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Abstract: Image-based line segment extraction plays an important role in a wide range of
applications. Traditional line segment extraction algorithms focus on the accuracy and efficiency,
without considering the integrity. Serious line segmentation fracture problems caused by image
quality will result in poor subsequent applications. To solve this problem, a multi-constrained
line segment extraction method, based on multi-scale image space, is presented. Firstly, using
Gaussian down-sampling with a classical line segment detection method, a multi-scale image space is
constructed to extract line segments in each image scale and all line segments are projected onto the
original image. Then, a new line segment optimization and purification strategy is proposed with the
horizontal and vertical distances and angle geometric constraint relationships between line segments
to merge fracture line segments and delete redundant line segments. Finally, line segments with
adjacent positions are optimized using the grayscale constraint relationship, based on normalized
cross-correlation similarity criterion for realizing the second optimization of fracture line segments.
Compared with mainstream line segment detector and edge drawing lines methods, experimental
results (i.e., indoor, outdoor, and aerial images) indicate the validity and superiority of our proposed
methods which can extract longer and more complete line segments.

Keywords: line segment extraction; multi-scale image space; optimization; purification; geometric
constraint; grayscale constraint

1. Introduction

The line feature is an important part of an image’s geometric information and plays a crucial role in
photogrammetry and remote sensing [1], three-dimensional (3D) urban modeling [2,3], computer vision
and robot navigation positioning [4,5], and so on. Simultaneously, the importance of line elements
is emphasized in cartography and the even more user-oriented discipline, spatial cognition [6,7].
The line feature has the following advantages as a more advanced feature than the point feature:
(1) It has rich structural information for expressing edge information of 3D objects, such as structured

ISPRS Int. J. Geo-Inf. 2019, 8, 183; doi:10.3390/ijgi8040183 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-1769-0285
https://orcid.org/0000-0002-9450-2030
https://orcid.org/0000-0002-9116-8081
http://dx.doi.org/10.3390/ijgi8040183
http://www.mdpi.com/journal/ijgi
https://www.mdpi.com/2220-9964/8/4/183?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2019, 8, 183 2 of 25

buildings; (2) the extraction of the line feature is less affected by image noise, occlusion, geometric
distortion, and grayscale distortion; (3) it has higher matching accuracy; (4) it is not necessary to
completely determine the position of its two endpoints; and (5) in case of missing texture or uniformity,
the line feature is easier to extract than the point feature. Particularly, a line feature is the kind of rich
structural information which can intuitively express edge contours of the structured scene. This has
achieved good practical application results in scientific and engineering decision-making applications.
Crowley [8] and Zhang et al. [9] used line features to realize map creation and navigation positioning.
Garulli et al. [10] utilized lines to express environmental features, enabling simultaneous localization
and mapping (SLAM) of mobile robots for sensing unknown environments. Trinh et al. [11] extracted
line segments from the surface of structured buildings to achieve a shape analysis of the target.
Yu et al. [12] detected the location of cracks in pipes by judging whether the line feature was continuous.
Elqursh et al. [13] proposed a bundle-adjustment method combined with line segments to achieve
relative orientation of stereo-images and the estimated position and pose information of the camera.
Gerke [14] and Schmude [15] used line segments as the constraint information for a camera’s relative
orientation. Santos et al. [16] combined the line feature extraction algorithm to implement unmanned
aerial vehicle (UAV) image-based power line inspections. Partovi [17] extracted straight lines from
a building feature and used them for the regularized processing of buildings. Wang et al. [18] used
reconstructed 3D line segments as auxiliary information to improve the quality of the real orthophoto
that reduced the sawtooth pull problem at the edge of a building. Therefore, it is valuable to extract
good line features in many fields.

Line segment extraction algorithms can be classified into three categories: (1) Algorithms
that transform domain-based methods [19]; (2) algorithms based on gradient phase feature [20];
and (3) segmentation edge approaches [21]. The first type of algorithm is less influenced by image
noise, but the calculation cost is higher, with lower extraction accuracy. The second type of algorithm
has a low memory-occupancy rate with better extraction efficiency in complex scenes, but it is sensitive
to grayscale distortion. When the grouping error is large, line segments are prone to the phenomenon
of obvious segmentation fracture. The third type of method can detect local features of the image and
it is easy to obtain the geometric attribute information of the line segment. Its extraction speed is fast,
yet these algorithms depend on the quality of built-in edge tracking algorithms.

The theoretical basis of line segment extraction is relatively mature. The Hough transform
technique [22] extracts line segments accurately in a single texture background scene, but it is prone to
large error-extracted line segments in complex texture scenes. Xu et al. [23] proposed a multi-scale
Hough transform with a pre-stored weight matrix to detect straight lines with higher precision and less
constraints by studying the limitation of accuracy, efficiency, and image size for detecting line segments
of Hough transform. Canny [24] proposed the line segment extraction algorithm with edge detection
based on the Canny operator. However, the algorithm requires a large number of decision-making
parameters, which has serious false positive (false detection) and false negative (missing detection)
problems. A robust line segment extraction algorithm progressive probabilistic Hough transform
(PPHT) proposed by Matas et al. [25] combines the random edge point selection algorithm to improve
the feature extraction speed. However, its error-detection mechanism easily raises false negatives and
misses the necessary short line segments. More recently, a local line segment extraction algorithm,
line segment detector (LSD), proposed by Gioi et al. [26], was found to be capable of extracting
sub-pixel-level precision line segments in linear time, but the effect of line segments intersection, partial
occlusion, image blur, image noise, and grayscale distortion caused severe segmentation fracture
problems. Akinlar et al. [27,28] proposed a new edge detection operator, Edge Drawing, and a faster
line segment extraction algorithm, Edge Drawing Lines (EDLines), but the segmentation fracture effect
of the extracted line segments was not improved. The false negative of this method is inevitable and it
is easy to miss critical line segments.

