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Abstract: Dynamic visual simulation of flood risk is crucial for scientific and intelligent emergency
management of flood disasters, in which data quality, availability, visualization, and interoperability
are important. Here, a seamless integration of a spatio-temporal Geographic Information System
(GIS) with one-dimensional (1D) and two-dimensional (2D) hydrodynamic models is achieved for
data flow, calculation processes, operation flow, and system functions. Oblique photography-based
three-dimensional (3D) modeling technology is used to quickly build a 3D model of the study
area (including the hydraulic engineering facilities). A multisource spatio-temporal data platform
for dynamically simulating flood risk was built based on the digital earth platform. Using the
spatio-temporal computation framework, a dynamic visual simulation and decision support system
for flood risk management was developed for the Xiashan Reservoir. The integration method proposed
here was verified using flood simulation calculations, dynamic visual simulations, and downstream
river channel and dam-break flood simulations. The results show that the proposed methods greatly
improve the efficiency of flood risk simulation and decision support. The methods and system put
forward in this study can be applied to flood risk simulations and practical management.

Keywords: spatio-temporal GIS; hydrodynamic model; spatio-temporal computation framework;
flood risk; 3D simulation

1. Introduction

Water is important for human survival, but it is also the source of many disasters. According
to the 2018 disaster report for China, flood disasters are one of the main natural disasters for the
country [1]. It is crucial for ecologically-based development to understand how to scientifically
prevent flood disasters and protect and properly use water resources. Hydrodynamic models are
core quantitative calculations in emergency flood disaster management [2—4] and can accurately
simulate the instantaneous dynamic evolution and medium- to long-term development of a flood [5].
Since hydrodynamic models are very complicated, usually only domain experts can understand the
models. Therefore, three-dimensional (3D) visualization of the computation results is important in
practice. In recent years, texture mapping technology, animation technology, and simulation technology
have been used to build 3D virtual environments based on data such as LiDAR point clouds, satellite
images, contour lines, and topographic maps. By using digital hydrodynamic models to calculate the
water depth and flow velocity, flood evolution and inundated areas could be simulated and displayed
in a 3D virtual environment, thus enhancing decision-makers’, the public’s, and other stakeholders’
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awareness of floods. It will also promote scientific management of flood disasters [6-9]. Although
the effect of visualization (such as rainfall and rollback waves) in these studies is reasonably well
presented [8], most of them use simulation software or animation technology to show the effects of
floods and inundated areas at different times [9]. The flexibility of 3D presentations and spatial analysis
functions should be strengthened. For example, queries of water depth at an arbitrary point and
displays of flowrate and direction are not supported in a 3D virtual environment. On the one hand, 3D
virtual environments have not been seamlessly integrated with hydrodynamic models, which read
the computation results of hydrodynamic models (such as text files). On the other hand, terrain
topology is established by using contours of topographic maps. This method takes longer to process,
and its precision depends on the scale and production time of the map [7,8]. Along with oblique
photogrammetry, the seamless integration of spatio-temporal GIS and hydrodynamic models provide
a way to solve the problem.

Based on a unified spatio-temporal reference, spatio-temporal datasets comprise geographic
elements or phenomena related to a location [10]. Spatio-temporal data have a spatial dimension (S),
an attribute dimension (D), and a time dimension (T) [11]. Space-time data reflect quantitative and
qualitative characteristics, the spatial structure and the spatial relationships among the geographical
elements or phenomena, and their changes through time [12,13]. Spatio-temporal data are the basis
for how humans understand the geographical world. A spatio-temporal Geographic Information
System (GIS) is able to acquire, store, analyze, and visualize spatio-temporal data. It represents
the position and spatial form of geographic objects or phenomena, and their changes over time.
Compared with two-dimensional (2D) GIS and three-dimensional (3D) GIS, spatio-temporal GIS is
more powerful for visualization and spatial analysis and can more accurately reflect how objects
change [14-16]. Over time, an increasing amount of meteorological data have become available.
The costs of high-resolution satellite images and oblique photogrammetric surveys have been reduced,
and their reliability has improved. The new generation of information technologies (such as the
Internet of Things (IoT), big data, and cloud computing) have rapidly developed and are increasingly
applied in the water industry [17]. As a result, the number of data types has increased, and the
volume of data has grown rapidly. These developments have enabled real-time simulations of flood
risk and intelligent emergency management. In addition, there is an increased demand for data
management, visualization, spatial analysis, and business integration. These developments have also
led to changes from static 3D data to dynamic 3D data and time series data, from static to dynamic and
continuous visualizations, from spatial analysis to real-time spatio-temporal simulations, and from
decision support aids to operational running. Spatio-temporal GIS can better satisfy these changes,
can better manage spatio-temporal data from flood disasters, and can be used to reveal patterns of
spatio-temporal changes in incidents (i.e., floods) [18-21].

