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Abstract: Viewshed analysis is of great interest to location optimization, environmental planning,
ecology and tourism. There have been plenty of viewshed analysis methods which are generally
time-consuming and among these methods, the XDraw algorithm is one of the fastest algorithms
and has been widely adopted in various applications. Unfortunately, XDraw suffers from chunk
distortion which greatly lowers the accuracy, which limits the application of XDraw to a certain
extent. Previous works failed to remove chunk distortion because they are unaware of the underlying
contribution relationship. In this paper, we propose HiXDraw—an improved XDraw algorithm free of
chunk distortion. We first uncover the causation of chunk distortion from an innovative contributing
perspective. Instead of recording LOS (line-of-sight) height, we use a new auxiliary grid to preserve
contributing points. By preventing improper terrain data from contributing to determining the
visibility, we significantly improve the accuracy of the outcome viewshed. The experimental results
reveal that the error rate largely decreases by 65%. Given the same computing time, HiXDraw is
more accurate than previous improvements in XDraw. To validate the removal of chunk distortion,
we also present a pillar experiment.

Keywords: viewshed analysis; XDraw; chunk distortion; wavefront algorithm

1. Introduction

Viewshed analysis is one of the fundamental problems of many applications, which concern the
geographical information system (GIS), computer graphics and engineering applications. Given the
terrain data and a viewpoint, what viewshed analysis does is to identify which part of the analysis area
is visible from the viewpoint. Viewshed analysis is widely adopted as an underlying technology in
various applications, such as siting optimization [1], path planning [2], security monitoring [3] and
so on.

Choosing a terrain model is fundamental to the definition and computation of viewshed analysis.
Since regular square grid digital elevation model (RSG DEM) is widely adopted in GIS applications
to represent terrain for its simple structure and resourceful availability, this paper mainly focuses on
algorithms on the RSG DEM.

The simplest visibility problem is to determine the intervisibility between two points. We
designate one point as the viewpoint and designate the other point as the target point. We call
the line connecting these two points as the line-of-sight (LOS). By checking whether the LOS intersects
the terrain, we can determine the intervisibility of these two points. If the LOS of this target intersects
the terrain, this target is invisible. If not, it is visible. An equivalent way to determine the visibility is
to calculate the predicted minimum visible elevation at the target. If the minimum visible elevation is
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smaller than the actual elevation, the target is visible. Otherwise, it is invisible. We call the procedure
as the direct LOS method. Figure 1 is an illustration of the direct LOS method.
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Figure 1. The direct LOS method and the LOS height. The curve represents the profile of a terrain. v 
is the viewpoint above the terrain. t1 and t2 are two adjacent targets on the terrain. The direct LOS 
method determines the visibility of a target point by comparing its predicted minimum visible height 
and its elevation. The elevation of t1 is higher than its predicted minimum visible height. t1 is visible 
and t1’s LOS height H1 equals the actual elevation of t1. The elevation of t2 is lower than its predicted 
minimum visible elevation. t2 is invisible and its LOS height H2 equals the minimum visible height. 

Define LOS height as the minimum elevation that makes this target visible. For a visible target, 
the LOS height equals the actual elevation. For an invisible target, the LOS height equals the 
minimum visible elevation. We give an illustration of the LOS height in Figure 1. 

To carry out the direct LOS method, we have to generate a terrain profile along the LOS first. 
What and how many points are selected along the LOS to interpolate, differs among algorithms. In 
this paper, we use two criteria proposed by Franklin et al. for point selection: criteria for appropriateness 
and criteria for adequacy [1]. 
• Criteria for appropriateness: A point should not contribute to calculating the visibility and LOS 

height if this point is not 4-neighbor adjacent to the LOS.  
• Criteria for adequacy: Every point that is 4-neighbor adjacent to the LOS should contribute to 

calculating the visibility and LOS height. 
Define contributing points of a target as the grid points that influence the visibility of the target 

with their actual elevation. Divide the contributing points into two classes: if a contributing point 
meets the criteria for appropriateness, we call this point as a proper contributing point; else, we call this 
point as an improper contributing point. 

A brute-force way to generate the viewshed is to apply the direct LOS method on each of the 
targets within the analysis area. The algorithm is referred to as R3 by Franklin et al. [1]. R3 complies 
with both the criteria for appropriateness and the criteria for adequacy but R3 is very time-consuming. 
As a result, various approximate viewshed algorithms had been proposed. Among all these 
algorithms, XDraw is one of the fastest algorithms [1].  

XDraw computes the viewshed in three steps. First, initialize an auxiliary grid to record LOS 
height. Assume that the eight-neighboring targets around the viewpoint are visible. Second, for 
targets in the eight directions (vertical, horizontal and diagonal directions), calculate the visibility 
with direct LOS method. No error has been introduced by far. Finally, for targets in eight octants, 
analyze the visibility in layers incrementally from the viewpoint to the boundary of the analysis area. 
Each target relies on two nearest grid points on the previous layer to compute the visibility and LOS 
height. These two grid points are called reference points. Figure 2 illustrates the procedure of XDraw 
intuitively. 