The existing research mainly focuses on the accuracy and efficiency of the line feature extraction
without considering the length of extracted line segments. Short line segments are less accurate than
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long line segments, which causes more processing errors (error matching and error reconstruction).
Currently, there are few methods to solve this line segmentation fracture problem. To alleviate this
common problem, this paper proposes a multi-constrained line segment extraction optimization
algorithm based on multi-scale image space, namely MSLines, including MSLSD and MSEDLines
(MS is an abbreviation of Multi-Scale), which reduces the influence of grayscale distortion on feature
extraction using the idea of fuzzy processing.

Figure 1 shows the overall methodology presented in this paper, which is divided into three main
modules. The first module consists of constructing the line segment extraction model. A multi-scale
image pyramid was constructed based on the Gaussian down-sampling and line segments of each
image layer were extracted by the traditional line segment detection algorithm. All line segments
were projected onto the original image and stored in line vector spaces. The second module was the
optimization of the purification strategy. A set of line segment optimization and purification methods
were designed with geometric constraints; line segments were merged or deleted according to the
distance and angle relationships between line segments. The third module was second optimization.
The virtual straight line was constructed and the secondary merge optimization of the line segment
was realized based on the grayscale constraint relationship of the normalized cross correlation (NCC)
measurement. Compared with several mainstream line segment extraction algorithms, i.e., LSD and
EDLines, the proposed method could alleviate the segmental fracture effect of line segments and
eliminate line segments’ redundant problem.
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The remainder of this study is organized as follows. Section 2 describes the principle of multi-scale
image space line segment extraction method. This section also introduces a new line segment
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optimization and purification method based on geometric constraints. Also, a second optimization
method of grayscale constraint is presented. In Section 3, three sets of real data, i.e., indoor, outdoor,
and aerial images are tested to analyze superiority of our proposed line segment extraction method
compared with the mainstream method. Section 4 discusses the selection of parameters in the model
construction for various resolution images and analyses the accuracy of the proposed method. Section 5
presents conclusions and possible further studies.

2. Methods

2.1. Model Construction

2.1.1. Line Segment Detection Method

At present, Von Gioi’s LSD line segment extraction algorithm is one of the most widely used
methods. The principle of several mainstream line segment extraction algorithms is similar to LSD.
Figure 2 shows the workflow of the LSD algorithm.
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In the line detection process, the input image was first down-sampled to 80% of the original image
by the Gaussian down-sampling method to weaken the sawtooth effect of image, as well as to maintain
a balance between the sawtooth effect and image blur. Next, a 2 × 2 gradient template was given to
calculate the gradient direction (level-line angle (LLA)) and amplitude (intensity) of all pixels after
image down-sampling. Depending on the pixel gradient amplitude, 1024 containers were opened and
all image pixels were pseudo sorted from high to low order. Simultaneously, a state list was established
and the initial state of all pixels was set to UNUSED. The state of pixel labels whose gradient amplitude
was smaller than the threshold “ρ” was changed to USED, to represent an area where the image is
flat or the gradient changes slowly; this means it did not participate in the line support region (LSR)
and rectangle construction. Then, an UNUSED pixel from the sorted list was selected as a seed point.
The region growing algorithm was used to generate LSR with the seed point. The seed point and LLA
were continuously updated until the current point could not meet the threshold requirement. The final
regional direction angle θreg was achieved. The rectangle and the number of false alarms (NFA) was
calculated according to θreg and finally, line segments were determined after traversing all UNUSED
seed points.

A point can only belong to certain line segment with a traditional LSD algorithm where extracted
line segments cannot intersect with each other. If two line segments intersect, they break and split into
four short line segments. Additionally, the algorithm is susceptible to pixel grayscale gradient mutation
during the regional growth period, so that the difference between the current point LLA and the regional
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direction angle exceeds the growth threshold, resulting in segmentation fracture of the line segments.
The EDLines algorithm uses the Edge Drawing operator for feature extraction. The speed of this
method is fast, but the line segmentation fracture problem is not improved. Therefore, traditional line
segment extraction algorithms should be further optimized to solve the segmentation fracture effect.

2.1.2. Multi-Scale Image Space Line Segment Extraction Method

In order to overcome the segmentation fracture problem of line segment extraction, the proposed
method combines the idea of fuzzy processing by down-sampling the original image to produce a
pyramid-like model of multi-scale image space.

To perform this method, the specific procedure was as follows: (1) According to the actual image
resolution and processing requirements, the standard deviation factor (scale space factor) of Gaussian
filter kernel function σ was set and the maximum down-sampling number tmax was set; (2) Gaussian
kernel convolution on image I to achieve Gaussian blur of the image was performed; (3) image-based
down-sample on image-scale space factor σ (σ is generally set to 0.5) was carried out; (4) to detect line
segment, the traditional method was used for this layered image and the line segments were stored in
the corresponding line vector spaces; (5) steps (2 –4) were repeated until the maximum number of
down-sampling was reached. Specifically, the Gaussian-blurred image I′(u, v, σ) is first generated with
Equation (1).  I′(u, v, σ) = G(u, v, σ) ∗ I(u, v)

G(u, v, σ) = 1/2πσ2
∗ exp

(
−(u2 + v2)/2σ2

) , (1)

where G(u, v, σ) is the Gaussian kernel function, I(u, v) is the image I, and ∗ is the convolution operation
on the image pixel (u, v).