Hydrodynamic models are very complicated and involve large amounts of data [6-9]. The application
value of a hydrodynamic model is affected by the following factors: (a) The availability, timeliness,
and resolution of basic data pertaining to the river channel and its surroundings; (b) the effect of the
visualization of the computation results; and (c) the extent to which the hydrodynamic models and the
business system are integrated. The disaster-inducing factors of flood risk include the flood volume,
the inundated area, the inundated depth, the inundation duration, the flood flow velocity, and the
flow direction. Changes in the flood flow velocity, the flow, and the water level through time are
important for decision making in flood disaster emergency management [22]. Spatio-temporal GIS methods
allow three-dimensional visualizations of the locations and conditions of hydraulic engineering facilities,
hydrological information, meteorological data, flood factors, and the results of model computations. This type
of GIS can visually and dynamically show spatio-temporal changes in floods and the spatial distribution of
affected persons, facilities, and ecological environments [23,24]. It provides dynamic, quantitative, refined,
and real-time information for decision making by flood evolution simulations, condition evaluation of
hydraulic engineering facilities, disaster evaluation, and emergency management. Additionally, itcan provide
powerful data and platform support for early disaster warning systems and monitoring and evaluation
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of flood disasters [25-27]. Spatio-temporal GIS uses high-precision and high-resolution spatio-temporal
data and dynamic visualization effects. It has greatly enhanced flood simulations, flood disaster forecasts,
and early warning and emergency management of flood disasters. It provides a valid solution to data
quality and visualization problems in hydrodynamic model computations [24]. The seamless integration of
spatio-temporal GIS and hydrodynamic models will considerably solve the three problems that affect the
application value of hydrodynamic models.

This study presents a technical method for quickly establishing a spatio-temporal GIS framework
for a reservoir, river, and the surrounding areas using an oblique photogrammetric survey and the
digital earth platform. This method allows the seamless integration of the spatio-temporal GIS
framework with the hydrodynamic models. A platform for the dynamic simulation of flood risk was
established; this platform can integrate data flow, business flow, computation resources, and visual
decision making. The platform provides basic data, such as riverbed section locations and a regional
digital elevation model (DEM), which are required for the hydrodynamic model computations.
The resulting values, including the flow velocity, flow direction, water depth, and inundated range,
are displayed in an integrated, dynamic, and three-dimensional way. The platform can also show the
variations in the flood factors in three dimensions, relative to changes in the input parameters such
as the rainfall and reservoir flood discharge. This platform provides quantitative, scientific, efficient,
and visual decision support information for flood simulations, early flood disaster warning systems,
and water resources management. A flood-dispatching dynamic and visual simulation platform for
the Xiashan Reservoir and the Weihe River was established. The platform provides web-end functions,
including data management, data query, model computation, flood simulation, and visual decision
making. The methods described here are of great significance for the emergency management of flood
disasters and for the intelligent dispatching of water resources in the era of IoT, big data, and cloud
computing [17].

2. Materials and Methods
2.1. Method for Rapidly Building a Spatio-temporal GIS Platform for Flood Risk Simulation

2.1.1. Data Acquisition Through Oblique Photography

A multi-lens oblique photography system was used to photograph the ground, based on
the position of exposure points, to obtain multi-angle ground images with multiple degrees of
overlap. With its enhanced performance and more convenient operations of graphics processing units
(GPU), cloud computing, unmanned aerial vehicles, and digital cameras, oblique photography can
rapidly generate a high-precision and high-resolution three-dimensional model of the physical world.
This three-dimensional model can be resolved at the centimeter scale, which can truly and objectively
represent the land surface configuration [28,29] (Table 1).

Table 1. Key quality requirements for high-definition image data and landform data.

Parameter Quality Requirements
. WGS-84 longitudinal and latitudinal
Coordinate . . -
coordinates, Gaussian projection
Elevation 1985 National Elevation Reference
DOM Resolution No less than 0.2 m
DEM Scale greater than 1:2000

Abbreviations: DOM, digital orthophoto map; DEM, digital elevation model.

The data from oblique photography were processed using smart3D. Photos captured from different
angles were used as data sources for smart3D to read the information, such as photo locations and
control points. Smart3d output 3D models of terrain and buildings with real textures without manual



ISPRS Int. ]. Geo-Inf. 2019, 8, 520 40f 21

intervention, which could accurately show the geometrical morphology and detailed composition
of ground objects. The processing flow is shown in Figure 1. A triangulation network (TIN) was
established using a dense point cloud generated by aerial triangulation and the dense matching of
images [30]. The TIN forms an untextured model that can reflect the 3D spatial form of objects.
Calculating the corresponding texture from the images using the software and mapping the texture on
the corresponding untextured model can form a real 3D scene that reflects the spatial relationships
and surface features of objects. Then, data, such as digital orthophoto maps (DOMs), digital elevation
models (DEMs), DSMs, 3D models (3DMs), DLG (Digital Line Graphic) and digital object models
(DOBs), can be generated as needed.

Oblique photogrammetry scheme
(Platform, Flight Path, Flight Direction,
Flight Height, Sensors .etc)
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|
v v v
| POS Data ‘ | |mageSHControI Points‘
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Figure 1. Schematic diagram of the complete data processing flow for oblique photography-based
three-dimensional (3D) modeling.

2.1.2. Construction of 3D Models for Hydraulic Facilities

In this study, three-dimensional models of hydraulic facilities were constructed for separate
queries, spatial analyses, connecting time series data of sensors, and so on. The model precision
standards refer to those listed in Table 2.

Table 2. Unified accuracy reference for features of a 3D model.