Figure 1. The direct LOS method and the LOS height. The curve represents the profile of a terrain. v
is the viewpoint above the terrain. t1 and t2 are two adjacent targets on the terrain. The direct LOS
method determines the visibility of a target point by comparing its predicted minimum visible height
and its elevation. The elevation of t1 is higher than its predicted minimum visible height. t1 is visible
and t1’s LOS height H1 equals the actual elevation of t1. The elevation of t2 is lower than its predicted
minimum visible elevation. t2 is invisible and its LOS height H2 equals the minimum visible height.

Define LOS height as the minimum elevation that makes this target visible. For a visible target, the
LOS height equals the actual elevation. For an invisible target, the LOS height equals the minimum
visible elevation. We give an illustration of the LOS height in Figure 1.

To carry out the direct LOS method, we have to generate a terrain profile along the LOS first.
What and how many points are selected along the LOS to interpolate, differs among algorithms. In
this paper, we use two criteria proposed by Franklin et al. for point selection: criteria for appropriateness
and criteria for adequacy [1].

• Criteria for appropriateness: A point should not contribute to calculating the visibility and LOS
height if this point is not 4-neighbor adjacent to the LOS.

• Criteria for adequacy: Every point that is 4-neighbor adjacent to the LOS should contribute to
calculating the visibility and LOS height.

Define contributing points of a target as the grid points that influence the visibility of the target
with their actual elevation. Divide the contributing points into two classes: if a contributing point
meets the criteria for appropriateness, we call this point as a proper contributing point; else, we call this
point as an improper contributing point.

A brute-force way to generate the viewshed is to apply the direct LOS method on each of the
targets within the analysis area. The algorithm is referred to as R3 by Franklin et al. [1]. R3 complies
with both the criteria for appropriateness and the criteria for adequacy but R3 is very time-consuming.
As a result, various approximate viewshed algorithms had been proposed. Among all these algorithms,
XDraw is one of the fastest algorithms [1].

XDraw computes the viewshed in three steps. First, initialize an auxiliary grid to record LOS
height. Assume that the eight-neighboring targets around the viewpoint are visible. Second, for targets
in the eight directions (vertical, horizontal and diagonal directions), calculate the visibility with direct
LOS method. No error has been introduced by far. Finally, for targets in eight octants, analyze the
visibility in layers incrementally from the viewpoint to the boundary of the analysis area. Each target
relies on two nearest grid points on the previous layer to compute the visibility and LOS height. These
two grid points are called reference points. Figure 2 illustrates the procedure of XDraw intuitively.
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Figure 2. The procedure of XDraw. First, XDraw assumes that the eight neighboring points near the 
viewpoint are visible. Second, XDraw applies the direct LOS method on the eight directions (vertical, 
horizontal and diagonal directions). Finally, for targets in eight octants, XDraw determines the 
visibility in layers from the viewpoint to the boundary of the analysis area. Each target relies on two 
reference points on the previous layer to calculate the visibility. 

Although XDraw is very fast, XDraw is the least accurate one [4]. An important reason is that it 
suffers from chunk distortion [5]. Chunk distortion is a phenomenon when errors occur in chunks 
because of the dependent relationship in XDraw. We will explain the causation of chunk distortion 
in detail in Section 3. 

Advances in remote sensing technology these years have enabled the collection of terrain data 
at a better and better resolution [6]. The algorithms themselves become the dominant factor in 
influencing the accuracy of the outcome viewshed. Although XDraw is very fast, its low accuracy 
limits the usage of XDraw in various applications. It is critical to eliminate chunk distortion in 
improving the accuracy of XDraw. However, previous works failed to work this out, because they 
did not figure out the contributing relationship in XDraw. As a result, it is difficult for them to 
distinguish the proper contribution from the improper contribution. 

This paper proposes HiXDraw, an improved XDraw algorithm free of chunk distortion. First, 
we analyzed the causation of chunk distortion from a contributing perspective. Then we devised a 
new auxiliary grid to record contributing points at invisible points. After that, this paper presented 
the procedure of HiXDraw. By carefully selecting contributing points, HiXDraw successfully 
prevents inappropriate terrain data from contributing to the visibility and LOS height. As a result, 
HiXDraw eliminates the chunk distortion and significantly improves the accuracy of the outcome 
viewshed. The rest of this paper goes as follows: Section 2 provides a survey of related works. Section 
3 presents HiXDraw in detail after analyzing the causation of chunk distortion. Section 4 examines 
the accuracy and efficiency of the new method and presents a pillar experiment. Section 5 gives the 
conclusion. Section 6 proposes several possible future works. 

2. Related Works 

In this section, we first introduce several classical viewshed algorithms. We also give a general 
introduction to their latest developments. After that, we give a detailed description of the state-of-
the-art improvements of XDraw algorithm. 

