories. However,
their performance as shown in Table 10 seems promising, as almost all are over 80% accurate.

In the following section, all results are discussed under the framework of SLR research questions,
which are listed in Table 1.

4. Discussion

What: Six categories of traffic regulators (TL, SS, RW, TR, YS, PS) were identified as possible to
detect by crowdsensing means. A first observation on the results is that YS and PS are under-explored
relative to other categories such as TL. Only one study [83] was found that dealt with these regulator
categories, by formulating the problem as a binary classification task TL-YS/PS (low diversity).
The reason for this fact may be related to the area of study that is interconnected with data availability.
Judging only from the datasets that the studies use, one can see that, in Germany, it is very common for
junctions (especially T-junctions) to be regulated by PS/YS, in contrast to in the USA where SS seems
to be the alternative for the YS (all studies in USA involve SS and none YS/PS). Also, from personal
experience from living in Germany, SS are rarely used as junction regulation means. This means that
on a bigger dataset in Germany, SS could be also examined in the same categorization problem. This
assumption might also hold for other countries too, since all these regulators are used on a bigger
or a smaller scale in most countries. So the key to increasing the diversity of regulators within the
same study might be a bigger dataset, so that instances from less popular regulators, such as SS are in
Germany, have a less "outlier-like" arithmetic character in the dataset.

Another important finding is that cross-city applicability of classifiers is still an under-explored
topic, given that only one study runs experiments for clarifying this aspect of the problem. Similarly,
an under explored topic is the volume of data required for sufficient classification—5, 10, 20 or how
many junction traversals are needed for a classifier to learn to distinguish different regulators?

However, the major finding of this SLR as can be deduced by the results is the importance
of ground truth maps—84% of the studies rely on on-site observation for acquiring it and this no
doubt imposes limitations on a method which is intended to automate a certain process. So, if by
crowdsensing or using platforms that provide such data, lots of data can be readily available for dealing
with the classification task, the acquisition of the ground-truth map is still needed for validation
purposes. Nowadays, many GPS datasets are available from various open-source platforms or
institutions or competitions but they cannot be used in the context of regulator detections unless
the ground-truth map is also provided. Therefore, this finding emphasizes the need for open datasets
that researchers can easily access, so that they do not have to come up with the time consuming manual
work that a ground truth map involves. A possible way to construct such a ground-truth map could
be the assignment of the task to the "crowd" and crowdsourcing of the traffic regulations.

How: Decision trees and heuristic rules were the most common methods being used in the
studies. Heuristics in general require a manual or semi manual process for tuning the parameters
(e.g., thresholds) that are then being used by rules derived most often by trial-error processes. In the
context of the topic we examined, they provided results of equally high accuracy with the automatic
approaches. One issue relevant to the threshold based approaches is whether the values of the found
thresholds could provide equally successful results when applied to other cities or countries than those
of the original studies. Yet no such testing is provided from the latter.

How well: More conclusions could be drawn if classification performance was assessed in all
studies with the same metrics. Nevertheless, almost all the studies report high classification accuracy
(over 80%), although the diversity of the examined categories is relatively low. For TR, only one study
reports its performance (66–77%) so we cannot make generalisations for this regulator category.

Other A general observation already sketched in Section 1 is that crowd-sourcing traffic regulators
for map-enrichment is a less explored topic compared to other automatically generated map elements
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(road geometries, junction locations, etc.). This is reflected also from the number of articles excluded
during the screening process as well as from the number of articles that makes up the under review
list. The recent interest on the topic, if considered the long inactivity period since 1999 that the first
relevant article was published, could be explained from the practical need to enhance maps with this
information. This need comes from the recent progression of location-aware services, that in general
try to optimize the transportation or to offer an optimal way to reach a location B from a location A,
based on personalised or non-personalised criteria. No doubt, knowing intersection regulations can
contribute to such optimizations.