. Height Plane Intrinsic Precision of the Measured
Precision Plane . .. .. . . .
Index Precision Difference Precision of Precision Spacing between Points, Lines,
Precision Other Features of Features and Planes of any Feature
< <
. <30 em f nd less <30 em f nd less <50 cm and less than 10% of the
Precision than 10% of the than 10% of the .
. <30 cm <30 cm . . spacing between
requirement spacing between  spacing between

measured objects

measured objects measured objects

To create the three-dimensional models, the contour lines of the hydraulic engineering facilities
were imported into the modeling software. The outline structures of the reservoir dam and its
appurtenance were obtained through a general survey. Editing of all models was completed in
3ds Max.
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2.1.3. Building of a 3D Scene for Flood Risk Simulation

Using LOD (level of detail) technology and by integrating spatial data at different scales, the real
3D scene was built to provide data, a computing platform, and visualization support for the dynamic
simulation of flood risk in the spatio-temporal GIS framework [26,27] (the building process is shown in
Figure 2). The large-scale data include a 1:10,000 topographic map and a 2.5-m resolution image of the
study area and the surrounding areas within a certain range. The medium-scale data are the oblique
photography-based 3D modeling data within the study area, including the DEM, DOM, and 3DM.
The small-scale data include the 3D single-body models of the hydraulic engineering facilities and
the 3D models of the equipment and facilities in buildings, such as the pump stations. The 3D scene
generated from oblique photography (osgb format) was directly used in the 3D models of key areas.
The textured 3D terrains were generated by superimposing the satellite image on DEM, which were
used as the 3D models of the rest areas. These two 3D scenes and single 3D models of water conservancy
facilities were imported into spatio-temporal GIS. The whole study area could then be displayed in
a three-dimensional way through the spatio-temporal GIS.

DEM Scaled 1:50,000 Oblique-photogrammetry-based || 3D Model of Water Conservancy
DOM with 2.5-m resolution Datasets (DEM, DOM, 3DM) Project facilities (3ds format)

| Coordinate Transformation and Spatial Matching |

i (Input)
| Digital Earth Basic Platform l

|

| 3D Real scene of Flood risk Simulation l

Figure 2. Process of 3D scene construction for flood risk simulation.
2.2. Hydrodynamic Models

For simulating spatio-temporal variations in the river channel flow upstream and downstream of the
reservoir and early warnings of flooding in the watershed, we selected the 1D and 2D hydrodynamic models
to perform quantitative simulations of the flooding process in the downstream river channel, based on
current and historical measured hydrological variables (including rainfall, discharge, and water level) [31,32].
The data required by the model and the output results are provided in Table 3.

Table 3. Relevant parameters for the hydrodynamic model system.

Input Parameters Output Parameters

Topographic data of the river channel Water level, flow process
Intake and discharge processes of the flood water

t dd t disch d water level - .
Upstream and downstream discharge and water leve in the flood detention area

Measurement data of the flood detention area Flood routing process in the flood detention area
Name, width, and sill elevation of the flood diversion gate ~ Inundated processes of the flood detention area
Measured water level and discharge of the water channel Storage process of the flood detention area

2.2.1. One Dimensional (1D) Unsteady Flow Model of the River Network

One-dimensional unsteady flow movement in a single river channel is often described using
the Saint-Venant equations [31,33]—namely, the continuity equation of flow (Equation (1)) and the
dynamic equation of flow (Equation (2))—as follows:

Qo7
£+B§_q1 1)
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where t is time (s); x is the flow path (m); Q is the discharge; A is the cross-sectional area of flow; B is
river width; Z is the water level; R is the hydraulic radius; # is the Manning roughness coefficients; V
is the average flow velocity of the section; g; and u; are the lateral inflow per unit length of the river
reach and the component of the lateral inflow in the x direction; a; is the momentum correction factor,
where a1 = ( fA usz) / (Q2 /A), and g is the gravitational acceleration.

Flow and energy in single river reaches are exchanged at the bifurcation point. Therefore,
movement of flow at the bifurcation point must conserve mass and energy. In other words, a balance
between the net flux at the bifurcation point and the net change of the actual water volume at the
bifurcation point (Equation (3)) must be maintained, as described in the equation as follows:

0
Y. Q=" ©

where Q); is the influx at the bifurcation point after passing through cross-section I and the influx at
the bifurcation point (node) is positive, while the outflux at the bifurcation point (node) is negative.
() is the water storage capacity of the bifurcation point. Considering the velocity head, resistance loss,
and other factors at the end point of river reaches at the bifurcation point, the water levels at the end
points of all river reaches at the bifurcation point shall meet the following requirements (Equation (4)):

+

J= = (4)

If the section of the river reaches connected by the bifurcation point is very close to the bifurcation
point, resistance loss at the bifurcation point will be negligible. Therefore, it can be assumed that the
water level at the end points of all river reaches at the bifurcation point is the same.

Equations (1) and (2) can be solved using numerical techniques [34]. The solution to these
equations comprises estimates of Q and Z for every cross-section at each time step.

