
 International Journal of

Geo-Information

Article

Simplification and Detection of Outlying Trajectories
from Batch and Streaming Data Recorded in
Harsh Environments †

Iq Reviessay Pulshashi 1,‡ , Hyerim Bae 1,*,‡ , Hyunsuk Choi 2,‡, Seunghwan Mun 2,‡

and Riska Asriana Sutrisnowati 3,‡

1 Department of Industrial Engineering, Pusan National University, Busan 46241, Korea;
pulshashi@pusan.ac.kr

2 Samsung Heavy Industry, Geoje 13486, Korea; hyun_s.choi@samsung.com (H.C.);
adams91.mun@samsung.com (S.M.)

3 IOChord Inc., Busan 48059, Korea; riska@iochord.com
* Correspondence: hrbae@pusan.ac.kr; Tel.: +82-51-510-2733
† This paper is an extended version of our paper published in Pulshashi, I.R.; Bae, H.; Choi, H.; Mun, S.

Smoothing of Trajectory Data Recorded in Harsh Environments and Detectioning of Outlying Trajectories.
In Proceedings of the 7th International Conference of Emerging Databases: Technologies, Applications and
Theory, Busan, South Korea, 7–9 August 2017; Springer: Singapore, 2018; pp. 89–98.

‡ These authors contributed equally to this work.

Received: 29 April 2019; Accepted: 9 June 2019; Published: 12 June 2019
����������
�������

Abstract: Analysis of trajectory such as detection of an outlying trajectory can produce inaccurate
results due to the existence of noise, an outlying point-locations that can change statistical
properties of the trajectory. Some trajectories with noise are repairable by noise filtering or by
trajectory-simplification. We herein propose the application of a trajectory-simplification approach
in both batch and streaming environments, followed by benchmarking of various outlier-detection
algorithms for detection of outlying trajectories from among simplified trajectories. Experimental
evaluation in a case study using real-world trajectories from a shipyard in South Korea shows the
benefit of the new approach.

Keywords: trajectory preprocessing; trajectory data mining

1. Introduction

1.1. Background and Motivation

The increased use of the Global Navigation Satellite System (GNSS), such as Global Positioning
System (GPS) [1] enhances the ability to generate trajectory data [2]. Under batch [3] or streaming
environments [4], it broadened awareness of, and stimulated interest in, location-based services such
as trajectory data mining [5,6]. A trajectory can be defined as a sequence of point-locations; however,
some point-locations can be considered as noise, which is a random error due to several circumstances
such as sensor errors [7] or environment interference [8]. In some uncontrollable situation, for example,
an underground structure, an environment having many high-rise buildings and/or many steel
structures, current hardware cannot perform accurately. Noise is an outlying point-location that can
change the statistical properties of a trajectory significantly, i.e., the corresponding feature vector.
A single noise, such as the one shown in Figure 1a, can change the statistical properties significantly,
for example, if it is located very far from the rest of the point-locations of the trajectory. We can call
a trajectory a noisy trajectory if it contains noise. A trajectory that contains a noise that renders it

ISPRS Int. J. Geo-Inf. 2019, 8, 272; doi:10.3390/ijgi8060272 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0003-2326-6859
https://orcid.org/0000-0003-2602-5911
http://dx.doi.org/10.3390/ijgi8060272
http://www.mdpi.com/journal/ijgi
https://www.mdpi.com/2220-9964/8/6/272?type=check_update&version=3

ISPRS Int. J. Geo-Inf. 2019, 8, 272 2 of 25

useless for movement analysis is called an outlying trajectory. A trajectory with a high amount of noise
can usually be found such that a software-based noise-filtering or trajectory-simplification approach
is necessary to enhance hardware capability. Detection of an outlying trajectory is one example of
important trajectory-data-mining analysis [9,10] that can be affected by such a noisy trajectory problem.

To handle such a noisy trajectory problem, a noise-removal modality that reduces the amount
of noise in a trajectory using a filtering or heuristic approach has been proposed by Zheng et al. [5].
Meanwhile, in response to the problem of the large number of point-locations and thereby noise that can
be generated, trajectory-simplification by the reduction of trajectory length also has been proposed [5].
Figure 1b shows that trajectory-simplification reduces the length of a trajectory by including only
essential point-locations that, in sum, can be an approximation or representation of the actual trajectory.
By simplifying the trajectory, the amount of noise is reduced, thus improving the precision and recall
of the outlying-trajectory-detection algorithms. In this paper accordingly, we propose an improved
trajectory-simplification algorithm for both the batch and streaming environments, as well as two
scenarios for the determination of the trajectory-simplification parameter.

(a). Trajectory (b). Simplified trajectory

Figure 1. Examples: Trajectory vs. its simplified trajectory.

1.2. Running Example

To illustrate the problem, we use a real-world application of a location-based service for
monitoring of block transporter movement in the South Korean shipbuilding industry. A large
ship is usually made from properly sized parts called blocks. Each block requires a sequence of work,
including cutting and forming, block assembly, pre-outfitting and painting, pre-erection, erection,
outfitting and painting in a specific work area called a factory [11].

Since each block undergoes several different operations, it should be moved around the shipyard
to complete all of the work before the final step. Because a factory is designed for a fixed-position
layout, whenever the type of work is changed, a block must be moved from one location to another
using very large carrier vehicles called block transporters. According to safety regulation, every block
transporter moves at a maximum speed of 30 km per hour. Nonetheless, since many shipbuilding
projects run simultaneously, a block transporter must operate on a tight schedule. Thus, monitoring
and analysis of block transporter movement patterns is a very important task. Figure 2 shows how
one company has chosen to adopt GNSS technology for tracking of such patterns.

Every block transporter is equipped with a device incorporating GPS receiver and Bluetooth low
energy (BLE) modules. The GPS receiver module will continuously receive GPS signals and update
point-location data consisting of latitude, longitude, and timestamp, and then the BLE module will
broadcast the point-location update using BLE broadcasting advertising packets. A signaler, the person
who will move along with the block transporter to guide its route, uses a mobile application to initialize
tracking of the block transporter movement and to start receiving the point-location data from the
block transporter device. The application will send position data periodically (every five seconds) to
the application server in the company headquarters only if the block transporter point-location was
changed (e.g., latitude and longitude differ from the previous point-location data). The sequence of
the position data collected during the movement of a block from the start to the end location forms
a trajectory. Due to many steel structures as well as high buildings in the environment, the GPS

ISPRS Int. J. Geo-Inf. 2019, 8, 272 3 of 25

signal often is deflected to another location, thereby leaving a considerable amount of noise in the
trajectory [12].

Figure 2. A Global Navigation Satellite System (GNSS) framework for monitoring of block transporter
movement.

In this study, a domain expert classified a trajectory as an outlying if it has an either significant
number(s), in our case at least two, of random jump(s) noise or small loop noise as shown in Figure 3a,b,
respectively. A trajectory is repairable to the extent that the noise within it can be removed. For this
purpose, a trajectory-simplification algorithm must be applied before initiation of the data mining
phases of trajectory data mining such as outlier-detection.

(a). Random jump (point-location 3) (b). Small loop (point-location 5–7)

Figure 3. Examples of noise.

Issues to be resolved prior to simplifying, however, are: (1) how exactly trajectory-simplification
is to be accomplished to reduce noise in a trajectory, and (2) how trajectory-simplification affect the
precision and recall during detection of outlying trajectories.

1.3. Contributions

In our previous work [13], we proposed: (1) an outlying trajectory-detection framework that
entails preparatory simplifying of trajectories; (2) the t-fixed partition (TFP) and k-ahead artificial arc
(KAA) algorithms for simplifying of trajectory data, and (3) benchmark statistics-based, distance-based
and density-based outlier-detection algorithms for detection of outlying trajectories on the basis of a
real-world case study of a shipyard in South Korea. However, it is difficult to determine the parameters
for a set of trajectories that may have different length, and streaming environments that can arise in
the real-world are not yet supported.

In this extended work, we make the following new contributions:

1. we introduce two scenarios for the determination of the parameters of our trajectory-simplification
algorithms;

2. we introduce a streaming version of our KAA trajectory-simplification algorithms; and

ISPRS Int. J. Geo-Inf. 2019, 8, 272 4 of 25

3. evaluation by means of a case study comparing our approach with the state-of-the-art and
improvement in the detection of outlying trajectories caused by simplified trajectories.

The remainder of this paper is organized as follows. Section 2 discusses several related studies.
Section 3 provides a problem statement. Section 4 presents the proposed trajectory-simplification
algorithm. Section 5 reports an experimental evaluation based on a real-world case study. Finally,
Section 6 concludes the paper.