2.1. Viewshed Algorithms 

Various algorithms had been proposed to generate a raster viewshed on a RSG DEM. It takes O 
(r) to compute the visibility of a single target with the direct LOS method. Franklin et al. described 

Figure 2. The procedure of XDraw. First, XDraw assumes that the eight neighboring points near the
viewpoint are visible. Second, XDraw applies the direct LOS method on the eight directions (vertical,
horizontal and diagonal directions). Finally, for targets in eight octants, XDraw determines the visibility
in layers from the viewpoint to the boundary of the analysis area. Each target relies on two reference
points on the previous layer to calculate the visibility.

Although XDraw is very fast, XDraw is the least accurate one [4]. An important reason is that it
suffers from chunk distortion [5]. Chunk distortion is a phenomenon when errors occur in chunks
because of the dependent relationship in XDraw. We will explain the causation of chunk distortion in
detail in Section 3.

Advances in remote sensing technology these years have enabled the collection of terrain data at a
better and better resolution [6]. The algorithms themselves become the dominant factor in influencing
the accuracy of the outcome viewshed. Although XDraw is very fast, its low accuracy limits the
usage of XDraw in various applications. It is critical to eliminate chunk distortion in improving the
accuracy of XDraw. However, previous works failed to work this out, because they did not figure out
the contributing relationship in XDraw. As a result, it is difficult for them to distinguish the proper
contribution from the improper contribution.

This paper proposes HiXDraw, an improved XDraw algorithm free of chunk distortion. First, we
analyzed the causation of chunk distortion from a contributing perspective. Then we devised a new
auxiliary grid to record contributing points at invisible points. After that, this paper presented the
procedure of HiXDraw. By carefully selecting contributing points, HiXDraw successfully prevents
inappropriate terrain data from contributing to the visibility and LOS height. As a result, HiXDraw
eliminates the chunk distortion and significantly improves the accuracy of the outcome viewshed. The
rest of this paper goes as follows: Section 2 provides a survey of related works. Section 3 presents
HiXDraw in detail after analyzing the causation of chunk distortion. Section 4 examines the accuracy
and efficiency of the new method and presents a pillar experiment. Section 5 gives the conclusion.
Section 6 proposes several possible future works.

2. Related Works

In this section, we first introduce several classical viewshed algorithms. We also give a
general introduction to their latest developments. After that, we give a detailed description of the
state-of-the-art improvements of XDraw algorithm.

2.1. Viewshed Algorithms

Various algorithms had been proposed to generate a raster viewshed on a RSG DEM. It takes O
(r) to compute the visibility of a single target with the direct LOS method. Franklin et al. described
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R3 and R2 based on the direct LOS method [1]. R3 executes the direct LOS method on each of the
targets within the analysis area and thus runs in O (r3). R2 executes the direct LOS method only on
the boundary of the analysis area and evaluates the visibility of inner targets with the visibility of
the nearest intersection. R2 runs in O (r2) time. Van Kreveld described a different approach called
radial sweep line algorithm [7]. He modeled the terrain as a tessellation of square cells, with each
cell centered on a grid point. Under the cell model, the radial sweep line algorithm requires no
interpolation. Radial sweep line algorithm runs in O (r2log(r)). Another algorithm based on this
cell model is the method based on line-rasterization [8], which is a variation of R2. By avoiding
linear interpolation, this algorithm is the fastest among various serial approximate algorithms [4].
However, R2, radial sweep line and the method based on line-rasterization does not fulfill the criteria
for adequacy.

Although various approximate algorithms run in O (r2) time, it can be unbearably time-consuming
to compute a viewshed when handling DEM of high accuracy or of massive scale that is as large as tens
of gigabytes [6]. Later researches mainly focus on accelerating the calculation by implementing these
algorithms I/O efficiently [6,9–15] or redesigning them with various parallel technologies [15–20].

2.2. Improvements of XDraw

Wang et al. proposed the reference plane algorithm to generate viewshed without sightlines [21].
To determine the visibility of the target, the reference plane algorithm constructs a reference plane using
the LOS height recorded at two reference points. If the target lies above the plane, it is visible. Else, it
is invisible. After carefully studying the procedure of reference plane, we find that this algorithm is
identical to XDraw with linear interpolations in essence. The interpolation calculation is implicit in
the construction of the reference plane. The concept of reference plane provides us with an intuitive
understanding of the geometric relationship between viewpoint, reference points and target points.

Izraelevitz managed to improve the accuracy of XDraw by backtracking M intersections along
the LOS [22]. For convenience, we call this method as M-BT in this paper. M-BT merges the direct
LOS method into XDraw by backtracking M intersections. M-BT significantly reduces the wrong
determination. However, both the efficiency and accuracy of M-BT depend on the backtrack order M.
There is a tradeoff between accuracy and efficiency in M-BT. Users have to strike a balance by choosing
M. Although M-BT suppresses the chunk distortion by involving more computation, chunk distortion
still exists.