2.2.2. Two-Dimensional (2D) Flow Routing Model of the Downstream River Channel

Generally, the 2D flow equation for the plane flood routing in the flood detention area can be
described using the shallow water equation [35,36]. The continuity equation of flow (Equation (5)) is
as follows:

2z 1 4 1 4

+ === (hu c)+CC pH

E C(SC,] 85 (I’H)C,g) (5)

The dynamic equations of flow (Equations (6) and (7)) are as follows:

2 1 [o 2y 2 IC _ 2G| _ _ 19z
a—bt‘—i—m 5z (Cyu )—i——(Cgvu)—i—vu oy 0 3—5" ——gc—é—g—i—fv ©
\/ﬁ 2 1 [ el aC ac, 1
" 1;14%1}_” 8§t g, a_(c oge) + 5 (C‘Gné) +0gy a,f Omn 957
2 1 [2 9 ICy _ 29C ]
9—’;4—@ Q(C,7vu)+—(cgv ) +uvgg —u | = gc—n%—fu

I ; 7)
2 022 1 P aCy dC¢ (
B G| 5 (Coogy) + U(C‘Un17)+0né T Ty

where £ and 7 represent two orthogonal curvilinear coordinates in the orthogonal curvilinear coordinate
system; u and v represent the flow velocities in the £ and 7 directions, respectively; h represents the
water depth; Z represents the water level; f represents the Coriolis coefficient and can be calculated
as f = ;sin¢® where () is the rotational angular velocity of the earth and ¢ is the latitude; # is
the roughness coefficient; v; represents the coefficient of turbulent viscosity and is calculated using
Vt = al +h, where a is a constant (@ = 0.25 ~ 1.0) and U- is the frictional velocity; Cs and C,
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represent the Lamé coefficients in the orthogonal curvilinear coordinate system, expressions of which
are Cg = \[xc2 4+ y:? and C) = [xy2 + y,%, respectively; and ogg, 0y, 0y and oy, represent the
turbulence stresses, which are calculated as follows (Equations (8)—(10)):

[ 1 Ju v JC¢
Ogg = 2vt_c_g% + C.gcq 8_77] (8)
[1 ov u 9Cy,
Onp = 2?Jt>c—na—n + CgCn%} 9)
[Ch 9, v Ccd u
Uén—ané—zvtc—é% C_n)JrC_n%(C_é)] (10)

Depending on numerical discretization strategies, the finite volume methods (FVM) were
introduced in our study to obtain the numerical solutions [5,9]. To avoid the formation of a jagged
velocity field and pressure field, the staggered mesh method was introduced. In addition, the SIMPLEC
algorithm and under-relaxation technology were used to complete the correction of the velocity equation
and the depth equation and further accelerate the convergence of the correction equation [5,37].

In this study, a method based on the empirical formulas [38,39] was introduced to estimate the
Manning roughness coefficients, and the cross-sectional flow resistance was corrected [2,40].

2.3. Spatio-temporal Computation Framework

Floods are a common process on the Earth’s surface and have apparent spatio-temporal
characteristics. Multiple factors are often involved in spatial analyses of river water and dynamic
simulations of flood risk. Spatio-temporal big data have laid an important foundation for flood
monitoring, dynamic simulations, and risk assessments [36].

The spatio-temporal GIS framework is an important aspect of spatial information science.
Hydrodynamic models are an important component of the study of the hydraulics. The seamless
integration of spatio-temporal GIS and hydrodynamic models involves a crossover study of the two
subjects [36]. Due to the complexity of hydrodynamic models, model researchers often emphasize
studies on model parameters, model applicability, and model accuracy and develop separate software
tools for model calculations. The preparation of data, the calculation process, and the output results of
models create their own system, without in-depth docking with application scenarios. Most model
outputs are 2D tables with poor visualization effects [2]. Spatio-temporal GIS has strong capabilities
in data acquisition, management, storage, analysis, calculation, and multidimensional visualization.
Calculations of hydrodynamic models are embedded into the spatio-temporal GIS, and seamless
integration is performed on the data flow, calculations, outputs and storage, and visualization [15].
Spatio-temporal GIS provides DEM, rainfall, and other types of data inputs about the river landforms
and flood detention areas that are used to calculate the hydrodynamic model, as well as calculation
resources and storage of the model calculation results. Multidimensional dynamic visualizations
are performed for the model results using the visualization capability of the spatio-temporal GIS,
thus realizing the seamless integration of the spatio-temporal GIS with the hydrodynamic model, as
shown in Figure 3.
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River topography;

X Upland inflow; Flow Direction;
Spatio- DEM of Flow Velocity; i
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data Rainfall; models Inundated range; Visualization

Time sries data; Time;
Data acquisition Data support Computing Storage and Visualization
and management Environment management

Spatio-Temporal GIS

Figure 3. Conceptual model of the spatio-temporal computation framework. GIS, Geographic
Information System.

The logical framework for the seamless integration of the spatio-temporal GIS with the
hydrodynamic model is shown in Figure 4. It is based on service-oriented architecture (SOA)
and is divided into the hardware layer, the data layer, the platform layer, the service layer, and the
application layer, from bottom to top. The data layer includes static 3D scene data, IoT sensed
and socioeconomic data, and spatio-temporal flood risk data. The static 3D scene data mainly
include DOMs acquired by oblique photography-based 3D modeling, 1:2000 DEMs, 3DM data, river
body data, and 3D model data of hydraulic engineering facilities. The IoT perception data include
time series data acquired by sensing equipment at the hydrometrical station and the precipitation
station. The spatio-temporal flood risk data include the flow velocity, flow direction, discharge, water
depth, and inundated area at different sections, locations, and times, which are the outputs of the
hydrodynamic model. The core of the platform layer is a spatio-temporal GIS, which is based on
a digital earth platform developed by the authors. The platform layer connects the preceding and the
following procedures, performs data management for the following procedures, and provides service
integration, calculations, and data for the preceding procedures [41,42]. The service layer encapsulates
core modules or functions for services, which allow the application and operational system developers
to focus on the business process and user demands and simplifies the development workload in the
application layer. The service and application layers are loosely coupled to enhance system flexibility
and scalability [43,44]. The application layer performs a dynamic visual simulation of the flood risk for
decision support, acting as an interface for the conversion of data to information and knowledge.