2. Related Work

2.1. Trajectory-Simplification Problem

Over the past decades, several studies related to trajectory data mining have been
completed [2,4–6]. The mining framework usually comprises several stages, gone of which is trajectory
data preprocessing [4]. The primary purpose of the preprocessing stage is to generate high-quality
trajectory data by selecting data that represents a trajectory, followed by filtering of the remaining
noise. Therefore, if we apply a simplifying method to trajectory data, both data selection and noise
filtering stages become unnecessary. Trajectory-simplification aims to produce a simplified trajectory
by including only major, important points from the ‘raw’ trajectory [7]. Afterwards, outlying trajectory
detection usually is included as an essential component of the trajectory data mining framework [4,5].

As for trajectory-simplification, the state-of-the-art had been surveyed by [14] for both batch and
streaming (or online) mode. For the batch environment, it starts with the famous Douglas-Peucker (DP)
algorithm [15], which has been proven to simplify a line to a particular error threshold. Then, Keogh
et al. [16] and Meratnia et al. [17] introduced a sliding-window-based approach to add a trajectory
segment to the resulting simplified trajectory. In [18], the use of the shortest path (SP) algorithm
that adds artificial arcs as constraints in a graph to simplify the line in the cartography is introduced.
Chen et al. [19] proposed a distance function (inspired by edit distance, which is widely used in
bio-informatics and speech recognition) to check the similarity between two moving trajectories.
Long et al. [20] proposed error measurement for direction preservation that calculates the angular
delta before adding artificial arcs to a graph and using the (SP) approach to simplify the trajectory.
A streaming version of [20], additionally, has been proposed in [21]. The latest one, the Sunshine
algorithm [22], which is variant of the shortest path (SP) algorithm with additional requirements of
sunshine duration error. However, due to the use of an error threshold, both the DP and SP variants
sometimes fail to avoid noise that is far from their ‘true’ locations. Herein, we introduce an alternative
sliding-window approach in the TFP algorithm as well as a relaxed, unconstrained version of the SP
approach in the KAA algorithm.

2.2. Outlying-Trajectory Detection

For detection of outlying trajectories, several studies in the field of data mining have been
conducted. An outlier-detection algorithm is used to find a subset of data that is far from the majority
of data or cannot meet some statistics requirements. Figure 4 schematizes three popular approaches to
outlier-detection [23]:

1. Statistics-based outlier-detection [23], utilizes the statistical properties of data for outlier-detection.
For example, if measured data are far outside interquartile range (IQR) Q1 and Q3, they can
be considered as outliers. This approach can work on a single object by setting the following
threshold parameters: (1) Outlier factor o f ; and (2) the extreme value factor e f . However, the
effectiveness usually fades with growth of data since the mean and variance usually grow larger;

2. Distance-based outlier-detection (DB(r, π)) [24], detects an outlier by calculating its distance
relative to other objects. This approach can detect a significant global outlier among all data
based on the parameter distance threshold r and the outlier fraction threshold π, but it cannot
detect a local outlier from a cluster, (e.g., a set of objects that is closer to the others);

ISPRS Int. J. Geo-Inf. 2019, 8, 272 5 of 25

3. Density-based outlier-detection (LOF(n)) [25], detects a local outlier by detecting a significant
object that is far from the others among a set of closely related objects based on the parameter
number of the n closest-neighbor.

From the three types of outlier-detection methods above, we want to benchmark the best method
for detecting outlying trajectories [9,10] after applying a trajectory-simplification algorithm.

(a). Statistical-based (b). Distance-based (c). Density-based

Figure 4. Three outlier-detection algorithms (black dots are outliers amongst data).

3. Preliminaries

First, we introduce several terms used in this paper, and afterwards, we define our problem.

3.1. Trajectory Simplification

Definition 1 (Trajectory, Point-Location). A ‘trajectory’ tri ∈ TR is a sequence of multidimensional
point-location pij denoted as tri = 〈pi1, pi2, . . . pin, 〉. |tri| = n denotes the length of trajectory tri and
I(pij) = j denotes the index location j of the point-location pij in trajectory tri. A ‘point-location’ pij is a tuple
pij = (latij, lngij, tsij) is a location(s) data belonging to the trajectory tri presented as a latitude (latij) and a
longitude (lngij) pair with its corresponding timestamp tsij.

Definition 2 (Simplified Trajectory, Trajectory-Simplification Algorithm). A ‘simplified trajectory’
sti ∈ ST denoted as sti = 〈si1, si2, . . . , sim〉 is a subset of the trajectory tri, iff:

1. sti ⊆ tri, |sti| ≤ |tri|
2. si1 = pi1

3. sim = pin

A ’trajectory-simplification algorithm’ is an approach to removes some point-locations from trajectory tri into a
corresponding simplified trajectory sti such that, the index of point-location pik is mapped into point-location
sij with j ≤ k. |sti| = m denotes the length of simplified trajectory sti, and inversely, s−1

ij = pik denotes an
original point-location pik ∈ tri corresponding to the point-location sij ∈ sti.

Definition 3 (Trajectory Stream, Simplified Trajectory Stream). A ‘trajectory stream’ trsi ∈ TRS is
an unbounded sequence of multidimensional point-location denoted as trsi = 〈pi1, pi2, . . . , pij, . . .〉, and
|trsi|(ts) = ∑ts

j=1 |pij| denotes the length of trajectory stream trsi at time ts. A ‘simplified trajectory stream’
strsi ⊆ trsi denoted as strsi = 〈si1, si2, . . .〉 is a subset of the trajectory stream trsi, iff:

1. strsi ⊆ trsi, |strsi| ≤ |trsi|
2. si1 = pi1

A trajectory can be acquired from the traces of completed moves (e.g., a sequence of GNSS points
of vehicle movement from the start to the end location), and an example of a trajectory stream is a
trajectory of a vehicle that still moving from the start to the end location.

Several measurements have been defined to benchmark the use of trajectory-simplification.
First, a compression ratio is used to compare the length between a trajectory and its corresponding
simplified trajectory.

ISPRS Int. J. Geo-Inf. 2019, 8, 272 6 of 25

Definition 4 (Compression Ratio (CR)). A ‘compression ratio’ CR(sti, tri) is the length ratio of the simplified
trajectory sti versus its original trajectory tri and can be calculated as follows:

CR(sti, tri) = 1− |sti|
|tri|

. (1)

As for the second measurements, total travel distance reduction ratio, compares the total travel
distance between the trajectory and its corresponding simplified trajectory.

Definition 5 (Spatial Distance (DIST), Trajectory Total Travel Distance (TTD)). A ‘spatial distance’
DIST(pia, pib) is the distance between two point-locations pia and pib, that can be calculated as follows:

DIST(pia, pib) = R×
√
((lngib − lngia)× COS(

latia + latib
2

))2 + (latib − latia)2 (2)

with R = 6.371.000 meters being the approximate radius of the Earth (this is the so called Equirectangular
approximation for measuring distance in the latitude and longitude coordinate system [26]). Thus, the trajectory
total travel distance can be calculated as follows:

TTD(tri) =
|tr|−1

∑
j=1

DIST(pi(j+1), pij). (3)

Definition 6 (Total Travel Distance Reduction Ratio (TTDRR)). A ‘total travel distance reduction ratio’
TTDRR(sti, tri) is the total travel distance ratio of simplified trajectory sti versus its original trajectory tri and
can be calculated as follows:

TTDRR(sti, tri) = 1− TTD(sti)

TTD(tri)
. (4)

For the last measurements, we generalize the Synchronized Euclidean Distance (SED) [27] error
measurement, and, introduce a Time-Synchronized Spatial Distance (TSSD) to measure the spatial
distance between two points at identical timestamps.

Definition 7 (Time-Synchronized Spatial Distance (TSSD)). A ‘time-synchronized spatial distance’
TSSD(sia, pib, sic) is the spatial distance between two point-locations pib and p′ib that can be calculated
as follows:

TSSD(sia, pib, sic) = DIST(pib, p′ib) (5)

where p′ib is a time synchronized point-location of pib to the trajectory created by two point-locations sia and sic
(see Figure 5). When the movement is contained within a relatively small area (less than or equal to one UTM
grid (100,000 m2) [28]), p′ib can be calculated using linear interpolation as follows:

lat′ib = latia +
tsib − tsia
tsic − tsia

× (latic − latia), (6)

lng′ib = lngia +
tsib − tsia
tsic − tsia

× (lngic − lngia), (7)

p′ib = (lat′ib, lng′ib, tsib). (8)

ISPRS Int. J. Geo-Inf. 2019, 8, 272 7 of 25

Figure 5. Time synchronized point-location (the black, solid line is simplified trajectory sti of trajectory
tri (black, dotted line)); the red, dashed line indicates the Time-Synchronized Spatial Distance (TSSD)
due to point pib of tri being projected into point pib′ in sti.