Zhi et al. modified the XDraw by involving more data contributing to the visibility and LOS
height [23]. The method records not only the LOS height but also the history minimum visible elevation
of each target point. Besides the original reference plane, Zhi et al. introduced two different ways to
compute minimum visible elevation using the actual elevation. The final minimum visible elevation
equals the maximum value. Zhi et al. described the defects in XDraw from a prediction perspective
with two propositions but the reason that leads to these defects was unknown. Besides, this method
is complicated and requires too much computation for each target. Also, this improvement does not
remove chunk distortion.

To implement XDraw I/O-efficiently, Wu et al. used a block partitioning method and the reference
plane algorithm to generate viewshed in PC-base environments [24]. Xu et al. improved the XDraw by
a scheduling strategy with no change of time complexity and accuracy, which makes every block of
data called in memory only once [25].

Bravo et al. redesigned the XDraw to make it IO-efficient and compatible with modern SIMD
architectures [26]. The improved XDraw was 50 times faster than the original method. Cauchi-Saunders
and Lewis presented a conversion of XDraw to a parallel GPU context to speed up the rendering of
a viewshed [27]. To produce a viewshed, the time used by optimized XDraw was on average 72.2%
shorter than that by the original XDraw. Song et al. implemented XDraw on a PC cluster system based
on an equal-area domain decomposition [28]. Dou et al. revised the parallel algorithm for XDraw
by the analysis of the data dependent relationship between layers. A fine-granularity scheduling
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strategy is applied to improve the efficiency of the viewshed computation on the process-level and
thread-level [20,29,30].

3. Improved XDraw Algorithm

Chunk distortion occurs because of the data-dependent relationship between layers. One grid
point depends on two reference points to compute its visibility. The dependency between layers
propagates as the computation carries on. Take the target t in Figure 3a as an example. Figure 3a
demonstrates the relative position of viewpoint v, target point t on a 2D grid. v locates at the left
down corner of the grid. t lies on the right edge of the grid. v is the origin of the coordinate system.
Pij is a target point in the grid, where i and j denote the coordinates. t depends on P42 and P41 to
determine its visibility. P41 depends on P31 and P30. So P30 may contribute to the visibility of t while
P30 is more than distance one away from the LOS of t. The dependency between layers finally results
in a parallelogram area, that is, the gray area as shown in Figure 3a, in which every grid point may
contribute to the visibility of t. Name the parallelogram as dependency parallelogram. The dependent
relationship results in XDraw making mistakes in chunks. This phenomenon is called chunk distortion.
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Proposition 1. Invisible points in the parallelogram do not contribute to the visibility of the target. 

Proposition 1 is quite intuitive. An invisible target cannot obstruct the LOS of a farther target. 
Recall that when computing visibility by XDraw, the LOS height of a visible target equals to its actual 
elevation, while the LOS height of an invisible point equals to the height of the reference plane at this 
point. The elevation of an invisible point is discarded, which is consistent with proposition 1. At an 
invisible point, the two reference points of this point determine the LOS height and the LOS height 
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Figure 3. Only partial visible points in the dependency parallelogram influence the visibility
computation of the target point. (a) demonstrates the relative positions of viewpoint v and target point
t on a 2D grid. Suppose a vertical screen stands on the right edge of the grid and is perpendicular to
the grid, (b) illustrates the result of the perspective projection of (a) originated at viewpoint onto the
screen. (a,b) together show how the points in the dependency parallelogram contribute to the visibility
of the target.

The area of the dependency parallelogram is proportional to the square of the distance between
the viewpoint and target. As the target becomes farther from the viewpoint, more points far away
from the LOS are involved in the visibility computation. However, XDraw is still usable. For one thing,
linear interpolation suppresses the contribution of the points far away from the LOS. For another,
only a limited number of visible points in the dependency parallelogram have an impact on the
visibility computation of the target point. To further explain the causation of chunk distortion and the
contribution relationship in XDraw, we present three propositions.

Proposition 1. Invisible points in the parallelogram do not contribute to the visibility of the target.

Proposition 1 is quite intuitive. An invisible target cannot obstruct the LOS of a farther target.
Recall that when computing visibility by XDraw, the LOS height of a visible target equals to its actual
elevation, while the LOS height of an invisible point equals to the height of the reference plane at this
point. The elevation of an invisible point is discarded, which is consistent with proposition 1. At an
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invisible point, the two reference points of this point determine the LOS height and the LOS height
will influence the computation on the next layer and we can get the proposition 2.

Proposition 2. In XDraw, contributing relationship propagates via invisible points.