Applicati
pE:;Zrlon Dynamic 3D Simulation and Decision Support of Flood risk

) Data Management Hydrodynamic Models Visualization

Service Layer
Spatial Analysis Model Management Geospatial Computation
Platform Layer Spatio-Temporal GIS Platform (Spatio-temporal Data)
Data Layer 3D scene data, Basic _Sensed apd Flood risk factors
geographic information data Socioeconomic Data

Infrastructure Unmanned Aerial Vehicle (UAV), Radar, Sensors ground-based,

Layer Sensor Network, Storage Devices

Figure 4. Logical framework for the integration of spatio-temporal GIS with hydrodynamic models.
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3. Case Study

3.1. The Study Area

As the largest reservoir in the Shandong Province, the Xiashan Reservoir is in the middle reach of
the Weihe River (Figure 5). The total watershed area of the upstream and downstream reaches is up to
107.7 km?. It has a total capacity of 1.405 billion m>. The reservoir area is large and includes 4 counties
and cities, 11 townships, and 97 immigrant villages [45]. The reservoir has been in service since
September 1960. It is a large water conservancy project that integrates flood control, irrigation, power
generation, aquaculture, urban and industrial water supply, and other comprehensive utilizations.
The designed irrigation area of the reservoir is 1020 km? and the effective irrigation area is 693 km?.
The main dam of the Xiashan Reservoir is 2680 m long. The average annual rainfall in the reservoir
area is 615.3 mm, approximately 80% of which is concentrated in the period from June to September.
The study area includes the Xiashan Reservoir, 70 km from the upstream and downstream river
channel of the Weihe River, and the flood detention area downstream of the reservoir, with a total area
of 175 km?.

3.2. Construction of a Spatio-Temporal Database

Spatio-temporal data include basic spatial data, perception data, socioeconomic data, and spatio-
temporal data of flood risk factors. The 3D spatial data of the reservoir area and the 70-km river channel
upstream and downstream stretch of the Weihe River were acquired by oblique photography-based 3D
modeling, including a DOM with a resolution of 0.1 m, a 3DM, and a 1:2000 DEM. The perception data are
mainly the time series data at the precipitation station and the hydrometrical station. The demographic and
socioeconomic data mainly include data on road traffic, demographic data from administrative regions
at all levels, the locations of administrative regions, and the spatial positions and associated attributes of
schools, hospitals, public security organizations, factories, and other institutes. The spatio-temporal data
contents are shown in Table 4.

3.3. Dynamic Visual Simulation System for Flood Risk

By referring to Section 2.3 (“Spatio-temporal Computation Framework”) (Figure 4) and using
digital earth as the engine, a dynamic visual simulation system for the flood risk at the Xiashan
Reservoir was established to complete the seamless integration of the spatio-temporal GIS with
the hydrodynamic model. The system functions, as shown in Figure 6, mainly include such
modules as data management, data query, model calculation, flood process simulation, and visual
decision making. The spatio-temporal GIS module provides functions such as spatio-temporal data
processing, visualization, spatio-temporal analysis, and spatial data management. The “Calculation of
Hydrodynamic Model” module supports computing environment settings such as model selection,
parameter input, and flood type selection. The “Simulation and Visualization of Hydrodynamic Model”
module simulates the evolution process of floods and performs 3D visualization for the inundated
area, water depth, flow velocity, flow direction, and so on. The “Query and Statistics” module can
analyze and visualize the perception data from the precipitation and hydrometrical stations by time
frame. The system can access different types of sensor data and other business system data through the
Integration Interface. Based on the system, the hydrodynamic data can be input, calculated, and visually
embedded into the flood process simulation and the flood control and emergency management services
to improve the timeliness, scientific reliability, and visualization effect of the flood risk simulations [46].
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8
Kilometers

{b) . (9]

Figure 5. Location of the Xiashan Reservoir: (a) The location of the Xiashan Reservoir in China; (b) the
Xiashan Reservoir Dam; (c) the layout of the Xiashan Reservoir.

The system adopts a Brower/Server architecture and releases a GIS service as a Web Service [47].
It integrates the data from the rainfall monitoring system, hydrologic monitoring system, video
monitoring system, meteorological system, land geological disaster system, and other operational
systems into a unified spatio-temporal database. Under the unified spatio-temporal calculation
framework, flood risk simulation, hydrological data query statistics, and other operations are packaged
to complete the seamless integration of the data flow, operation flow, and system functions. The system
architecture is shown in Figure 7.

Table 4. Relevant parameters of spatio-temporal data.