The Time Synchronized Spatial Distance (TSSD) is calculated to measure the deviation between
trajectory and its corresponding simplified trajectory. Since the simplified trajectory loses some points
from the original trajectory, the TSSD is used to measure the spatial distance by calculating a time-based
linear interpolation on the simplified trajectory for each removed point-location in the corresponding
trajectory. In Figure 5, the TSSD (marked by the dotted red line) is the distance projection of pib to
pib′ between point-locations sia and sic. Here, the simplified trajectory becomes a direct line of sia, pib′

and sic. Finally, we introduce Average Time Synchronized Spatial Distance (ATSSD) to measure the
average time synchronized spatial distance between a trajectory tri and its corresponding simplified
trajectory sti as follows:

Definition 8 (Average Time-Synchronized Spatial Distance (ATSSD)). An ‘average time-synchronized
spatial distance’ ATSSD(tri, sti) is the spatial distance between a trajectory tri and its corresponding simplified
trajectory sti, and is calculated as follows:

ATSSD(tri, sti) =
∑
|sti |
a=1 ∑

I(s−1
i(a+1))

b=I(s−1
ia)

TSSD(sia, pib, si(a+1))

|st| − 1
. (9)

The efficiency of a trajectory-simplification algorithm is defined as the balance among the
compression ratio, the total travel distance reduction ratio and the average of time-synchronized
spatial distance. The resulting simplified trajectory should have maximum compression ratio, and
at the same time it holds the minimum total travel distance reduction ratio and the average of time
synchronized spatial distance.

3.2. Trajectory Outlier Detection

Definition 9 (Feature Vector). A ‘feature vector’ is a set of values that can represent the characteristics of a
trajectory denoted as f vname(tr) = {vl , v2 . . . , vx} with name and | f vname| being the name and length of the
feature vector, respectively.

Instead of using raw data, an outlier-detection algorithm usually use a feature vector derived
from the data. Here, we use three kinds of feature vectors:

1. Spatial distance between two points (DIST(pia, pib));
2. angular delta between two points relative to horizontal line

(θib − θib where θij = ATAN2(COS(lngij) ∗ SIN(latij), SIN(latij))); and
3. delta time between two points (tsib − tsia).

Figure 6 demonstrates a feature vector (f vdist, f vdangle, f vdtime) extracted from trajectory tr.

Definition 10 (Outlying Trajectory). An ‘outlying-trajectory’ oti ∈ OT is either:

1. A trajectory that contains outlying point-locations, which are point-locations that significantly affect
statistical properties, i.e., feature vectors of the trajectory; or

ISPRS Int. J. Geo-Inf. 2019, 8, 272 8 of 25

2. a trajectory that does not have enough neighbors with similar feature vectors, either globally or within its
local clusters if any.

The outlying trajectory basically is a trajectory with an outlying point-locations or trajectories that
significantly different among the others in terms of feature vectors [29,30].

f vdist = (5m, 15m, 10m, 13m, 7m, 12m, 15m, 10m)
f vdangle = (0°, 60°, 30°, 45°, 135°, 60°, 45°, 30°)
f vdtime = (5s, 5s, 5s, 10s, 5s, 10s, 5s, 5s)

Figure 6. Feature vector derived from a trajectory. The red and italic font indicates the values of the
feature vectors (f vdist, f vdangle, f vdtime).

3.3. Problem Statement

Finally, we define our problem as a trajectory simplification problem followed by detection
of outlying trajectories as follows: Given a set of trajectories TR = {tr1, tr2, . . . , trI}, our
algorithm discovers a corresponding set of simplified trajectories ST = {st1, st2, . . . , stI}, then, an
outlier-detection-algorithm discovers the set of outlying trajectories OT = {ot1, ot2, . . . , otL} from
among the simplified trajectories ST such that OT ⊆ ST. The question is: Which approach is best for
trajectory simplifying and subsequent outlier-detection?

4. Proposed Approach

In this section, we introduce our framework for trajectory-simplification followed by an trajectory
outlier-detection. Figure 7 illustrates that our framework entails two steps: (1) Trajectory simplification
using a trajectory-simplification algorithm, namely the TFP or KAA algorithm. Additionally, we
provide the streaming version of KAA algorithms to handle trajectory-streams; and (2) application
of the outlier-detection algorithm for detection of outlying trajectories. For trajectory-simplification
algorithm, we introduce two kinds of environments called batch and streaming environments, that are
common for acquiring trajectory data.

Figure 7. Proposed outlier-detection framework.

ISPRS Int. J. Geo-Inf. 2019, 8, 272 9 of 25

4.1. Batch Processing Environment

In the batch processing environment, trajectories are all collected from the traces of completed
moves. Herein, we propose two approaches to simplify trajectory called t-fixed Partition (TFP) and
k-ahead Artificial Arcs (KAA) algorithm.

4.1.1. t-Fixed Partition (TFP) Algorithm

We herein propose the t-fixed Partition (TFP) simplifying algorithm for simplifying of a trajectory
by partitioning every trajectory into a fixed t number of partitions. Algorithm 1 below shows the
followings procedure:

1. (Partition Size Calculation): Calculate the partition size w = b|tri|/tc;
2. (Solution Generation): Starting from first point-location pi1 ∈ tri, iteratively add every w-times

point-location from the trajectory tri to the corresponding simplified trajectory sti (lines 1–3).
Additionally, if last point pi(|tri |) is not included in the simplified trajectory sti at the end of the
iteration, add last point pi(|tri |) to the simplified trajectory sti (lines 4–5); and

3. Finally, return the simplified trajectory sti (line 6).

Algorithm 1: t-fixed Partition (TFP) Algorithm.

Input :
a trajectory tri,
a number of partitions t
Output :
a simplified trajectory sti

Initialize:
a simplified trajectory sti ← ∅
a temporary partition size variable w← b|tri|/tc
a temporary index variable j← 1

1 while j < |tri| do
2 sti ← sti ∪ {pij}
3 j← j + w

4 if pi(|tri |) /∈ sti then
5 sti ← sti ∪ {pi(|tri |)}

6 return sti

For example, given a trajectory, as shown in Figure 6, that contains nine point-locations tri =

〈pi1, pi2, . . . , pi9〉 and parameter t = 3; Calculate partition size w = b9/3c, then w = 3; Iteratively,
add every w-times point-location from the trajectory tri to the corresponding simplified trajectory
sti such that sti = 〈pi1, pi4, pi7〉; Additionally, add the end point pi9 to the simplified trajectory sti;
and finally, return the simplified trajectory sti = 〈pi1, pi4, pi7, pi9〉. Figure 8 illustrates how the TFP
trajectory-simplification algorithm works to simplify the example trajectory.

ISPRS Int. J. Geo-Inf. 2019, 8, 272 10 of 25

(a). Solution generation (b). Simplified trajectory (solid blue line)

Figure 8. t-fixed Partition (TFP) algorithm (t = 3).

4.1.2. k-Ahead Artificial Arcs (KAA) Algorithm

Inspired by the work in the field of cartography on line simplification based on the constrained
shortest path [18], we herein additionally propose a trajectory-simplification approach called the
k-ahead artificial arcs (KAA) algorithm. Algorithm 2, below, shows how the proposed KAA approach
proceeds in three steps:

1. (Graph Construction): Start with converting a trajectory tri into temporary graph Gi = (Vi, Ei),
by assuming each point-location pia in trajectory tri as a vertex via and an edge eiab between
point-location pia and point-location pib, a < b < MIN(a + b, |tri|) (lines 1–6). The value of eiab
is simply the spatial distance between two point-locations pia and pib (e.g., the Equirectangular
distance between two GNSS points based on latitude and longitude);

2. (Shortest Path Finding): Calculate the shortest path spi between the first vertex vi1 and the last
vertex vi|tri | in graph Gi (line 7). We select the Dijkstra algorithm [31] as our shortest path finding
algorithm; and

3. (Solution Generation): Finally, the simplified trajectory sti is a sequence of point-locations pia
that is included in the shortest path spi (lines 8–9).