To illustrate proposition 2, check the case in Figure 3. t depends on P42 and P41 to compute
visibility. P41 depends on P31 and P30. Assume that P41 is invisible while P42, P31 and P30 are visible.
Suppose a vertical screen stands on the right edge of the grid and is perpendicular to the grid plane.
Figure 3b illustrates the result of the perspective projection of Figure 3a originated at viewpoint onto
the screen. The reference plane formed by P31 and P30 is yellow. The reference plane formed by P41

and P42 is green. P41 lies beneath the yellow reference plane as shown in Figure 3b. Because P41 is
invisible, the LOS height here equals the height of the yellow reference plane at P41, indicated with
a black point. XDraw uses the LOS height at P41 to construct the green reference plane. As a result,
the green line has one of its endpoints sitting on the yellow line. If P30 drops to the gray position, the
visibility of t changes from invisible to visible. Note that P42, P30 and P31 together determine the green
reference plane. Because P41 is invisible, its elevation does not contribute to the visibility of t. The role
of P41 is to pass the influence of P31 and P30. Generally speaking, invisible points transfer the impact
of its two reference points by recording the LOS height.

For a visible point, following calculations depend on its actual elevation. The reference plane of
this visible point is abandoned and no longer influences the following analysis. When we backtrack
the contribution from a target, we will find that:

Proposition 3. Contributing relationship stops at visible points.

When a visible contributing point is met, other points nearer to the viewpoint, no matter they
are visible or not, cannot influence the visibility computation of the target. So only partial visible
points in the dependency parallelogram contribute to the visibility of the target. These points are the
contributing points defined before. In the case shown in Figure 3, only P30, P31 and P42 are contributing
points. P30 is an improper contributing point. Just by excluding P30 from the contributing points, we
can avoid the error-prone influence of P30. Construct a reference plane with P31 and P42. Then we can
decide that t is visible with this plane. As a result, we successfully prevent the improper terrain data
of P30 from contributing to determining the visibility and the LOS height of t.

More generally, the basic idea of HiXDraw is to choose two most “adjacent” ones on either side
of the LOS among all the contributing points. In the original XDraw algorithm, the auxiliary grid
records only the LOS height, which makes it impossible to select contributing points. So, we devised
the new auxiliary grid to record the contributing points at invisible points. Table 1 illustrates the
structure of the new auxiliary grid. Each cell has two attributes: P1 and P2. Each attribute records one
contributing point. As contributing points may transfer from layer to layer, we have to take down
the grid coordinate as well. So, each attribute has three numbers: x, y and elev. x and y record the
coordinate of this contributing point. elev records the actual elevation of this contributing point.

Table 1. The structure of the new auxiliary grid.

Attribute P1 P2

Case visible NULL NULL
Case invisible {x, y, elev} {x, y, elev} 1

1 NULL if there is only one contributing point.

In the original XDraw algorithm, it takes two reference points to analyze the visibility of a target.
HiXDraw does not utilize the reference points directly. If a reference point is invisible, HiXDraw takes
the contributing points recorded at this point into consideration. If both the two reference points are
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visible, the target has only two contributing points. If one of these two reference points is invisible, the
target has three contributing points. If both the two points are invisible, we have four contributing
points. So, we have at most four contributing points for a single target. In real cases, two invisible
reference points may share a common contributing point. In this case, the target has three contributing
points. Besides, one or two of these contributing points may lie precisely on the LOS of the target. After
visibility analysis, the grid will record only one contributing point. We give an intuitive illustration in
Figure 4.
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represents a visible point and a round point represents an invisible point. (a) t’s two reference points,
P42 and P43, are both visible. t has two contributing points: P42 and P43; (b) one of t’s reference points,
P43, is invisible. Suppose the contributing points of P43 are P33 and P32. t has three contributing points:
P42, P32 and P33; (c) t’s two reference points, P43 and P42, are both invisible. Suppose the contributing
points of P43 is P33 and P32. Suppose the contributing points of P42 is P32 and P31. P43 and P42 share
a common contributing point P32. t has three contributing points: P31, P32 and P33; (d) one of t’s
reference points P31 is invisible. Suppose the contributing points of P31 is P21 and P20. t has three
contributing points: P20, P21 and P32. P21 lies right on the LOS of t.

To select two contributing points to construct the reference plane, we use the azimuth of the
contributing points as the criteria. Calculate the angle between the LOS line of the target and the LOS
line of a contributing point. Choose one contributing point with the smallest angle on either side of the
target’s LOS. HiXDraw constructs the reference plane with these two chosen contributing points and
determines the visibility of the target with this plane. If one or two of these contributing points lie
right on the LOS, HiXDraw applies the direct LOS method. We use the cases in Figure 4 to illustrate
the selection intuitively. The target t in Figure 4a has only two contributing points and no one lies on
the LOS of t. HiXDraw chooses both these two contributing points to construct the reference plane.
The target t in Figure 4b has three contributing points. The angle between P32’s LOS and t’s LOS is
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smaller than the angle between P33’s LOS and t’s LOS. So HiXDraw selects P32 and P42. In Figure 4c, t
also has three contributing points. Using the azimuth as the criteria, HiXDraw depends on P31 and
P32 to determine the visibility of t. One of the contributing points in Figure 4d lies right on the LOS of
t. HiXDraw chooses P21 and applies the direct LOS method.