Based on scale space factor σ, the original image was down-sampled to obtain a low-resolution
image J. The above operation was repeated to continue down-sampling of image J until the maximum
down-sampling number tmax was reached. Finally, an N-layer image model was created (N = tmax + 1),
forming a pyramid-like multi-scale image space model.

To detect line segments, traditional line segment detection method was used for each image layer
in scale space and line segment vector spaces corresponding to the number of images were opened.
Line segments extracted in each scale image were stored in a line segment vector LineVec(k) = {},
where k represents the k-scale image of line segment vector space and the maximum value of k is N.
Moreover, line segment endpoints’ coordinates and length information were stored in line segment

class line(k)i =
{
u(i)

start, v(i)start, u(i)
end, v(i)end, length(i)

}
, where k represents kth line segment vector space and i

represents ith line in the image. Line segment extraction and storage process is shown in Figure 3.
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Figure 3 shows that the traditional line segment detector extracts line segments for each scale
image and stores segments in vector space. If detector extracts m1 and m2 line segments in the first
and second layers of the image, respectively, then the line segment method extracts mN line segments
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in the Nth layer of the image. The expression of multi-scale image space line feature vector can be
represented with Equation (2).

LineVec(1) =
{
line(1)1 , line(1)2 , line(1)3 , · · · , line(1)m1

}
LineVec(2) =

{
line(2)1 , line(2)2 , line(2)3 , · · · , line(2)m2

}
...

LineVec(N) =
{
line(N)

1 , line(N)
2 , line(N)

3 , · · · , line(N)
mN

} (2)

2.1.3. Line Segment Projection

Line segments extracted from different scale images were all projected to the original image and
stored in a new opened memory vector space. Particularly, line segments extracted from the original
image were directly stored in a new vector. For a line segment extracted after down-sampling of

image, the line(k)
∗

i needed to be projected with Equation (3) in case of known scaling factor σ and
the number of the image down-sampled times t (t = k − 1). Finally, a vector set SumLineVec of all
line segments extracted by traditional method in the multi-scale image space was achieved with
Equation (4). The vector dimension of SumLineVec is m1 + m2 + · · · + mN.

line(k)
∗

i =
(1
σ

)k−1
×

{
u(i)

start, v(i)start, u(i)
end, v(i)end, length(i)

}
, (3)

SumLineVec =
{
LineVec(N)∗ , LineVec(N−1)∗ , · · · , LineVec(1)

∗}
, (4)

where, 

LineVec(1)
∗

=
{
line(1)

∗

1 , line(1)
∗

2 , line(1)
∗

3 , · · · , line(1)
∗

m1

}
LineVec(2)

∗

=
{
line(2)

∗

1 , line(2)
∗

2 , line(2)
∗

3 , · · · , line(2)
∗

m2

}
...

LineVec(N)∗ =
{
line(N)∗

1 , line(N)∗

2 , line(N)∗

3 , · · · , line(N)∗

mN

} . (5)

2.2. Optimization and Purification Based on Geometric Constraints

After line segments extracted by the multi-scale image space were projected to the original image,
severe redundancy. Overlapping. and clutter problems of line segments occur. Many line segments
are meaningless, so the entire set of line segments needs to be optimized and purified. As a result,
the down-sampled image with low resolution can only extract a few segments, which brings extraction
error. In this subsection, a line segment optimization and purification strategy is proposed, which optimizes
line segment extraction results through line segment geometric constraint relationships. The optimized
line segments have longer length and higher integrity, while alleviating the redundancy problem.

Before optimization and purification, it is necessary to describe and determine constraint
relationships between line segments. As shown in Figure 4, the geometric constraint relationships
between line segments are defined as follows:
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Based on the geometric constraint relationships in Figure 4, we define horizontal, vertical,
and angle thresholds to determine whether line segments need to be optimized and purified. We define

l1 =
{
u(1)

1 , v(1)1 , u(1)
2 , v(1)2 , length(1)

}
and l2 =

{
u(2)

1 , v(2)1 , u(2)
2 , v(2)2 , length(2)

}
, respectively, as reference

and determined line segments that needed to be judged. The distance between midpoints of two

segments is D1 = 1
2

√(
u(1)

1 + u(1)
2 − u(2)

1 − u(2)
2

)2
+

(
v(1)1 + v(1)2 − v(2)1 − v(2)2

)2
and the average distance

between the endpoints of two segments is D2 = (d1 + d2 + d3 + d4)/4. The angle between two lines
is θ.

2.2.1. Distance Geometric Constraint

The distance geometric constraint relationships can be divided into horizontal and vertical distance
relationships. Considering the horizontal distance relationship (Figure 4a), the distance D1 between the
midpoints of two line segments is used to judge whether they are related and whether l2 needs to be
retained or deleted. If D1 >

(
length(1) + length(2)

)
/2, l2 and l1 are independent. l2 is retained and stored

as one of the reference line segments in the next judgment process. If D1 ≤
(
length(1) + length(2)

)
/2,

l2 is related to l1 and l2 continues to be judged by the vertical distance constraint relationship.
Considering vertical distance constraint (Figure 4b), if D2 ≤ ξd (where ξd is the vertical threshold),
l2 is strongly correlated with l1 and we then merge l1 and l2. If ξd < D2 ≤ 3ξd, l2 is a redundant or
invalid segment and needs to be deleted. If D2 > 3ξd, l2 and l1 are independent and l2 is retained and
stored as one of the reference line segments in the next judgment. Here we set ξd = 1(pixel), because
the resolution of the human eye is 1 pixel, and the error of more than 1 pixel is discernible.