Since the noise usually exists as a point-location that is located far away from the other points,
heuristically, we want to avoid it by means of the resulting simplified trajectory. By adding artificial
arcs and running the shortest-path-finding algorithm, in most cases, such noise can in fact be avoided.

For example, given a trajectory, as shown in Figure 6, containing nine point-locations tri =

〈pi1, pi2, . . . , pi9〉 and parameter k = 3. Assign all points pi1, pi2, . . . , pi9 in tri as a vertex vi1, vi2 . . . vi9
to the vertex set Vi of graph Gi. For each vertex via, create a maximum k-edges between the vertex
via and the vertex vib where a < b < MIN(a + k, |tri|). Given k = 3, we then assign a set of edges
((vi1, vi2), (vi1, vi3), (vi1, vi4)(vi2, vi3), (vi2, vi4), (vi2, vi5), . . . , (vi8, vi9)) to the edge set Ei of graph Gi,
and simultaneously, we calculate the spatial distance for each edge eiab as a temporary distances
variable disti. Afterwards, we run a shortest-path-finding algorithm (we use the Dijkstra algorithm)
with input graph Gi, the temporary distances variable disti with parameter start node vi1 and end
node vi(|tri |) to find a shortest-path spi. Using our example trajectory, the corresponding shortest-path
is spi = 〈vi1, vi2, vi5, vi8, vi9〉. The solution is generated by assigning all original points pia of a vertex
via in shortest path spi to the simplified trajectory sti. Finally, return the simplified trajectory sti =

〈pi1, pi2, pi5, pi8, pi9〉. Figure 9 illustrates how the KAA trajectory-simplification algorithm works to
simplify the example trajectory.

ISPRS Int. J. Geo-Inf. 2019, 8, 272 11 of 25

Algorithm 2: k-ahead Artificial Arcs (KAA) Algorithm.

Input :
a trajectory tri,
a parameter k
Output :
a simplified trajectory sti

Initialize:
a simplified trajectory sti ← ∅
a graph Gi ← (Vi, Ei)

a set of vertex Vi ← ∅
a set of edge Ei ← ∅
a temporary set of distance disti ← ∅
a temporary shortest path variable spi ← ∅
a temporary index variable a, b← 0

1 for each point pia ∈ tri do
2 Vi ← Vi ∪ {pia}
3 for each point via ∈ Vi do
4 for each point vib ∈ Vi ∧ a < b < MIN(a + k, |tri|) do
5 Ei ← Ei ∪ {(via, vib)}
6 disti ← disti ∪ {DIST(pia, pib)}

7 spi ← FindShortestPath(Gi, disti, 1, |tri|)
8 for each vertex via ∈ spi do
9 sti ← sti ∪ {pia}

10 return sti

(a). Solution generation (b). Simplified trajectory (solid blue line)

Figure 9. k-ahead Artificial Arcs (KAA) trajectory-smoothing algorithm (k = 3).

The main advantage of the TFP algorithm over the KAA algorithm is the complexity of the TFP
algorithm, which is O(n) with n is equal to the length of trajectory |tri|, whereas the KAA algorithm
depends on the shortest-path-finding algorithm complexity. In our case, we used the optimized
Djikstra algorithm, such that our KAA algorithm complexity was about O(Ei log Vi) at best, with
Ei and Vi referring to the number of edges and vertices on the graph Gi. However, the quality
of the KAA algorithm might be better than the TFP algorithm, due to the implementation of the
shortest-path-finding algorithm.

4.1.3. The Determination of Trajectory-Simplification Parameters for Batch Processing

The remaining problem with our approach is to determine the appropriate numbers for parameters
t and k of the TFP and KAA algorithms, respectively. It is easy to determine a number of parameter for
a single trajectory; however, the effectiveness might be reduced if we apply the same number to a set
of trajectories with different lengths. If we lower the number of t on the TFP algorithm the resulting

ISPRS Int. J. Geo-Inf. 2019, 8, 272 12 of 25

simplified trajectory will be shorter, and vice versa. In the opposite way for the KAA algorithm, if we
lower the number of k, the resulting simplified trajectory will be longer due to the reduced number of
additional arcs that is added to the corresponding graph and vice versa. Therefore, we propose two
scenarios for determining our trajectory-simplification parameters:

1. Absolute number scenario. We define the same, absolute value of t and k for all trajectories in TR
(e.g., t = 5 or k = 5);

2. Relative number scenario. We define a different t and k for each trajectory with respect to the
trajectory length (e.g., t = 5% or k = 5% of trajectory length |tri|).

In Section 5.2, we will experiment on a real-world case study using these two scenarios.

4.2. Trajectory Simplification in Streaming Environment

The batch environment assumes that the data is a complete data; conversely, in the streaming
environment, the new incoming data is a continuous set from the current data. The concept of the
trajectory-stream-simplifying algorithm is introduced as a delta function to ensure the simplification of
trajectory-stream by deciding whether to add the new, incoming point-locations to the current trajectory
stream without re-computing the whole trajectory-stream. Unfortunately, creating a streaming version
our TFP algorithm is not possible, due to its always requiring prior knowledge of the length of
trajectory itself. For example (see Figure 8), if t = 3 then for a trajectory of length 9, each partition will
have at most 3 points inside one partition; hence, a streaming environment is not possible to build.
Therefore, our KAA algorithm does not need prior knowledge of the length of trajectory, in that we
introduce the streaming version of the KAA algorithm called StreamKAA.

4.2.1. Streaming k-Ahead Artificial Arcs (StreamKAA) Algorithm

To make the KAA algorithm work in the streaming environment, we need to introduce a variable
mti(ts), which is a temporary trajectory used as a buffer to keep several point-locations at time ts.
The mti(ts) variable is used to hold point-locations that are not yet added as permanent points to
the corresponding simplified-trajectory-stream strsi. In our case, we assume the length of |mti(ts)|
as an unlimited; however, if we limit the length of |mti(ts)| to be always less than k parameter at
any time ts, we could expect quality loss in the resulting simplified-trajectory-stream strsi due to the
possibility of missing some important point-locations. Algorithm 3, the streaming version of the KAA
trajectory-simplification algorithm, proceeds as follows:

1. Add newly added point-location pi(|trs|(ts)+1) to current buffer mti(ts− 1) (line 1) and calculate
temporary simplified trajectory tsti using batch version of KAA algorithm with mti(ts) as input
(line 2);

2. Index a = I(s−1
i(MAX(1,|tsti |−k))) of point-location pia ∈ mti(ts− 1) corresponds to the point-location

si(MAX(1,|tsti |−k)) ∈ tsti (line 3);

3. Add all point-locations pia ∈ mti(ts− 1), I(s−1
i(MAX(1,|tsti |−k))) ≤ a ≤ |mti(ts− 1)| to new buffer

mti(ts) (lines 4–6);
4. Add all point-locations sia ∈ tsti for which original point-location s−1

ia does not exist in the new
buffer variable mti(ts) to the new simplified trajectory nsti (lines 7–9); then

5. Return the new simplified trajectory nsti and its corresponding buffer variable mti(ts).

Figure 10 illustrates the work of the StreamKAA algorithm using our running example by adding
one point-location at one time to the trajectory-stream. The red, dashed point-locations are those
that are stored in the buffer mti(ts) at time ts, while the solid, black point-locations are from the new
simplified trajectory nsti(ts) to be added to the simplified-trajectory-stream strsi.

ISPRS Int. J. Geo-Inf. 2019, 8, 272 13 of 25

Figure 10. Running example, as simulated in streaming environment (black, solid point-locations are
accepted point-locations stored in trajectory stream; red, dashed point-locations are point-locations
currently stored in the buffer; red, dashed line indicates candidate line segment that is still not
permanent in a trajectory stream; and black, solid line is permanent line segment in trajectory stream).

Algorithm 3: Streaming k-ahead Artificial Arcs (StreamKAA) Algorithm.