If the target is invisible, the grid records the two contributing points that are involved in visibility
determination (one contributing point if it lies precisely on the target’s LOS). Else, the grid records
nothing, because a visible point itself will work as a contributing point. Note that all the contributing
points are either the visible reference points or the recorded contributing points at the invisible reference
points. Only actual elevation is involved in visibility determination. We provide the pseudo code of
the HiXDraw below:

Algorithm: HiXDraw

INPUT: (1) the elevation of the target and its two reference points
(2) the visibility of two reference points
(3) the auxiliary grid at two reference points
OUTPUT: (1)the auxiliary grid of the target,
(2) the visibility of the target

1. FOR each target
2. Check two reference points and choose two contributing points
3. IF one or two contributing points lie precisely on the LOS
4. Execute the direct LOS method
5. IF this target is invisible
6. Record one contributing point
7. END
8. ELSE
9. Construct the reference plane with two contributing points
10. IF this target is invisible
11. Record two contributing points
12. END
13. END
14. END

4. Experimental Results

In this section, we present four experiments to evaluate the performance of HiXDraw. First, we
compare the HiXDraw with R2 [1] and the original XDraw algorithm [1] in terms of accuracy by
counting the number of errors. Second, we compare the HiXDraw with R2 and XDraw in terms of
efficiency by recording the computing time. Third, we make a comparison between HiXDraw and
M-BT [22] considering both the accuracy and the efficiency. After that, we define the time ratio and the
error ratio and evaluate the performance of HiXDraw and Zhi’s method [23]. Finally, we present a
pillar experiment to prove that we have successfully eliminated the chunk distortion.

4.1. Experimental Setup

We implement the HiXDraw in C++. We have implemented R3, R2, XDraw and M-BT to make
a comparison. Assume R3 is consistent with the real horizon and use the outcome viewshed of R3
as a reference. These algorithms run on a Dell Precision-WorkStation-T7500 with an Ubuntu-16.04
system. The DEM used to test these algorithms is a 11264 by 9152 DEM of a mountainous area in
Hunan Province, China, as shown in Figure 5. For the convenience of comparison, the analysis area is
square with the viewpoint located at its center. The height of the observer at the viewpoint is 2 meters
over the ground. The height of the target point is 0. When recording the computing time for each
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execution, we comment out all the additional output and computation, for example, error counting
and we exclude the time for data input.ISPRS Int. J. Geo-Inf. 2019, 8 FOR PEER REVIEW  9 
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Figure 5. A 11264 by 9152 DEM of a mountainous area in Hunan Province, China. Randomly select
100 positions when the radius equals 100.

4.2. Experiment 1: Compare the Accuracy and Efficiency of HiXDraw, R2 and XDraw

To assess the accuracy and efficiency of HiXDraw, we apply HiXDraw, R2 and XDraw with
different radius and positions. Evaluate the radius every 50 from 100 to 900 in pixels. For each value of
radius, we randomly select 100 different positions as viewpoints within the DEM under the premise
of ensuring the same analysis area. Figure 5 shows an example of viewpoint selection when radius
equals 100. For each position, apply these algorithms to the rectangle analysis area centered at the
position. By averaging the data obtained from different positions, we can improve the credibility of the
experiment. To access the accuracy performance of various viewshed algorithms, we use the number
of error discrimination as an index. To assess the efficiency performance of different algorithms, we
use the CPU time as an index. As the outcome curves are very close to each other, we present the
statistical data in logarithm to avoid congestion in Figures 6 and 7.

The average number of error discrimination varies with the radius as shown in Figure 6. That the
curve is lower means better accuracy. HiXDraw (red) performs better than R2 (cyan) and much better
than the original XDraw (yellow).

With the time of R3 being one, Figure 7 shows the relative time of different algorithms in logarithm.
The time complexity of R3 is O (r3). The time complexities of other methods, including HiXDraw,
are O (r2) with different constant coefficients. XDraw (yellow) is the fastest among these algorithms.
HiXDraw (red) is slower than R2 (cyan).
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4.3. Experiment 2: Compare the Performance of HiXDraw and M-BT

To compare the performance of HiXDraw and M-BT, we apply M-BT not with different radius but
with different backtrack orders. As both the accuracy and efficiency of M-BT depend on its backtrack
order M, we execute M-BT with backtrack order of 2, 4, 6, 8, 10 and 12 respectively when radius equals
900 pixels. For each value of M, we randomly select 100 viewpoints and average the time and error
among these positions.