In this paper, as a part, we also propose an optimization method for merging short line segments
based on endpoint projection transformation. The reason for selecting optimization method is that the
least squares fitting method has larger extraction errors for extracted line segments from low-resolution
images than from original images by using the multi-scale image space model. The least squares fitting
is an error-averaging method to minimize the sum of squared errors. If the least squares fitting strategy
was used here to merge line segments, it would bring more merging errors. The line segment merging
method based on endpoint projection transformation is shown in Figure 5.
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The origin O of an image coordinate system is located in the upper left corner of image. l1 was a
reference line segment extracted from the original image and the two endpoints were p1 = (u1, v1)

and p3 = (u3, v3). l2 was an error-containing line segment in the multi-scale image space and its two
endpoints were p2 = (u2, v2) and p4 = (u4, v4), whereas p̂ = (u, v, 1) were homogeneous coordinates
corresponding to these endpoints. We projected error-containing line segments onto the reference
line segment, as well as obtained projected coordinate values p∗2 =

(
u∗2, v∗2

)
and p∗4 =

(
u∗4, v∗4

)
at both

endpoints of the error-containing line segment. Equation (6) gives the endpoint projection formula:

p∗T =
1

A2 + B2

[
B2

−AB −AC
−AB A2

−BC

]
p̂T, (6)

where A, B, and C are the reference line equation Au + Bv + C = 0 parameters, which can be taken
by known two endpoints image coordinates. Thereby, the projected coordinate value p∗ = (u∗, v∗) of
endpoints for the error-containing line segment can be achieved. Due to difference between positive
and negative slopes of the reference line segment, the method of line segment merging has two
possibilities regarding endpoint transformations. We can finally get endpoints p f irst =

(
u f irst, v f irst

)
and plast = (ulast, vlast) of the merged line segment using Equation (7).

(
u f irst, v f irst

)
=

(
min

{
u1, u∗2, u3, u∗4

}
, min

{
v1, v∗2, v3, v∗4

})
(ulast, vlast) =

(
max

{
u1, u∗2, u3, u∗4

}
, max

{
v1, v∗2, v3, v∗4

}) kRatio > 0(
u f irst, v f irst

)
=

(
min

{
u1, u∗2, u3, u∗4

}
, max

{
v1, v∗2, v3, v∗4

})
(ulast, vlast) =

(
max

{
u1, u∗2, u3, u∗4

}
, min

{
v1, v∗2, v3, v∗4

}) kRatio ≤ 0
(7)

2.2.2. Angle Geometric Constraint

When l2 and l1 intersect each other at the extension line (Figure 4c), there is no overlap between l1
and l2 due to that line segments are not infinitely long lines. Moreover, l1 and l2 don’t need to be judged
by the angle geometric constraint relationship, but only the vertical distance geometric relationship is
used for judgment. When l2 intersects with l1 at the non-extended line (Figure 4d), the angle constraint
relationship is also judged for the deletion of the pseudo-line after completing the distance constraint
judgment. If θ < ξθ (where ξθ is the angle threshold, ξθ = 5◦), we think that l2 is a false line and delete
it. Otherwise, we retain l2. The expression of angle θ is given in Equation (8).

θ =

∣∣∣∣∣arctan
((

v(2)2 − v(2)1

)
/
(
u(2)

2 − u(2)
1

))
− arctan

((
v(1)2 − v(1)1

)
/
(
u(1)

2 − u(1)
1

))∣∣∣∣∣ (8)

2.3. Optimization Based on Grayscale Constraint

After completing the geometric constraint relationship judgment, we can get optimized line
segments. Grayscale constraint was performed on the first optimized line segment to realize the second
optimization (Figure 6).

Furthermore, it must be mentioned that direction information of all line segments is traverse after
geometric optimization. When any two line segments, l1 and l2, have the same direction (the angle
between the two lines θ < 1◦) and the distance between them is less than 20 pixels, which is suitable for
the current typical megapixel/medium-resolution image in the experiment section of paper, these two
line segments are temporarily merged into one virtual line segment.
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Figure 6. The grayscale constraint relationship is based on NCC measurement. Two arbitrary line
segments with the same direction information are merged into a virtual line segment and 3 × 3 matching
windows G1, G2, and G3 are opened grayscale points at the central positions of AB, BC, CD segments on
a virtual line segment. NCC is the grayscale normalized cross-correlation index between line segments.

In addition to this, grayscale points on the central positions of AB (midpoint of l1), BC, and CD
segments (midpoint of l2) on virtual line segments are used as center grayscale to open a 3 × 3 matching
window with NCC similarity judgment. NCC is often used to compare the similarity of two images
and realize the matching features. Here, we propose an extended NCC that compares the similarities of
the three windows (small patches) opened on one image. If NCC ≥ ψ (where ψ is grayscale threshold
among three matching windows, ψ = 0.8), the line segment has high grayscale-level similarity that
means a virtual line segment is an optimized line segment. In this case, we combine l1 and l2 to get a
real line segment. If NCC < ψ, the virtual line segment is not a real merging line segment. In this case,
l1 and l2 are retained and the virtual line segment is released. The specific expression of NCC is given
in Equation (9).

NCC =

N−1∑
i, j=0

Gp(i, j) − 1
N2

N−1∑
i, j=0

Gp(i, j)

Gq(i, j) − 1
N2

N−1∑
i, j=0

Gq(i, j)

√√
N−1∑
i, j=0

Gp(i, j) − 1
N2

N−1∑
i, j=0

Gp(i, j)

2 N−1∑
i, j=0

Gq(i, j) − 1
N2

N−1∑
i, j=0

Gq(i, j)

2

p = 1 q = 2, 3

p = 2 q = 3
, (9)

where Gp and Gq represent grayscale windows at positiond p and q on virtual line segment, respectively,
and N represents the size of the grayscale window, which is 3 here.