Input :
a new, incoming point-location pi(|trsi |(ts)) ∈ trsi at time ts,
a parameter k,
a previous memory variable mti(ts− 1)
Output : a new simplified trajectory nsti,
a new memory variable mti(ts)

Initialize:
a new simplified trajectory nsti ← ∅
a new buffer mti(ts)← ∅
a temporary simplified trajectory tsti ← ∅
a temporary index variable a, b← 0

1 mti(ts− i)← mti(ts− i) ∪ {pi(|trsi |(ts))}
2 tsti ← KAA(mti(ts− i), k)
3 a← I(s−1

i(MAX(1,|tsti |−k)))

4 while a < |mti(ts− i)| do
5 mti(ts)← mti(ts) ∪ {pia}, pia ∈ mti(ts− 1)
6 a← a + 1

7 for each point sia ∈ tsti do
8 if s−1

ia /∈ mti(ts) then
9 nsti ← nsti ∪ {sia}

10 return nsti, mti(ts)

5. Experimental Results

5.1. Data

We verified the proposed approach by performing experiments using a real-world case study
of a shipyard in South Korea. The dataset employed contains 284 trajectories with a total of

ISPRS Int. J. Geo-Inf. 2019, 8, 272 14 of 25

15,012 point-locations of block transporter movement. The data was taken from an actual block
transporter movement based on a weekly scheduled movement. Since the planning recurs in a weekly
time horizon, we considered that a weekly observation (in this case, 5 working days) was sufficient for
our case study. In our dataset, 21 trajectories (7%) are the outlying-trajectories according to the domain
expert. The domain expert in our case should have the following qualifications:

1. Doctor of Electrical Engineering or Control System Engineering;
2. an expert on developing logistics analysis and optimization system of shipyard; and
3. at least 2-years of experience in automation research in heavy industry.

The actual domain expert that work on this manuscript has all-of-the-above qualifications with
the addition of an 18-years of experience in the automation research particularly in heavy industry.
Figure 11 and, in the appendix section, Figure A1 show an example of an outlying-trajectory, and the
overall trajectories and outlying trajectories from the data identified by the domain expert, respectively.

Figure 11. An outlying-trajectory identified by domain expert.

5.2. Sensitivity Analysis

The first experiments tested the sensitivity of the t parameter of the TFP algorithm and the k
parameter of the KAA algorithm for simplifying raw trajectories, under two scenarios:

1. absolute number scenario, with the t parameter of the TFP algorithm (TFP-ABS) and the k
parameter of the KAA algorithm (KAA-ABS) is tuned within the 5–15 range notwithstanding the
length of the trajectory; and

2. relative number scenario, with the t parameter of the TFP algorithm (TFP-REL) and the k
parameter of the KAA algorithm (KAA-REL) tuned within the 5–15% range relative to the
length of the trajectory.

Then, a sensitivity analysis measured the compression ratio and the distance-reduced ratio
between the raw and simplified trajectory. The Douglas-Peucker (DP) and the Direction-Preserving
Trajectory-Simplification (DPTS) trajectory-simplification algorithm also were employed in our
experiments. We varied the epsilon parameter of the DP trajectory-simplification algorithm
within the 0–1.0 range, and the angular direction threshold within 5–15 degrees for the DPTS
trajectory-simplification algorithm. Additionally, the StreamKAA algorithm is included by simulating
each trajectory in a trajectory-stream scenario.

Figure 12 shows the overall experiment scenario for varying each of the input parameters. Here
we try to balance the three-score metrics of CR, TTDRR, and ATSSD. The value of CR and TTDRR

ISPRS Int. J. Geo-Inf. 2019, 8, 272 15 of 25

should lie closest to 100%, while ATSSD value should lie closest to 0 m. In Figure 12, the value
of ATSSDs are normalized into range between 0 and 100 percentage such that the values closest to
0% are considered best unless stated otherwise. The numerical version of Figure 12 is presented in
Tables A1–A3 (Appendix A) for DP and DPTS algorithms, TFP algorithms, and KAA algorithms,
respectively. We tried to determine, for our dataset, the k and t parameter that can balance the
maximum compression ratio with the maximum total travel distance reduction ratio and minimum
average time synchronized spatial distance.

In Figure 12, we can categorize into three types of trends for each algorithm. For DP, DPTS and
TFP-ABS algorithms, by increasing the parameter value n, all of the metrics for the simplification
algorithms are having an increasing trend. While the KAA-ABS and the StreamKAA algorithms have
the value of CR and TTDRR that are relatively stagnant compare to the increasing value of ATSDD; and,
the TFP-ABS and the TFP-REL algorithms shows radical fluctuations for the ATSSD and a decreasing
trend for CR and TTDRR metrics. The first category shows that finding the optimal parameter can
be exhaustive search, the optimal parameter may lie at the end of the positive integer. The second
category, we can see the convergence of CR and TTDRR regardless of the increasing trends of ATSSD
values. The last category, however, the fluctuations of ATSSD can cause an unreliable selection of the
parameter unless we check every possible value of ATSSD. We consider the second category as the
most stable algorithm among others.

We summarized the best parameters of each algorithm in Figure 12 in Table 1 to determine, for our
dataset, the k and t parameter that can balance the maximum compression ratio with the maximum
total travel distance reduction ratio and minimum average time synchronized spatial distance. Based
on our experiments, the balanced conditions for the DP algorithm occurred at eps = 0.6 while the
DPTS algorithm is balanced at ae = 9. For the TFP algorithm, they occurred at t = 14 and t = 15%
for the absolute number and relative scenario, respectively. For the KAA algorithm, the balanced
conditions occurred at k = 10 and k = 10% for the absolute number and relative scenario, respectively.
In this case, the StreamKAA algorithm performs really close to KAA with absolute parameter k = 10
(KAA-ABS).

ISPRS Int. J. Geo-Inf. 2019, 8, 272 16 of 25

5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

parameter value (n)

CR (%) TTDRR (%) ATSSD (Normalized)

(a).
DP (eps = (n− 5)/10)

5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

parameter value (n)

CR (%) TTDRR (%) ATSSD (Normalized)

(b). DPTS (ae = n)

5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

parameter value (n)

CR (%) TTDRR (%) ATSSD (Normalized)

(c). TFP-ABS (t = n)

5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

parameter value (n)

CR (%) TTDRR (%) ATSSD (Normalized)

(d).
TFP-REL (t = n/100)

5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

parameter value (n)

CR (%) TTDRR (%) ATSSD (Normalized)

(e). KAA-ABS (k = n)

5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

parameter value (n)

CR (%) TTDRR (%) ATSSD (Normalized)

(f).
KAA-REL (k = n/100)

5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

parameter value (n)

CR (%) TTDRR (%) ATSSD (Normalized)

(g).
StreamKAA (k = n)

Figure 12. Sensitivity analysis results of various trajectory-simplification algorithms of Figure 11,
the table format of these charts are shown in Appendix A in Tables A1–A3.

Table 1. Sensitivity analysis result from the best parameter of each algorithm shown in Figure 12.
The best algorithm of each measurements is indicated in bold style.

Measurements DP DPTS TFP-ABS TFP-REL KAA-ABS KAA-REL KAA-STR
(eps = 0.6) (ae = 9) (t = 14) (t = 15) (k =10) (k = 10) (k = 10)

CR (%) 1 29.047 67.191 45.892 75.474 83.084 55.825 83.085
TTDRR (%) 1 16.850 11.132 12.790 26.757 43.304 25.035 43.304
ATSSD (m) 2 121.422 281.381 16.793 117.773 43.454 18.873 43.461

1 range value is between 0 and 100% with the best value is the one having value closest to 100%. 2 range value
positive number with the best value is the one having value closest to 0.0.

If we take a look at the individual score, the best algorithm for the CR and TTDRR metrics,
having a value closest to 100%, is KAA for absolute value k = 10 and the streaming KAA with value
k = 10. Otherwise, TFP with an absolute value t = 14 has the best score for ATTSD, having the
value closest to 0 meters. This significantly improved the previous algorithms by 186% ((83.084−
29.047)/29.047× 100) and 23% ((83.084− 67.191)/67.191× 100) for the CR metrics for the DP and
DPTS algorithms, respectively. For TTDRR, the improvement is 156% ((43.304− 16.850)/16.850× 100)
and 289% ((43.304− 11.132)/11.132× 100) for the DP and DPTS algorithms, respectively, and there
was a 64% ((43.545− 121.422)/121.422× 100) and 84% ((43.545− 281.381)/281.381× 100) decrease
in terms of ATSSD for the DP and DPTS algorithms, respectively. Therefore, the percentage decreases
of our algorithms compared with the previous work are considered to be improvements. Moreover,

ISPRS Int. J. Geo-Inf. 2019, 8, 272 17 of 25

the overall best score, however, shows that KAA for absolute value k = 10 is the best, whereby both
CR and TTDRR are maximized and also its ATSSD is minimized among the other algorithms.