Taking both accuracy and efficiency into consideration, Figure 8 illustrates the performance of
XDraw, R2, HiXDraw and M-BT. HiXDraw (blue) is more accurate but slower than XDraw (green) and
R2 (red). Although M-BT can achieve higher accuracy than HiXDraw with a high backtrack order,
HiXDraw takes a shorter time to achieve the same accuracy. Using the same computing time, HiXDraw
produces a more accurate viewshed. As a result, HiXDraw performs better than M-BT considering
both accuracy and efficiency.
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Figure 8. Comparison of different algorithms taking both accuracy and efficiency into consideration.
Assume the time of R3 is one. The x-axis represents the relative time used by each algorithm. The
y-axis represents the number of error determinations in logarithm. The performance of M-BT (black)
varies with backtrack order from two to twelve. HiXDraw (blue) is more accurate but slower than
XDraw (green) and R2 (red). Although M-BT can achieve higher accuracy with a high backtrack order,
HiXDraw expends shorter time achieving the same accuracy.

4.4. Experiment 3: Compare the Performance of HiXDraw and Zhi’s Method

Define time ratio η and error ratio µ as (1) and (2):

η =
1
n ∑radius

time
timeXDraw

× 100% (1)

µ =
1
n ∑radius

error
errorXDraw

× 100% (2)

where n refers to the number of different radii.
Either time ratio η or error ratio µ indicates a better performance with a smaller value. With these

two variables, we can access the accuracy and efficiency of HiXDraw, R2 and XDraw statistically. As
we did not implement Zhi’s method directly, we use the data recorded in Reference [23] to evaluate
the performance of Zhi’s method and make a comparison between HiXDraw and Zhi’s method.

Table 2 gives the number of errors and the computing time of XDraw, R2 and HiXDraw with
different radius. Assume the time of R3 is 100. The relative time of other algorithms reduces with the
radius. Using the time ratio η and error ratio µ defined before, we give a statistical assessment on the
performance of different viewshed algorithms.
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Table 2. The time and error of XDraw, R2 and HiXDraw with different radius.

Algorithms Radius 100 200 300 400 500 600 700 800 900

XDraw
time 1 1.71 0.88 0.60 0.47 0.37 0.31 0.27 0.23 0.21
error 233.3 713.6 994.6 1823.7 2261.2 2891.3 3262.7 3977.8 3786.4

R2
time 4.82 2.46 1.70 1.29 1.04 0.86 0.75 065 0.58
error 147.9 360.8 462.0 724.0 820.5 957.9 1094.6 1452.9 1345.2

HiXDraw
time 7.38 3.84 2.80 2.01 1.65 1.38 1.19 1.01 0.92
error 131.5 298.7 379.9 583.8 760.6 856.9 1007.5 1320.3 1110.4

1 time of R3 is 100.The result is ηHiXDraw ≈ 4.4, µHiXDraw ≈ 34.96%, ηR2 ≈ 2.8, µR2 ≈ 41.85%. On average, the
error of HiXDraw reduces to 34.96% of XDraw. The computing time is 4.4 times as long as that of XDraw. The
accuracy is significantly improved at the cost of more computation. HiXDraw performs better than R2 in terms of
accuracy. Using the data given in Reference [23], the result of Zhi’s method is ηZhi ≈ 9.34, µZhi ≈ 56.91%. With
twice computing time, Zhi’s method makes more mistakes than HiXDraw. HiXDraw outperforms Zhi’s method in
both efficiency and accuracy.

4.5. Experiment 4: A Pillar Experiment

Chunk distortion occurs especially when there is a dominant feature near the viewpoint. To
intuitively illustrate the removal of chunk distortion in HiXDraw, we present a pillar experiment with
the viewpoint located at (8828, 5717) of the DEM. The radius is 300 pixels and the observer is 30 meters
above the ground. We place a pillar as high as 999 meters at (2, 2) southeast to the viewpoint. The
diameter of the pillar is one pixel.

Figure 9 shows the viewshed calculated by R3 without a pillar. We highlight the viewpoint with a
red plus at the center of the viewshed.ISPRS Int. J. Geo-Inf. 2019, 8 FOR PEER REVIEW  12 
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Figure 9. Viewshed generated by R3 with a viewpoint located at the center. The radius of the analysis
area is 300 and the observer is 30 meters above the ground.

Figure 10 shows the partial viewsheds of the same area corresponding to the red rectangle in
Figure 9. It is evident that XDraw has more mistakes than other algorithms. However, the difference
between the other three is indistinguishable.
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Figure 10. Partial viewsheds of different algorithms corresponding to the red rectangle in Figure 9.
These viewsheds are generated by (a) R2, (b) XDraw, (c) 10-BT and (d) HiXDraw, respectively. Red
means visible areas are wrongly determined as invisible and green means invisible areas are wrongly
determined as visible.

Figure 11 shows the viewsheds of different algorithms within the green rectangle under the
influence of a pillar. The viewshed of R2 bears a strong resemblance to that of R3. XDraw wrongly
determines a significant fraction of the total target points as invisible. The 10-BT performs better than
XDraw but still makes many mistakes under the influence of the extreme height of this pillar. As a
contrast, HiXDraw makes few mistakes and successfully eliminates the chunk distortion.
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Figure 11. Partial viewsheds under the influence of a pillar corresponding to the green rectangle in
Figure 9. The pillar of 999 meters high is placed at (2, 2) southeast to the viewpoint. These viewsheds
are generated by (a) R2, (b) XDraw, (c) 10-BT and (d) HiXDraw, respectively. Red means visible areas
are wrongly determined as invisible and green means invisible areas are wrongly determined as visible.