2.4. Overall Procedure of Optimization

When the kth line segment in the SumLineVec line feature set was processed (k < dim), the previous
k-1 line segments were used as reference lines for judgment. In this article, vertical distance constraint,
angle constraint, and grayscale constraint thresholds were set respectively by the empirical method
decision above.

According to the constraint relationships between line segments as described above, the specific
procedure of line segment optimization and purification was as follows:

(1) The line feature vector space R1 and R2 were opened for storing line segments that were
optimized by geometric and grayscale constraints. The initial state was R1 = {} and R2 = {}.

(2) Line segments extracted from the original image in SumLineVec were taken as reference lines
and directly taken into the optimized set R1.
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(3) Line segments extracted from other scale image space in SumLineVec were judged as determined
lines with reference lines in the optimized set based on the geometric distance and angle constraint
relationships. If the determined line satisfied the optimization and purification situation, R1 would be
updated. Otherwise, the determined line would be deleted.

(4) When all lines in SumLineVec were processed, an optimized set R1 of line segments was obtained.
(5) For any two lines in R1, virtual line segments were constructed by directional characteristics,

where the grayscale constraint relationship was used for judgement. If two lines satisfied the grayscale
constraint optimization situation, R2 was optimized. Otherwise, those lines that do not need to be
optimized were directly stored to R2.

(6) The optimization set R2 was purified by geometric constraint as a purification criterion.
When geometric distance between line segments satisfies the culling condition, it was considered that
there was a redundant line segment and we deleted the error. Also, when the angle distance between
lines satisfied the culling condition, it was considered that there was a pseudo-line, which we deleted.
Finally, we achieved the resulted line segment feature set R2∗ .

3. Experiments and Analysis

Experiments were carried out using three data sets, each with three images, i.e., indoor, outdoor,
and aerial images, to verify the effectiveness of the proposed method, as shown in Figure 7. Our method
was implemented in C++ and OpenCV. It was executed on a personal computer with Intel (R) Core
(TM) i7-7500U 2.70 GHz CPU and 8.0 GB RAM.
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Figure 7. Nine images of three test sets. (a) Indoor 1: The inner corridor of one building with an image
resolution of 1050 × 1400.  (b) Indoor 2: Teaching building indoor environment with an image
resolution of 640 × 480. (c) Indoor 3: Office indoor environment with an image resolution of 640 × 480. 
(d) Outdoor 1: The outdoor library with an image resolution of 1750 × 820. (e) Outdoor 2: The outdoor 
environment of a teaching building with an image resolution of 640 × 480. (f) Outdoor 3: Auditorium 
building with an image resolution of 640 × 480. (g) Aerial 1: The aerial image had an image resolution 
of 800 × 600. (h) Aerial 2: The aerial image with an image resolution of 765 × 763. (i) Aerial 3: The aerial 
image with an image resolution of 937 × 735. 

As for the nine selected megapixel resolution data sets, we set the maximum down-sampling 
number tmax = 2 and scale space factor σ = 0.5 based on the parameter setting of discussion section. 
Therefore, a three-layered multi-scale image space model was formed. For the three sets of nine
images, each image consists of three images with different resolutions arranged from high to low. 
Moreover, the merits of the proposed line segment extraction method (referred to as MSLSD and 
MSEDLines for better description) are mainly discussed from the aspect of number of extracted line
segments, extraction time, accuracy rate, total length, average length, and visualization effect of the 
line segment extraction. Here, the accuracy rate is the ratio of the number of correctly extracted line 
segments to the total number of line feature extraction [29]. Generally, a longer average length of a 
line segment indicates a higher integrity of the extracted line, whereas a shorter extraction time means 
the method is better. However, this paper firstly uses the traditional method to extract line segments 
for multiple image scales and, as a result, extraction time is generally longer than the original method. 
The proposed method needs a short optimization time, but the overall extraction speed is not greatly 
affected. This study mainly solves the segmentation fracture problem of line segments and redundant 
or invalid feature problems. Therefore, it mainly focuses on the average and total lengths of line 
segments and the visualization effect of extracted line segments on the image. The proposed method 
is compared with LSD and EDLines methods from the above perspectives in this section.

For these test data, the line segment extraction results in Figure 8–16 are, respectively, shown for 
conventional LSD, EDLines, and our proposed method, MSLSD, MSEDLines. Moreover, a 
quantitative index of traditional and proposed methods for line segment extraction in three sets of
nine images is presented in Table 1. 
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Figure 7. Nine images of three test sets. (a) Indoor 1: The inner corridor of one building with an
image resolution of 1050 × 1400. (b) Indoor 2: Teaching building indoor environment with an image
resolution of 640 × 480. (c) Indoor 3: Office indoor environment with an image resolution of 640 × 480.
(d) Outdoor 1: The outdoor library with an image resolution of 1750 × 820. (e) Outdoor 2: The outdoor
environment of a teaching building with an image resolution of 640 × 480. (f) Outdoor 3: Auditorium
building with an image resolution of 640 × 480. (g) Aerial 1: The aerial image had an image resolution
of 800 × 600. (h) Aerial 2: The aerial image with an image resolution of 765 × 763. (i) Aerial 3: The
aerial image with an image resolution of 937 × 735.