As for the visual comparison, Figures 13 and A2 illustrate the corresponding simplified
trajectory from trajectory-simplification algorithm at its best parameter values. The DP and DPTS
trajectory-simplification algorithms had good compression scores and total travel distance reduction
ratios. However, it has a relatively high score for the average time synchronized spatial distance error;
and in fact, the visual comparison result clarified the fact that it is not robust against noise. Meanwhile,
according to the visual comparison results, our algorithm is more robust against noise and at the
same time gives a moderate compression ratio. The visual comparison results also shows that our
algorithms outperformed previous algorithms, since it considered several points at a time to anticipate
the occurrence of random jumps and small loops in a trajectory. Additionally, the previous works
used error rates as input parameters, such that they sometimes failed to avoid noise in the form of
point-locations far from their ‘true’ locations.

(a). DP (eps = 0.6) (b). DPTS (ae = 9) (c).
TFP-ABS (t = 14)

(d).
TFP-REL (t = 15%)

(e).
KAA-ABS (k = 10),
StreamKAA (k = 10)

(f).
KAA-REL (k = 10%)

Figure 13. The corresponding simplified-trajectories of the outlying trajectory shown in Figure 11 using
various algorithms and parameters shown in Table 1.

5.3. Outlier-Detection

After applying the trajectory-simplification algorithm, we tested the following three outlier-detection
algorithms against the configurations respectively specified:

1. Statistics-based outlier-detection: Based on the recommendation of the original work called
Tukey’s Boxplot [28], we use the following parameters settings: Outlier factor set to o f = 1.5
and extreme value factor set to e f = 3. Using this parameters settings, if the value of the feature
vector is either three times or more above the third quartile or three times or more below the first

ISPRS Int. J. Geo-Inf. 2019, 8, 272 18 of 25

quartile it will qualify as an outlier, while the value of feature vector is either 1.5 or more above
the third quartile or 1.5 or more below the first quartile is called suspected outlier;

2. distance-based outlier-detection (DB(r, π)): Given the idea that an outlier should be far from
most of the population, and the domain expert is able to identify 7% of trajectories are
outlying-trajectories, we assumed that normal trajectories are trajectory that have a maximum
normalized distance of 0.5 (r = 0.5) to 90% of the total number of trajectories (π = 0.9); and

3. density-based outlier-detection (LOF(θ)): Following the distance-based outlier-detection, we
assumed that a maximum local density of a trajectory cluster are 10% of the total number of
trajectories, then we set θ = 0.1× |TR|, where |TR| denotes the total number of trajectories in
set TR (our dataset contained 284 trajectories). So, we could use the 28th (0.1 × 284) nearest
neighbors from a trajectory to determine the local density of a trajectory cluster.

The statistics-based outlier-detection is used to detect an outlying point-location from single
trajectory. The distance-based and density-based outlier-detection detects a trajectory that significantly
different from others trajectory, if the length of feature-vector of a trajectory is different, a dynamic
time warp approach [32] is used. We use the input parameter of o f = 1.5 and e f = 3 for statistic-based
outlier detection, r = 0.5 and π = 0.9 for distance-based outlier detection, and θ = 28 for density based
outlier detection. We use the domain expert’s manual trajectory classification (whether a trajectory is
outlier or not) as the target class, and, comparing our outlier detection result with the target class using
precision and recall metrics. The precision is calculated by dividing the number of the true positive
observation with the sum of the true and the false positive observations, while the recall is calculated
by dividing the number of the true positive observation with the sum of the true positive and the false
negative observations.

Figure 14 plots the performance results from the various outlier-detection algorithms. As for
the visual comparison results, Figures A3 illustrate the corresponding TFP and KAA-simplified
trajectories, respectively, for the best parameter values. The outlier detection results after applying the
trajectory-simplification algorithms are quite interesting. The statistics-based outlier detection precision
improved when we increased the parameter of the trajectory-simplification algorithm; however,
the recall value varies. The distance-based outlier detection precision and recall are somewhat similar
for all trajectory-simplification algorithms regardless of parameter values. The density-based outlier
detection precision and recall are quite similar for all trajectory-simplification algorithms.

We summarized our outlier-detection algorithm results of each outlier-detection algorithm shown
in Figure 14 in Table 2 from the best parameter of each trajectory-smoothing algorithm shown in
Figure 12, for our dataset, which outlier-detection algorithm is performed best corresponds to the result
of trajectory-simplification algorithms. The statistics-based outlier-detection precision is almost similar
throughout all trajectory-simplification algorithms with KAA algorithm with k = 10 followed TFP
algorithm with t = 15% is performed best with 25.71% and 8.98% precision, respectively; however, the
DPTS algorithm with ae = 9 and TFP with t = 14 is having better recall value. For the distance-based
and the density-based outlier detections, the DPTS algorithm with ae = 9 is performed best followed
by the KAA algorithm with k = 10 in both precision and recall. However, due to the small number of
outlying trajectories in our dataset, i.e., around 7%, the value of precision and recall seem very low
since it does not even exceed 30% mark except for recall value on distance-based outlier detection
algorithm. The overall best score, however, shows that DPTS algorithm with ae = 9 is still performing
at best followed by our KAA algorithm with k = 10.

ISPRS Int. J. Geo-Inf. 2019, 8, 272 19 of 25

5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

parameter value (n)

Pr
ec

is
io

n
(%

)

DP(eps=(n-5)/10) DPTS(ae=n) TFP-ABS(t=n)
TFP-REL(t=n/100) KAA-ABS(k=n) KAA-REL(k=n/100)
StreamKAA(k=n)

(a). Statistical-based outlier detection

5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

parameter value (n)

R
ec

al
l(

%
)

DP(eps=(n-5)/10) DPTS(ae=n) TFP-ABS(t=n)
TFP-REL(t=n/100) KAA-ABS(k=n) KAA-REL(k=n/100)
StreamKAA(k=n)

(b). Statistical-based outlier detection

5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

parameter value (n)

Pr
ec

is
io

n
(%

)

DP(eps=(n-5)/10) DPTS(ae=n) TFP-ABS(t=n)
TFP-REL(t=n/100) KAA-ABS(k=n) KAA-REL(k=n/100)
StreamKAA(k=n)

(c). Distance-based outlier detection

5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

parameter value (n)

R
ec

al
l(

%
)

DP(eps=(n-5)/10) DPTS(ae=n) TFP-ABS(t=n)
TFP-REL(t=n/100) KAA-ABS(k=n) KAA-REL(k=n/100)
StreamKAA(k=n)

(d). Distance-based outlier detection

5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

parameter value (n)

Pr
ec

is
io

n
(%

)

DP(eps=(n-5)/10) DPTS(ae=n) TFP-ABS(t=n)
TFP-REL(t=n/100) KAA-ABS(k=n) KAA-REL(k=n/100)
StreamKAA(k=n)

(e). Density-based outlier detection

5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

parameter value (n)

R
ec

al
l(

%
)

DP(eps=(n-5)/10) DPTS(ae=n) TFP-ABS(t=n)
TFP-REL(t=n/100) KAA-ABS(k=n) KAA-REL(k=n/100)
StreamKAA(k=n)

(f). Density-based outlier detection

Figure 14. Precision and recall metrics of various outlier-detection algorithm results of Figure 12.

Table 2. Precision and recall metrics for each outlier-detection algorithm shown in Figure 14
from the best parameter of each trajectory-smoothing algorithm shown in Figure 12. The best
trajectory-smoothing algorithm of each outlier-detection algorithm measurements is indicated in
bold style.

OD Algorithm Measurements DP DPTS TFP-ABS TFP-REL KAA-ABS KAA-REL KAA-STR
(eps = 0.6) (ae = 9) (t = 14) (t = 15) (k = 10) (k = 10) (k = 10)

Statistical-based Precision (%) 1 2.52% 6.71% 4.18% 8.98% 25.71% 6.59% 24.19%
Recall (%) 1 23.81% 38.10% 28.57% 17.46% 19.05% 28.57% 17.46%

Distance-based Precision (%) 1 7.96% 8.41% 7.73% 8.16% 8.25% 7.63% 8.25%
Recall (%) 1 95.24% 100.00% 95.24% 96.83% 96.83% 95.24% 96.83%

Density-based Precision (%) 1 13.41% 25.03% 14.56% 16.95% 17.88% 9.55% 17.88%
Recall (%) 1 12.70% 22.22% 7.94% 15.87% 15.87% 6.35% 15.87%

1 Range value is between 0 and 100% with the best value is the one having value closest to 100%.

ISPRS Int. J. Geo-Inf. 2019, 8, 272 20 of 25

6. Conclusions

In this paper, we presented a system for trajectory simplification and detection of outlying
trajectories. We proposed two trajectory-simplification algorithms: The t-fixed Partition (TFP) and
k-ahead Artificial Arcs (KAA) algorithms. The streaming version of KAA, StreamKAA, was also
introduced to handle streaming environments. A real-world case study from the ship-building
industry in South Korea was used as the source of the main dataset. We introduced two scenarios for
determining the parameters for our trajectory-simplification algorithm: The absolute number scenario,
which uses a fixed number for all trajectories, and the relative number scenario, which uses a number
relative to the length of a trajectory.