5. Conclusions

We have proposed three propositions to explain the causation of chunk distortion from an
innovative contributing perspective. Based on the analysis of chunk distortion, we have devised a new
auxiliary grid and the improved XDraw algorithm. As is shown in Section 4, we have improved the
accuracy of XDraw significantly and we have eliminated chunk distortion in XDraw. The error rate
of HiXDraw reduces to 34.96% of the original XDraw, which is lower than 41.85% of R2 and much
lower than 56.91% of Zhi’s method. Using the same computing time, the error rate of HiXDraw is
also lower than that of M-BT. The computing time of HiXDraw is 4.4 times as long as that of XDraw,
slightly longer than R2 (2.8 times) and less than half of Zhi’s method (9.34 times). Generally, HiXDraw
performs comparably to other algorithms in terms of efficiency. While M-BT and Zhi’s method failed to
eradicate chunk distortion, HiXDraw has successfully eliminated chunk distortion. The shortcomings
of HiXDraw mainly lie in three aspects:

More memory: HiXDraw requires more memory to record contributing points at invisible points.
The new auxiliary grid does not record the LOS height but the contributing points. By recording two
contributing points at invisible points, we can obtain the LOS height by reconstructing the reference
plane using the contributing points. However, we cannot reconstruct the reference plane from the
LOS height, because two reference points that form this plane are unknown. This indicates that by
recording LOS height only, we lose partial LOS information. The new auxiliary grid requires more
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memory to take down detailed LOS information. Note that with the new auxiliary grid, HiXDraw
uses only the actual elevations to construct a reference plane. Although More memory is used, the
improvement in accuracy makes it worthwhile.

More computation (longer computing time): HiXDraw involves more computation to generate
a viewshed. The contributing points used to construct the reference plane are selected from at most
four contributing points. These two points are no longer in the same column or row. Their position
can be arbitrary. It means we require more computation for a single target when we use a coplanar
equation to compute the minimum visible elevation. Also, selecting contributing points requires
extra computation. The computation time in our experiment is averagely 4.4 times as long as that of
XDraw. Again, HiXDraw performs comparably to other algorithms in terms of efficiency. Moreover,
the improvement in accuracy has proved the merits of involving more calculation.

Few violations of the criteria for appropriateness: By constraining the contributing points
“adjacent” to LOS, HiXDraw avoids the unwanted dependency propagation. However, it occasionally
occurs in the experiment when the contributing point with the smallest angle is more than distance
one away from LOS. In this case, HiXDraw violates the criteria for appropriateness. This phenomenon
indicates that this work can be improved further in the future. In most cases, the selected contributing
points locate within 4-neighborhood of LOS.

In this paper, we have proposed HiXDraw—an improved XDraw algorithm free of chunk
distortion. We have explained the causation for chunk distortion with three propositions from a
contributing perspective. We have devised a new auxiliary grid recording not the LOS height but the
contributing points at invisible target points. By choosing the most “adjacent” contributing points, we
have terminated the pervasive dependency propagation and have eliminated the chunk distortion.
As a result, HiXDraw improves the accuracy of outcome viewshed significantly. Error rate reduces to
around one-third of the original XDraw.

6. Future works

Some directions for future research include:

1. (Better efficiency) Speed up HiXDraw with an I/O efficient operation and parallel computing.
As we have mentioned in Section 2, many previous works had accelerated the original XDraw
by implementing XDraw I/O-efficiently or by adapting XDraw to various parallel technologies.
HiXDraw does not change the overall procedure of XDraw, making it possible to apply the speed
up to the new method easily.

2. (Better accuracy) Improve the selection of contributing points with a more reasonable criterion.
The criteria for choosing contributing points is open for further discussion. Other criteria
considering more factors other than azimuth can be proposed to achieve better performance. For
example, suppose one of the contributing points has the smallest angle but another contributing
point is closest to the viewpoint and is much more dominant, should we ignore the influence
of the dominant point? How to consider the influence of all the candidate contributing points
comprehensively? Whether other points, such as the invisible reference points, should be included
in the consideration? Future works should examine other factors and design new criteria.

3. (Better accuracy) Besides, involving other “relevant” terrain data into the computation of
visibility may be another direction of improving accuracy. By constructing the reference plane
using two reference points and the viewpoint, XDraw assumes that the reference plane is higher
than all the grid points within this triangle. Unfortunately, this assumption is not always
correct. [31] illustrated a counterexample. We may solve this problem by taking more terrain data
along the LOS into consideration.

4. (More applications) The contributing points used to construct the reference plane is no longer
in the same row or column. The position of the contributing point is arbitrary. So there exists a
possibility that we may apply HiXDraw to TIN terrain models in the future.
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