As for the nine selected megapixel resolution data sets, we set the maximum down-sampling
number tmax = 2 and scale space factor σ = 0.5 based on the parameter setting of discussion section.
Therefore, a three-layered multi-scale image space model was formed. For the three sets of nine
images, each image consists of three images with different resolutions arranged from high to low.
Moreover, the merits of the proposed line segment extraction method (referred to as MSLSD and
MSEDLines for better description) are mainly discussed from the aspect of number of extracted line
segments, extraction time, accuracy rate, total length, average length, and visualization effect of the
line segment extraction. Here, the accuracy rate is the ratio of the number of correctly extracted line
segments to the total number of line feature extraction [29]. Generally, a longer average length of a line
segment indicates a higher integrity of the extracted line, whereas a shorter extraction time means the
method is better. However, this paper firstly uses the traditional method to extract line segments for
multiple image scales and, as a result, extraction time is generally longer than the original method.
The proposed method needs a short optimization time, but the overall extraction speed is not greatly
affected. This study mainly solves the segmentation fracture problem of line segments and redundant
or invalid feature problems. Therefore, it mainly focuses on the average and total lengths of line
segments and the visualization effect of extracted line segments on the image. The proposed method is
compared with LSD and EDLines methods from the above perspectives in this section.

For these test data, the line segment extraction results in Figures 8–16 are, respectively, shown for
conventional LSD, EDLines, and our proposed method, MSLSD, MSEDLines. Moreover, a quantitative
index of traditional and proposed methods for line segment extraction in three sets of nine images is
presented in Table 1.
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Table 1. Results of line segment extraction for indoor, outdoor, and aerial images using traditional and
proposed methods.

Data Methods The Number of
line Segments

Accuracy
Rate

Time-consuming
(s)

Total Length
(pixel)

Average Length
(pixel)

Indoor 1

EDLines 327 0.801 0.150 20633.7 63.1
MSEDLines 215 0.842 0.359 18339.5 85.3

LSD 445 0.879 0.586 22828.5 51.3
MSLSD 238 0.874 0.636 20301.4 85.2

Indoor 2

EDLines 415 0.945 0.112 15977.5 38.5
MSEDLines 276 0.960 0.122 14076.0 51.0

LSD 463 0.944 0.214 16436.5 35.5
MSLSD 303 0.967 0.269 13180.5 43.5

Indoor 3

EDLines 375 0.939 0.110 22950.0 61.2
MSEDLines 253 0.960 0.133 18747.3 74.1

LSD 487 0.959 0.221 26005.8 53.4
MSLSD 299 0.963 0.272 21258.9 71.1

Outdoor 1

EDLines 1854 0.944 0.476 64890.0 35.0
MSEDLines 1147 0.969 0.711 53450.2 46.6

LSD 2196 0.954 1.425 70930.8 32.3
MSLSD 1274 0.973 1.452 57584.8 45.2

Outdoor 2

EDLines 245 0.898 0.072 9016.0 36.8
MSEDLines 158 0.810 0.084 8200.2 51.9

LSD 265 0.894 0.237 8904.0 33.6
MSLSD 162 0.907 0.273 7387.2 45.6

Outdoor 3

EDLines 631 0.973 0.200 25997.2 41.2
MSEDLines 436 0.975 0.249 22192.4 50.9

LSD 836 0.982 0.376 31099.2 37.2
MSLSD 510 0.982 0.456 24939.0 48.9

Aerial 1

EDLines 395 0.975 0.112 12758.5 32.3
MSEDLines 293 0.983 0.342 13448.7 45.9

LSD 456 0.985 0.294 14044.8 30.8
MSLSD 332 0.988 0.334 14342.4 43.2

Aerial 2

EDLines 901 0.964 0.230 33607.3 37.3
MSEDLines 580 0.988 0.330 29580.0 51.0

LSD 1064 0.963 0.785 31920.0 30.0
MSLSD 642 0.989 1.142 26193.6 40.8

Aerial 3

EDLines 1126 0.947 0.546 34568.2 30.7
MSEDLines 749 0.952 0.698 29735.3 39.7

LSD 1313 0.950 0.753 33481.5 25.5
MSLSD 875 0.966 1.029 29487.5 33.7

It can be seen from the visualization results in Figures 8–16 that the proposed methods MSLSD and
MSEDLines alleviated the segmentation fracture effect of line segments. Also, it can be seen from the
local area marked by the yellow frames in the nine figures that the line extraction results of conventional
LSD and EDLines method were affected by image factors such as grayscale distortion, causing a
relatively severe fracture phenomenon. MSLSD and MSEDLines had the effect of optimization and
could merge multiple broken short line segments into one complete long segment. Additionally, we can
clearly see from Figure 9, Figure 10, and Figure 13 that the proposed methods, MSLSD and MSEDLines,
played a role in removing redundancy, eliminating the redundant lines while retaining the key
geometric contour lines. From the comparison of Figure 10a,b, it was found that the proposed method
MSEDLines could remove some pseudo-lines extracted by algorithm mistakes.