Number Data Type Index Data Sources
Digital elevation model (DEM)
1 of the topographic data of the 1:2000
river channel Oblique
2 DEM of the flood detention area 1:2000 photography-based
3D modeling
3 DEM of the dam area 1:2000
4 Digital orthophoto map Resolution: 0.1 m
5 3D scene model (3DM) 3DM for the core area
6 Images of the peripheral area Resolution: 2.5 m Historical

satellite images

Basic scale

7 DEM of the peripheral area 1:10,000 .
topographic map
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Table 4. Cont.

11 of 21

Number Data Type Index Data Sources
8 3D models of the hydraulic Hydrometrical station and
engineering facilities precipitation station, etc.
9 Road traffic 1:10,000 roads Basic sc'ale
topographic map
Populations in counties,
10 Population prefectures, towns, Statistical data
townships, and villages
Positions of counties, Basic scale
11 Other social data prefectures, towns, topographic ma
townships, and villages pogtap P
12 Percention series data Rainfall, water level, Internet of Things
p forecasted rainfall, etc. (IoT) perception
Flow velocity, flow
13 Data of flood risk factors direction, water depth, Model calculation

and inundated area, etc.

Dynamic Visual
Simulation System

%
4{

for Flood Risk of
Xiashan Reservoir

Spatio-Temporal GIS

Calculation of
Hydrodynamic model

Simulation and Visualization
of Hydrodynamic model
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4. Results

4.1. Three-Dimensional Visualization of the Study Area

According to the methods in Section 2.1, a 3D visual simulation of the watershed, reservoir area,
river, and hydraulic engineering facilities was realized by organizing and visualizing the spatial data
in a spatio-temporal GIS framework. The 3D visualization of the study area is shown in Figure 8.

The system can quickly retrieve information about the ecological environmental system of the
reservoir, river channel, hydraulic engineering facilities, and the peripheral area. Relying on the strong
spatial analyses and visualization abilities of spatio-temporal GIS, the integration of the dynamic
evaluation, visualization, and decision support for flood risk is greatly improved.

Figure 8. 3D visualization of the study area: (a) A bird’s-eye view of the Xiashan reservoir and Weihe

river; (b) A 3D view of the indoor facilities; (¢) A 3D view of the administration agency.

4.2. Visual Simulation of 1D and 2D Flood Routing in the River Channel

By using the 1D and 2D hydrodynamic models embedded in the system, values for the flooding
in the river channels upstream and downstream of the Xiashan Reservoir were calculated, and the 3D
routing simulation was eventually realized. The system automatically calculated the flood process in
the river channels upstream and downstream of the Xiashan Reservoir according to the user-supplied
input parameters and the system data. The calculation results include flood flow hydrographs of the
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channel upstream of the reservoir and its statistical flood characteristics (including time, water volume,
and the highest water level of the river channel) (Figure 9).

Flow Field: Q = 694.6m%/s Flow Field: Q =3,883.93m%s  Flow Field: Q = 12,479.305 m?/s

Figure 9. Calculation results of the 2D flow mathematical model of the river channel downstream of
the Xiashan Reservoir (river channel).

We dynamically showed the inundated area based on the flood and water level at any point on
the river channel for a specific time period using time as the axis. A 3D visual simulation analysis
of the evolution of the in-channel water level was produced by using the visualizing function of the
system (Figure 10).

Figure 10. 3D simulation of two-dimensional (2D) flow in the downstream river channel. (a,b) The area
of flood submergence and the color from red to blue represents the water depth from deep to shallow,
respectively; (c) the dynamic monitoring and display of the water level in front of the reservoir dam during
flood discharge; (d) the dynamic visualization simulation of one-dimensional (1D) and 2D hydrodynamic
models in the river channels upstream and downstream of the reservoir, where the length of the arrows
represents the flow velocity, the color of the arrows from red to green represents the water depth from deep
to shallow, respectively, and the direction of the arrows represents the flow direction.
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4.3. Visual Flood Control Dispatching for the Xiashan Reservoir

Based on the high-accuracy 3D scene data in the system and with time as the system axis, the model
calculation results were dynamically simulated and shown, including the change in the water level in
front of the reservoir dam over time for a given flood or runoff event. The degree of backwater in the
reservoir area and the inundation level and its dynamic routing were simulated under the designated
dispatching scheme (Figure 11).

Figure 11. 3D demonstration of the flood control dispatching process of the Xiashan Reservoir.
(The arrow direction indicates the flow direction. The longer the arrow, the higher the flowrate. Color
is used to show the depth of the water. From green, blue, yellow to red, the darker the color, the greater
the water depth.)

This function module can perform reservoir flood control calculations based on a given (or forecasted)
flood or runoff event and presents the changes in the reservoir water levels and discharged volumes.
It also calculates the amount of backwater in the reservoir area, the inundation level, the discharged flow,
the flow velocity, and the water level change under the dispatching scheme, in combination with the 1D
hydrodynamic calculation model and the discharge calculation model of the spillway structure of the dam.
The integrated calculation and dynamic visual simulation processes can improve the decision-making
efficiency of flood control dispatching consultations and flood dispatching levels and minimize the impacts
of flood risk [48].