5. Future Directions

So far, we have presented the different studies in a compact comparative way, highlighting what
they actually do, how they do it and what they succeed at. What still might be not apparent are the
future directions of this research area. We identify three major directions, some already underlined by
the reviewed studies and others that resulted from this SLR. The first is the cross-city applicability as
discussed in Section 3.8. It is still not clear whether a trained classifier could be applied across different
cities or even countries and under which possible conditions, if any. Saremi and Abdelzahe [76]
note that they are not convinced of generalising their promising cross-country results and suggest
further experimentation on that topic. The second future research direction regards the regulator
classification performance under highly diverse regulator categories. The studies so far examine the
junction classification problem of at most three regulatory classes. More classes nevertheless reflect
better the real world road network regulator system and certainly deserve a thorough examination.
Last, a third future development should be directed to a hybrid GPS/computer-vision data approach
where the GPS-based road regulation recognition result could be refined or opportunistically “assisted”
from imagery data captured by camera. A weakness of the GPS-based methods is that they are highly
dependent on a “dense” sampling of road ways, so that movement patterns can be detected from them.
Very often it is the case where one junction, suppose a four-way junction, is well sampled in one of its
ways and the three other ways are sparsely or not at all sampled. In such cases, a computer-vision
approach could assist the classification by querying, for example, street level images from relatively
new crowdsourced geotagged photo platforms, such as Mapillary [84].

6. Conclusions

Mapping with surveying equipment is a time-consuming and cost-intensive procedure, which
means that practically it cannot be often repeated. This then raises the issue of how useful a map can
be if it is not up-to-date. This SLR summarized the progression on detection and recognition of traffic
regulators such as traffic lights (signals), stop-, yield-, priority-signs, right of way priority rules and
turning restrictions at intersections, by leveraging non-imagery crowdsourced data. Non-imagery
data are “lightweight” data in terms of data transfer and processing from the involved data collection
participants and the data capture devices being used for the task. Another advantage of using GPS
data over image-based data is that the former can be collected with minimum user involvement
during the recording task, since no special equipment is needed (e.g., all current smartphones have
GPS receivers) and no installation of the recording device is needed (e.g., camera) before starting the
recording of the trip.

This SLR contribution is twofold—methods that can be used for regulation detection and
recognition were located and summarized in a comparative way and research opportunities were
emphasized after analysing each study (classification method) separately and in comparison with the
others. The main limitation of the study is the fact that the performances of the different classification
methods indeed cannot be compared as they do not reference the same dataset and performance metrics.
Each study uses difference datasets with certain time, space and sample limitations (see Table 6) and
the performance metrics used for assessing the classification accuracy are various. For this reason we
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did not assess or interpret the methods’ performance quantitatively, nor did we attempt to order them
in any kind of order of accuracy or performance.

The two largest databases of peer-reviewed literature were used to locate eleven relevant studies.
Thirteen aspects of the problem (dimensions) were selected for examination and information from
each study was exported accordingly. That information was analysed in a semi-quantitative way,
resulting in the following main findings—(1) regulator detection methods show high predictive ability
across different categories, yet no study was found to examine all regulator categories within the
same framework or at least to have a diversity over categories greater than 3; (2) only 27% of the
studies examined the cross-city applicability and none relied solely on publicly available datasets.
The minimum amount of data needed for classification (e.g., training) is also an under-explored aspect;
(3) 81% of them acquired the ground truth map with on-site observation (in contrast to acquisition
approaches relying on google street view images); (4) The accuracy of both heuristic-oriented
approaches and common classification techniques provided in most regulator category settings an
accuracy of over 80%. These major findings, combined with all the other issues being discussed in
Sections 4 and 5, underline (5) the need for open datasets (with diverse traffic regulators) and ground
truth maps that researchers can use as a benchmark for validating their methods and most importantly
for comparing them with existing ones. Under the current progress in the field, no study can be
reproduced for comparative purposes nor can it rely on open data sources due to lack of publicly
available datasets and ground truth maps; (6) As a proposed future development, GPS-based traffic
regulation inference could be opportunistically “assisted” from imagery data when, for example,
the classification accuracy in certain locations is either low or when junctions are sparsely sampled by
GPS tracks. In such cases, a vision-based approach such as traffic-sign recognition could be used to
clarify the junction regulator context.
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