Table 1 shows the quantitative results of line extraction with nine sets of experimental data of
indoor, outdoor, and aerial images. Regardless of indoor or outdoor environments or aerial scenes,
MSLSD and MSEDLines extract longer lines than the corresponding traditional methods, LSD and
EDLines. The longer the average length of line segments, the higher the integrity of extracted line
segments on the images. For Indoor 1, the line segment average length of MSEDLines and MSLSD was
85.3 pixels and 85.2 pixels respectively, which is much higher than that of EDLines (63.1 pixels) and
LSD (51.3 pixels). Since our methods had the effect of removing line segment redundancy, the number
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of extracted line segments was less than that of conventional methods. MSEDLines and MSLSD
extracted 215 and 238 line segments respectively from Indoor 1, while EDLines and LSD extracted
327 and 445 line segments, respectively. However, the reduction in the number of line segments does
not result in the sharp drop in the total length of line segments. Because proposed methods in this
paper preserve and optimize the key geometric contour information on the image while removing the
redundant line segments, they ensure that the total length does not change much. The extraction time
of the four methods of MSEDLines, MSLSD, EDLines, and LSD is not much different, which indicates
that the optimization steps in this paper’s algorithm did not take much time. The quantification results
of line segment extraction of the other eight sets of data have the same trend as Indoor 1.

Generally, line segments extracted by MSLSD and MSEDLines were more complete than that
extracted by traditional methods and they also alleviated the line segmentation fracture problem.
Many broken line segments were optimized to be combined into a complete line feature, which
completely expressed the geometric profile information of the target. Meanwhile, the proposed method
eliminated redundant clutter in the line feature detection process. Quantitative results showed that the
average length of optimized line segments extracted by the proposed method was greatly improved
compared with that extracted by traditional methods. Also, it was found that the accuracy of traditional
methods and proposed methods was very high, except for images including the presence of trees and
reflections, for example, such as Indoor 1 and Outdoor 2, and the accuracy of the proposed method
was generally higher than that of the classical method. The line feature extraction time of all four
methods in the paper was similar. The proposed method does not affect the extraction efficiency.

4. Discussion

4.1. Parameter Setting

This part discusses the selection of problem-oriented parameters in the model construction process,
providing the basis for constructing the most suitable multi-scale image space model for various
resolution images. The image resolution is different, as is as the maximum number of down-sampling
setting, which causes the number of multi-scale image space model layers formed to be different.

In order to get a suitable multi-scale image space for a line feature extraction, the corresponding
and reasonable maximum down-sampling number tmax should be set according to the image resolution.
Regarding the construction of multi-scale image space, this article is consistent with the traditional
empirical method. The scale space factor σ is 0.5 and the whole model has a total of N-layered
images. To discuss the selection of model parameteres, an outdoor image (front view of the Grand
Auditorium) with a resolution of approximatly 10 million pixels (3500 × 2625) was used as an example
to down-sample from one to four times. The corresponding multi-scale image space model was
constructed and the line features of the image were extracted by MSLSD. The results are shown in
Figure 17 and Table 2.

Table 2. MSLSD line segment extraction results under different down-sampling times.

Down-sampling Times Resolution The Number of
Line Segments

Time-consuming
(s)

Average Length
(pixel)

0 9187500 8248 6.138 53.0
1 2296000 4273 8.440 79.8
2 574000 4191 8.836 92.9
3 143664 4251 8.998 103.3
4 35916 3393 10.574 110.4
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Figure 17. Line segment extraction results of different multi-scale image space models. (a) Down-
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three times. (e) Down-sampled four times. 
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Figure 17. Line segment extraction results of different multi-scale image space models. (a) Down-sampled
zero times. (b) Down-sampled one time. (c) Down-sampled two times. (d) Down-sampled three times.
(e) Down-sampled four times.

As we can see from Figure 17a, a line segment extracted from the original image suffers a severe
fracture effect. Using our proposed method to construct a multi-scale image space model, we can
effectively alleviate the fracture problem of extracted line segments, as can be seen from Figure 17b–e
and Table 2, and the average length of the line segments is greatly improved. The continuity of line
segment extracted by MSLSD with fusion of down-sampled images becomes better, but with the
increase of down-sampling times, images, particularly those down-sampled four times, do not change
the effect of extracted segments much. Moreover, the average length of line segments changed from
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103.3 to 110.4 pixels, which shows that the growth trend was not obvious. Therefore, to construct the
multi-scale image space model, we set model parameters according to the proposed rules of Table 3.

Table 3. The setting rules of model parameters.

Size Large Resolution High Resolution Medium Resolution Low Resolution

σ = 0.5

Pixels >107 106–107 105–106 <105

tmax >3 3 2 1
N >4 4 3 2

The super-resolution images of more than 10 million pixels were down-sampled at least three
times to form more than four layers of the multi-scale image space model. High-resolution images with
megapixel resolution were down-sampled three times to form an image pyramid model of four-layered
multi-scale image space. Mid-resolution images were down-sampled twice to form a three-layered
pyramid-like model. Low-resolution images with a pixel resolution of less than 100,000 pixels only
needed to be down-sampled once to form a two-layered scale image space.

4.2. Extraction Error Analysis

Taking the indoor corridor image as an example, when MSLSD constructs a multi-scale image
space model and uses LSD algorithm to extract line features from down-scaled space, the extraction
error of line features on the down-sampling image is larger than that on the original image. As is
shown in Figure 18, Gaussian blur makes the image resolution lower; this is an indispensable step of
model construction, causing the extraction error to be amplified.
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Figure 18. Multi-scale image space LSD line feature extraction of an indoor corridor. The left image is
the original image. The middle image is the image with down-sampling once. The right image is the
image with down-sampling twice.

In the optimization and purification process, the proposed MSLSD method always takes the line
segment on the original image as the reference, ensuring the extraction error from the low-resolution image
is not introduced. Figure 19 is the result of MSLSD optimization, where we can see the method of this
paper solved the line segmentation problem and ensured the accuracy of the final extracted line segments.

Therefore, selecting the line segment extracted from the original image as the benchmark in
the optimization and purification process can ensure the line segment extraction accuracy. It does
not introduce additional error generated by the low-resolution image line segment extraction when
constructing the multi-scale image space.