4.4. Visual Simulation of Dam Break

Once the reservoir dam breaks, a destructive flood will form, causing severe casualties and loss of
social properties on the downstream side, which would significantly influence social and economic
development in the downstream area of the reservoir [32]. The dam-break flood analysis mainly
involves calculating the flood process at the dam site and in the downstream area, including the flow
and water-level hydrographs at the dam site and the discharge, water level, flow velocity, and peak
arrival time in the downstream flood routing.

In addition, we also calculated the downstream flood fields at the moment of main dam break at
T=10s,T=05h, T=1.0h,and T = 1.5 h (Figure 12). The figure shows that because the lateral length
of the main dam is much greater than the width of the spillway, the flow velocity at the moment of
main dam breakage (t = 10 s) is lower than it is at the moment of spillway breakage, with a maximum
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flow velocity of 16.77 m/s. The flood at the moment of main dam breakage covers a wider downstream
inundated area compared with that at the moment of spillway breakage.

T=10s (zoom)

T=05h

T=15h

T=1.0h

Legend

40m

Figure 12. Calculation results of the main dam break.

Based on the DEM data from the middle and lower reaches of the system and on the 1D and
2D river channel hydrodynamic models embedded in the system, we dynamically simulated the
downstream flood process of the reservoir after a dam break (Figure 13), including calculating the
inundated area at different times and other flood characteristics, such as the water depth, flow velocity,

and flow direction at any point.

Figure 13. 3D simulation of dam-break flow. (There are two rivers in this figure. After the dam broke,
the area between the two rivers was also inundated.)
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4.5. Verification of Hydrodynamic Model and Sensitivity Analysis

According to the water level and discharge data of seven typical available sections, we verified
the 1D and 2D hydrodynamic models. Figure 14 shows a comparison between the calculated values
of the water levels during floods at different design frequencies and the measured data from seven
typical sections.

Q=3,000m?/s ¢ Q-=3,500m%/s

observed value ® observed value

Water Level / meter

# simulated value 10 + simulated value

° 10000 20000 30000 40000 50000 60000 70000 soooc  © 10000 20000 90000 40000 So000 60000 20000 0000

Q= 10,407m°/s Q=12,677m%/s

3s % a0

Water Level / meter

observed value 1% observed value

¢ simulated value 10

s m“/ ...../

« simulated value

o 10000 20000 30000 40000 50000 60000 70000 80000 o 10000 20000 30000 40000 50000 60000 70000 80000
Distance to the section / meter Distance to the section / meter

Figure 14. Preliminary verification of the mathematical model of flow in the river channel downstream
of the Xiashan Reservoir.

As seen in Figure 14, under the designed discharge, the calculated value of the model is consistent
with the measured data, indicating that the established mathematical model can largely simulate the
dynamic pattern of water flow of the river channel downstream of the Xiashan Reservoir.

5. Discussion

Hydrodynamic models are fundamental to flood quantitative simulations. The accuracy and
reliability of these computations are closely related to the availability, timeliness, and scale or resolution
of data [5]. Hydrodynamic models are highly specialized; therefore, visualization and intuitive
representations of their results are very important for scientific decision making. The integration of
hydrodynamic model computations and emergency management is one of the important factors for
improving the efficiency of flood emergency administration [4]. This paper offers methods for quickly
establishing a spatio-temporal GIS framework for flood risk simulations and seamlessly integrating
spatio-temporal GIS and hydrodynamic models. These methods can effectively solve the problems of
data availability, visualization, and integration of hydrodynamic models, which will improve flood
risk simulations and emergency administration.

The method proposed in this paper is used to quickly construct flood risk simulation spatio-temporal
GIS, which provides up-to-date data for hydrodynamic model computations. Basic geo-information data,
such as topography, are the basis of hydrodynamic model computations [5]. In practice, hydrodynamic
model computations are often affected by the poor availability of basic data, poor timeliness, and low
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resolution of data. The following factors will lead to the failure of hydrodynamic model computations or the
poor reliability and accuracy of computation results: (a) Difficulty in obtaining basic data for various reasons;
(b) poor timeliness of basic data; and (c) low-resolution basic data. In this paper, tilt photogrammetry,
three-dimensional modeling, and a digital earth platform are used to rapidly construct a spatio-temporal
GIS framework, which provides up-to-date and high-resolution basic data for hydrodynamic model
computations. This framework also includes increased storage and multi-dimension visualization.

The integrated framework realizes seamless integration of data, business information, and system
functions contained within spatio-temporal GIS and the hydrodynamic model. It promotes the
application of flood risk simulation results in emergency administration, which will improve
the efficiency of decision making. In most realistic applications, the data acquisition system,
the hydrodynamic model computation system, the visualization system, and the business management
system are individual systems [18]. Therefore, interoperability among these systems is usually not
very good, which affects the efficiency of emergency administration of flood disasters. The integration
framework described in this paper integrates data collection, model computation, dynamic visualization,
and emergency administration, which enables data flow and business processes to flow through
a unified platform. In practice, this will shorten decision-making time in emergency management.
Based on this framework, a dynamic visual simulation platform for the flood risk at Xiashan Reservoir
was established, which could be used to conduct three-dimensional dynamic simulations of flood
evolution The platform intuitively displays the variations in the inundation range over time and
the changes in the flood velocity, flow direction, and flow discharge over time three-dimensionally,
thus providing an easier way to understand flood evolution. The platform offers more scientific
decision-support information for flood emergency management. Furthermore, the platform provides
rich interfaces for the integration of monitoring systems, such as rainfall stations, hydrological stations,
and so on. As a result, time series monitoring data can be connected to the platform in real time and
can serve as input parameters for hydrodynamic models. In several cases, the static flood risk map will
be created for specific rainfall and flood flow scenarios, such as a 100 mm rainfall event or a 50-year
flood recurrence [49]. The map shows the inundation range, flood depth, etc. The methods proposed
in this paper can be used to simulate flood processes under any rainfall or flow conditions, which can
reflect changes in the flood inundation range as rainfall varies. Meanwhile, the simulation will be
dynamically visualized in a three-dimensional way.