To evaluate our trajectory-simplification approach, we compare our approach with the current
state-of-the-art, the Douglas-Peucker (DP) algorithm and Direction Preserving Trajectory Simplification
(DPTS) algorithm. The experiments were conducted with several parameter values for each algorithm,
and the results are presented in Tables A1–A3 (Appendix A). In Table 1, we present the most appropriate
parameter value for each algorithm based on our experimental settings. According to our experimental
results, in terms of compression ratio (CR) and total travel distance reduction ratio (TTDRR), all of the
algorithms performed similarly depending on the parameter value, with our KAA-ABS and KAA-STR
approaches performing the best at 83% and 43% for CR and TTDRR, respectively. In terms of average
time synchronized spatial distance (ATSSD), our approaches outperformed the state-of-the-art, since
they scored 117 m at max, while the DP and DPTS algorithms scored 121 m at the minimum ATSSD
value. Taking the balance between maximum CR, maximum TTDRR and minimum ATSSD, in our
dataset, KAA algorithm with value k = 10 followed by TFP algorithm with t = 14 is performed at best
for trajectory-simplification.

After a trajectory is simplified, outlying trajectories are detected using three popular approaches
in data mining: Statistical, distance-based and density-based. The precision and recall are then checked
and compared with domain expert identification. We found that in terms of precision, the density-based
outlier detection algorithm performed the best compared with the statistics-based or distance-based.
If we look at recall value, however, the distance-based outlier detection algorithm outperforms other
outlier detection algorithms. Moreover, we also found that the DPTS trajectory-simplification algorithm
with ae = 9 and the KAA algorithm with value k = 10, performed best if they are followed by the
density-based outlier detection algorithm.

As for the study’s limitation, currently, our works do not incorporate routing data layer (e.g., map
matching) due to a significant amount of noise on outlying trajectories that make it harder to match
point-locations into a map routing data. For future studies, we would incorporate the routing data
layer as a second pass for further noise filtering, thus improving the quality of a trajectories.

Author Contributions: Writing—original draft preparation and Software, Iq Reviessay Pulshashi; Writing—
review and editing, Funding acquisition and Supervision, Hyerim Bae; Writing—review and editing, Riska
Asriana Sutrisnowati ; and Data curation, Investigation and Software, Hyunsuk Choi and Seunghwan Mun.

Funding: This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ICT Consilience
Creative program(IITP-2019-2016-0-00318) supervised by the IITP(Institute for Information & communications
Technology Planning & Evaluation).

Conflicts of Interest: The authors declare no conflict of interest.

ISPRS Int. J. Geo-Inf. 2019, 8, 272 21 of 25

Abbreviations

The following abbreviations are used in this manuscript:

BLE Bluetooth Low Energy
DOAJ Directory of open access journals
DP Douglas-Peucker
DPTS Direction-Preserving Trajectory Simplification
GNSS Global Navigation Satellite System
GPS Global Positioning System
IQR Interquartile Range
KAA k-ahead Artificial Arc
MDPI Multidisciplinary Digital Publishing Institute
TFP t-fixed Partition

Appendix A. Experimental Result

Table A1. Sensitivity analysis result of DP and DPTS trajectory-simplification algorithm of outlying
trajectory in Figure 11. The best result of each algorithms is indicated in bold style.

DP DPTS

eps CR TTDRR ATSSD ae CR TTDRR ATSSD

0 0.099 0.100 78.039 5 0.520 0.051 255.227
0.1 0.116 0.108 107.330 6 0.570 0.063 265.388
0.2 0.143 0.117 111.002 7 0.613 0.081 272.015
0.3 0.175 0.128 113.836 8 0.640 0.094 274.652
0.4 0.207 0.139 117.026 9 0.672 0.111 281.381
0.5 0.248 0.154 119.526 10 0.692 0.124 287.087
0.6 0.290 0.168 121.422 11 0.714 0.139 290.113
0.7 0.349 0.190 125.765 12 0.731 0.156 292.272
0.8 0.429 0.218 133.323 13 0.747 0.171 293.335
0.9 0.592 0.295 164.260 14 0.759 0.182 295.963
1 0.902 0.434 201.256 15 0.769 0.194 297.211

Table A2. Sensitivity analysis result of TFP trajectory-simplification algorithm of outlying trajectory in
Figure 11. The best result of each algorithms is indicated in bold style.

TFP-ABS TFP-REL
t CR TTDRR ATSSD t CR TTDRR ATSSD

5 0.794 0.314 56.370 0.05 0.477 0.202 201.056
6 0.750 0.290 212.289 0.06 0.549 0.225 142.607
7 0.709 0.256 205.884 0.07 0.607 0.242 144.833
8 0.664 0.228 33.172 0.08 0.659 0.250 112.353
9 0.623 0.207 29.815 0.09 0.675 0.261 45.323
10 0.592 0.194 25.596 0.1 0.719 0.289 135.548
11 0.552 0.176 22.568 0.11 0.720 0.284 41.898
12 0.521 0.156 84.357 0.12 0.740 0.286 71.100
13 0.490 0.141 18.890 0.13 0.742 0.282 74.566
14 0.459 0.128 16.793 0.14 0.761 0.295 76.231
15 0.435 0.117 107.573 0.15 0.755 0.268 117.773

ISPRS Int. J. Geo-Inf. 2019, 8, 272 22 of 25

Table A3. Sensitivity analysis result of KAA trajectory-simplification algorithmof outlying trajectory in
Figure 11. The best result of each algorithms is indicated in bold style.

KAA-ABS KAA-REL KAA-STR

k CR TTDRR ATSSD k CR TTDRR ATSSD k CR TTDRR ATSSD

5 0.721 0.348 21.611 0.05 0.298 0.115 7.146 5 0.720 0.348 21.556
6 0.757 0.373 26.816 0.06 0.365 0.143 9.448 6 0.757 0.373 26.832
7 0.785 0.393 30.491 0.07 0.417 0.167 11.677 7 0.785 0.393 30.519
8 0.809 0.410 35.754 0.08 0.478 0.197 14.243 8 0.809 0.410 35.716
9 0.824 0.425 40.515 0.09 0.506 0.217 16.046 9 0.824 0.425 40.519
10 0.831 0.433 43.454 0.1 0.558 0.250 18.873 10 0.831 0.433 43.461
11 0.828 0.431 45.136 0.11 0.579 0.264 20.977 11 0.828 0.431 45.153
12 0.816 0.427 46.720 0.12 0.614 0.283 23.108 12 0.816 0.427 46.725
13 0.821 0.433 49.891 0.13 0.634 0.298 24.506 13 0.821 0.433 49.909
14 0.810 0.432 52.495 0.14 0.661 0.319 26.826 14 0.810 0.432 52.495
15 0.795 0.425 54.000 0.15 0.685 0.333 29.084 15 0.795 0.425 54.004

Appendix B. Overall View for Visual Comparison of Various Trajectory Simplification Algorithm

(a). 284 trajectories (b). 21 outlying trajectories

Figure A1. Trajectories and Outlying-trajectories identified by domain expert.

(a). DP (eps = 0.7) (b). DPTS (ae = 9)

Figure A2. Cont.

ISPRS Int. J. Geo-Inf. 2019, 8, 272 23 of 25

(c). TFP-ABS (t = 5) (d). TFP-REL (t = 15%)

(e). KAA-ABS (k = 10), StreamKAA (k = 10) (f). KAA-REL (k = 10%)

Figure A2. Visual comparison results of various trajectory-simplification algorithms.

(a). Statistics-based (TFP-REL (t = 15%)) (b). Statistical-based (KAA-ABS (k = 10))

(c). Distance-based (TFP-REL (t = 15%)) (d). Distance-based (KAA-ABS (k = 10))

Figure A3. Cont.

ISPRS Int. J. Geo-Inf. 2019, 8, 272 24 of 25

(e). Density-based (TFP-REL (t = 15%)) (f). Density-based (KAA-ABS (k = 10))

Figure A3. An outlying-trajectories of simplified-trajectories shown on Figure A2 simplified using
TFP-REL and KAA-ABS algorithm and detected by various outlier-detection algorithm.