ISPRS Int. J. Geo-Inf. 2019, 8, 183 21 of 25

ISPRS Int. J. Geo-Inf. 2019, 8, 183 21 of 25 
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variance was greater than 0.02, the image quality was seriously affected. Based on this, the traditional 
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0.005, 0.01, and 0.02 were analyzed. The partial line segment extraction result of the noisy image is 
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Figure 19. The line features of MSLSD without introducing low-resolution image line segment
extraction error.

4.3. The Impact of Image Noise

Image noise tends to affect line segment extraction and causes serious line segmentation fracture
problems. In order to analyze the influence of the proposed method on noise, we selected an aerial image
with a resolution of 1440 × 920 for discussion. In the experimental analysis, the image was down-sampled
twice, forming a three-layer multi-scale image space. Simultaneously, we added Gaussian white noise
with different mean and variance to the image. We found that, when the noise variance was greater than
0.02, the image quality was seriously affected. Based on this, the traditional and proposed methods under
different image noises with means of 0, 0.1, and 0.2 and variances of 0.005, 0.01, and 0.02 were analyzed.
The partial line segment extraction result of the noisy image is shown in Figure 20.
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Figure 20. The partial results of LSD and MSLSD line segment extraction of aerial image. (a) Original
image. (b) Noisy image, mean = 0, variance (var) = 0.02. (c) Mean = 0, var = 0 LSD (1613/33.2). (d) Mean
= 0, var = 0 MSLSD (998/43.4). (e) Mean = 0, var = 0.01 LSD (1156/18.7). (f) Mean = 0, var = 0.01 MSLSD
(670/43.1). (g) Mean = 0, var = 0.02 LSD (825/17.8). (h) Mean = 0, var = 0.02 MSLSD (569/44.3). (i) Mean
= 0.1, var = 0.01 LSD (1122/19.1). (j) Mean = 0.1, var = 0.01 MSLSD (648/44.1). (k) Mean = 0.2, var =

0.01 LSD (1143/19.0). (l) Mean = 0.2, var = 0.01 MSLSD (664/42.6).
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The complete line segment extraction results are shown in Figure 21, which reflects the average
length of line segments for several methods under different noise conditions.
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Figure 21. The average lengths of line segment extraction of the conventional methods (LSD, EDLines)
and proposed methods (MSLSD, MSEDLines) under noise interference. (a) Mean = 0, var = 0.005, 0.01,
0.02. (b) Mean = 0.1, var = 0.005, 0.01, 0.02. (c) Mean = 0.2, var = 0.005, 0.01, 0.02.
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Without image noise, LSD can extract 1613 line segments and the average length of line segments
is 33.2 pixels, while MSLSD can detect 998 line segments and the average length of line segments
is 43.4 pixels. In Figure 20, we find that the number of line segments extracted by the conventional
methods and proposed methods is significantly reduced due to the influence of image noise.

Meanwhile, it can be firstly found from Figure 21 that LSD is greatly affected by image noise.
The larger the image noise, the more obvious the line segmentation fracture phenomenon, resulting
in the shorter average length of the line segment. Secondly, MSLSD is robust to noise and is less
affected by noise. Under different image noise environments, the average length of line segment
extraction is basically unchanged. The average length of the MSLSD line segment extraction without
noise is 43.4 pixels and the average length of the MSLSD line segment extraction under various noise
conditions is maintained at 41.2–45.3 pixels. Thirdly, EDLines is less affected by image noise than
LSD, but it still produces severe line segmentation fracture problems in noisy environments. In this
article, MSEDLines can also alleviate the influence of image noise on line segment extraction and the
average length of the line segment is greatly improved compared to EDLines. Through the discussion,
MSLSD/MSEDLines can make the average length of lines longer than LSD/EDLines under different
Gaussian noise conditions, respectively.

5. Conclusions

In this article, our proposed line detection method, MSLines, including MSLSD and MSEDLines,
solves the line segmentation fracture problem. This novel method has the following advantages
and characteristics: (1) Using advantages of down-sampling fuzzy processing, the influence of
grayscale distortion on line segment extraction is reduced and the segmentation fracture effect of the
traditional line feature extraction algorithm is alleviated. The continuity of line segments is improved.
(2) Multi-scale image space line features are combined to construct an optimization and purification
strategy with multiple constraints. The average length of extracted line segments is longer with higher
integrity. Longer and accurate line segments provide a good research basis for line-based camera
calibration, image matching, and 3D reconstruction. (3) Ineffective lines with partial redundancy
and pseudo-lines are removed, as well as key line segments, such as geometric contours of the main
object are optimized, which makes edge structures of the image be described more intuitively and
clearly. (4) Only one parameter needs to be controlled manually, which makes the novel method more
automated and parameter-less.

We experimentally verified the validity and superiority of our proposed method. Compared with
LSD and EDLines, our proposed method has a longer average length and higher line segment integrity,
which alleviates the line segmentation fracture effect to some extent. Particularly, our approach
can extract more complete and comprehensive details for structured buildings. The presented
improvements also can provide better structural features for SLAM navigation and other line-based
applications. However, the proposed method does not completely solve the segmentation fracture
effect of line segment extraction. Later, we can consider the fusion of LiDAR (Light Detection And
Ranging) point cloud data based on our proposed method to further optimize and eliminate the
segmentation fracture effect of line segment extraction. It can also be considered from the classical LSD
algorithm perspective to improve problems where the internal gradient direction angle of the algorithm
is abruptly affected by the grayscale mutation of individual pixels, which leads to the interruption of
region growing and insufficient density of the same points.
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