Flood risk simulations and emergency administration are complex systems, and their effectiveness
and accuracy in realistic applications are influenced by many factors. Four research goals remain:

First, in common modeling practices, a physical model will be preferably constructed to assure
the validity of the model outcomes [6]. This study focused on the construction of spatio-temporal GIS
by using oblique photography and the seamless integration of spatio-temporal GIS and hydrodynamic
models. Therefore, the physical models of Xiashan Reservoir and river channels were not constructed.
The historical observation data from seven typical sections were used to verify the model (Section 4.5).

Second, the traditional hydrodynamic equations were used in the study. There are simplified
equations in terms of the development of the hydrodynamic model [5]. The integration framework
proposed in this study can integrate multiple hydrodynamic models. Therefore, hydrodynamic models
themselves will not influence the integrated method proposed in this study. This paper focuses on
the integration of three kinds of hydrodynamic models with spatio-temporal GIS. In the future, more
hydrodynamic models will be integrated into the system and experiments will be conducted in other
watersheds to improve the applicability of the method and the dynamic simulation system.

Third, from the view of model processes, the uncertainties include choice of model structures,
model parameters, model inputs (e.g., channel geometry, floodplain), validation data, and land use
change [5]. For this study, the main uncertainties were model structures, model inputs, and validation
data. However, since the aim of the study was to propose a method for quickly establishing
spatio-temporal GIS and put forward an integration framework, we did not quantify the uncertainties.
The uncertainties will be identified, quantified, and represented in the future.
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In addition, the platform’s current infrastructure does not employ a big data architecture. Using the
dynamic simulation of flood risk, population, economy, and society data will be added, so that the quantitative
assessment of the affected population, structures, and economy under different flood scenarios can be
analyzed [23,50]. Different emergency plans will be provided to promote the intelligent development of
emergency management of flood risk. MongDB and Spark will be used to reconstruct the underlying data,
and then the operation efficiency of the whole system will be further improved [51].

6. Conclusions

In this study, a spatio-temporal computing framework for flood risk simulation is proposed. A seamless
integration of spatio-temporal GIS and hydrodynamic models is realized for the data flow process,
computing process, business process, and system functions. This framework can perform dynamic and
visual simulations of flood evolution and can identify flood risk in three dimensions, greatly improving
the efficiency of flood risk simulations and decision making. The method described in this paper can
quickly establish a flood simulation in a spatio-temporal GIS framework, which can provide up-to-date and
high-resolution basic data to compute hydrodynamic models. Taking Xiashan Reservoir as an example,
a visual decision support platform for the flood risk of the Xiashan Reservoir was established; this platform
seamlessly integrated spatio-temporal GIS with one-dimensional and two-dimensional hydrodynamic
models. Using the hydrodynamic models, the platform can simulate and display the dynamic flood
evolution in three dimensions. The results show changes in the flood factors, such as the inundation
range, the cross-section velocity and flow, the water depth, etc., over time. The platform can provide
three-dimensional flood simulations of various scenarios for flood emergency administration. In addition,
it provides more intuitive and scientific decision support information than the individual hydrodynamic
model system provides.

A three-dimensional representation of the study area was quickly established using tilt photogrammetry.
A spatio-temporal database was established and included spatial data (DEM, three-dimensional model
of water conservancy facilities, submerged areas, towns, villages, etc.) and temporal data (temporal data
of flood factors, meteorological temporal data, temporal data of sensing networks such as hydrological
stations, etc.). Based on the digital earth platform, a spatio-temporal GIS of the study area was constructed
to support model computation, spatial analysis and multi-dimensional visualization. A three-dimensional
representation was conducted of the water conservancy engineering facilities in the research area, such as
the reservoirs, river bodies, dams, pump rooms, etc.

Flood risk was simulated dynamically and in three dimensions. Through a seamless integration
of spatio-temporal GIS and hydrodynamic models, a flood risk dynamic simulation platform was
established. The platform integrated parameters input, computation processes, visualization of
the computation results and emergency management decision making. In the three-dimensional
representation, the temporal evolution of the key flood factors, such as the flood inundation range,
the inundation depth, the flow velocity and the flow direction, was displayed. A dynamic and visual
assessment of flood risk was conducted and the spatio-temporal characteristics of human factors,
geographical objects, events, and flood processes were comprehensively displayed.

With the advent of the Internet of Things, big data, cloud computing, artificial intelligence, and 5G
technology, the frequency, varieties, and volume of flood risk monitoring data will increase. Accurate flood
risk simulations and intelligent emergency management will be the focus of future research. The integrated
framework and methods proposed in this paper have laid a foundation for these types of future studies.
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