References

1. Zheng, Y.; Xie, X.; Ma, W.Y. GeoLife: A Collaborative Social Networking Service among User, Location and
Trajectory. IEEE Data Eng. Bull. 2010, 33, 32–39.

2. Mazimpaka, J.D.; Timpf, S. Trajectory Data Mining: A Review of Methods and Applications. J. Spat. Inf. Sci.
2016, 13, 61–99. [CrossRef]

3. Zheng, Y.; Li, Q.; Chen, Y.; Xie, X.; Ma, W.Y. Understanding Mobility Based on GPS Data. In Proceedings
of the 10th International Conference on Ubiquitous computing, UbiComp 2008, Seoul, Korea, 21–24
September 2008 .

4. Zheng, Y.; Zhou, X. Computing with Spatial Trajectories; Springer: New York, NY, USA, 2011.
5. Zheng, Y. Trajectory Data Mining: An Overview. ACM Trans. Intell. Syst. Technol. 2015, 6, 29. [CrossRef]
6. Feng, Z.; Zhu, Y. A Survey on Trajectory Data Mining: Techniques and Applications. IEEE Access 2016,

4, 2056–2067. [CrossRef]
7. Lee, W.C.; Krumm, J. Trajectory Preprocessing. In Computing with Spatial Trajectories; Zheng, Y., Zhou, X., Eds.;

Springer: New York, NY, USA, 2011; pp. 3–33.
8. Wang, J.; Rui, X.; Song, X.; Wang, C.; Tang, L.; Li, C.; Raghvan, V. A weighted clustering algorithm for

clarifying vehicle GPS traces. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing
Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 2949–2952.

9. Lee, J.G.; Han, J.; Li, X. Trajectory Outlier Detection: A Partition-and-Detect Framework. In Proceedings
of the 2008 IEEE 24th International Conference on Data Engineering, Cancun, Mexico, 7–12 April 2008;
pp. 140–149.

10. Chen, C.; Zhang, D.; Castro, P.S.; Li, N.; Sun, L.; Li, S.; Wang, Z. iBOAT: Isolation-Based Online Anomalous
Trajectory Detection. IEEE Trans. Intell. Transp. Syst. 2013, 14, 806–818. [CrossRef]

11. Lee, D.; Park, J.; Pulshashi, I.R.; Bae, H. Clustering and Operation Analysis for Assembly Blocks Using
Process Mining in Shipbuilding Industry. In Proceedings of the Asia Pacific Business Process Management:
First Asia Pacific Conference, AP-BPM 2013, Beijing, China, 29–30 August 2013; Selected Papers; Song, M.,
Wynn, M.T., Liu, J., Eds.; Springer International Publishing: Cham, Switherland, 2013; pp. 67–80.

12. Miura, S.; Hsu, L.T.; Chen, F.; Kamijo, S. GPS Error Correction With Pseudorange Evaluation Using
Three-Dimensional Maps. IEEE Trans. Intell. Transp. Syst. 2015, 16, 3104–3115. [CrossRef]

13. Pulshashi, I.R.; Bae, H.; Choi, H.; Mun, S. Smoothing of Trajectory Data Recorded in Harsh Environments
and Detectioning of Outlying Trajectories. In Proceedings of the 7th International Conference of Emerging
Databases: Technologies, Applications and Theory, Busan, Korea, 7–9 August 2017; Springer: Singapore, 2018;
pp. 89–98.

14. Zhang, D.; Ding, M.; Yang, D.; Liu, Y.; Fan, J.; Shen, H.T. Trajectory Simplification: An Experimental Study
and Quality Analysis. Proc. VLDB Endow. 2018, 11, 934–946. [CrossRef]

15. Douglas, D.; Peucker, P. Algorithms for the Reduction of the Number of Points Required to Represent a Line
of its Caricature. Can. Cartogr. 1973, 10, 112–122. [CrossRef]

http://dx.doi.org/10.5311/JOSIS.2016.13.263
http://dx.doi.org/10.1145/2743025
http://dx.doi.org/10.1109/ACCESS.2016.2553681
http://dx.doi.org/10.1109/TITS.2013.2238531
http://dx.doi.org/10.1109/TITS.2015.2432122
http://dx.doi.org/10.14778/3213880.3213885
http://dx.doi.org/10.3138/FM57-6770-U75U-7727

ISPRS Int. J. Geo-Inf. 2019, 8, 272 25 of 25

16. Keogh, E.; Chu, S.; Hart, D.; Pazzani, M. An online algorithm for segmenting time series. In Proceedings of
the 2001 IEEE International Conference on Data Mining, San Jose, CA, USA, 29 November–2 December 2001;
pp. 289–296.

17. Meratnia, N.; de By, R.A. Spatiotemporal Compression Techniques for Moving Point Objects. In Advances in
Database Technology—EDBT 2004, Proceedings of the 9th International Conference on Extending Database Technology,
Heraklion, Crete, Greece, 14–18 March 2004; Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V.,
Koubarakis, M., Bohm, K., Ferrari, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 765–782.

18. Campbell, G.M.; Cromley, R.G. Optimal Simplification of Cartographic Lines Using Shortest-path
Formulations. J. Oper. Res. Soc. 1991, 42, 793–802. [CrossRef]

19. Chen, L.; Özsu, M.T.; Oria, V. Robust and Fast Similarity Search for Moving Object Trajectories. In Proceedings of
the 2005 ACM SIGMOD International Conference on Management of Data, SIGMOD ’05, Baltimore, MD, USA,
14–16 June 2005; pp. 491–502.

20. Long, C.; Wong, R.C.W.; Jagadish, H.V. Direction-preserving Trajectory Simplification. Proc. VLDB Endow.
2013, 6, 949–960. [CrossRef]

21. Deng, Z.; Han, W.; Wang, L.; Ranjan, R.; Zomaya, A.Y.; Jie, W. An efficient online direction-preserving
compression approach for trajectory streaming data. Future Gener. Comput. Syst. 2017, 68, 150–162. [CrossRef]

22. Ru, J.; Wang, S.; Jia, Z.; Wang, Y.; He, T.; Wu, C. Sunshine-Based Trajectory Simplification. IEEE Access 2019,
7, 47781–47793. [CrossRef]

23. Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques, 3rd ed.; Morgan Kaufmann Publishers Inc.:
Waltham, MA, USA, 2011.

24. Knorr, E.M.; Ng, R.T.; Tucakov, V. Distance-based outliers: Algorithms and applications. VLDB J. 2000,
8, 237–253. [CrossRef]

25. Jin, W.; Tung, A.K.H.; Han, J. Mining Top-n Local Outliers in Large Databases. In Proceedings of the Seventh
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA,
USA, 26–29 August 2001; ACM: New York, NY, USA, 2001; pp. 293–298.

26. Snyder, J.P. Flattening the Earth, Two Thousand Years of Map Projections; University of Chicago Press: Chicago,
IL, USA, 1993.

27. Potamias, M.; Patroumpas, K.; Sellis, T. Sampling Trajectory Streams with Spatiotemporal Criteria.
In Proceedings of the 18th International Conference on Scientific and Statistical Database Management
(SSDBM’06), Vienna, Austria, 3–5 July 2006; pp. 275–284.

28. Buchroithner, M.F.; Pfahlbusch, R. Geodetic grids in authoritative maps—New findings about the origin of
the UTM Grid. Cartogr. Geogr. Inf. Sci. 2017, 44, 186–200. [CrossRef]

29. Ariza-Lopez, F.; Rodriguez-Avi, J.; Reinoso-Gordo, J. An approximation to outliers in GNSS traces.
In Proceedings of the Spatial Accuracy Conference 2014, East Lansing, MI, USA, 7–11 July 2014.

30. P.G., V.; Ariza-Lopez, F.; Mozas-Calvache, A. Detection of outliers in sets of GNSS tracks from volunteered
geographic information. In Proceedings of the AGILE International Conference on Geographic Information
Science, Lisbon, Portugal, 9–12 June 2015.

31. Dijkstra, E.W. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1959, 1, 269–271.
[CrossRef]

32. Sakoe, H.; Chiba, S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans.
Acoust. Speech Signal Process. 1978, 26, 43–49. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1057/jors.1991.150
http://dx.doi.org/10.14778/2536206.2536221
http://dx.doi.org/10.1016/j.future.2016.09.019
http://dx.doi.org/10.1109/ACCESS.2019.2907312
http://dx.doi.org/10.1007/s007780050006
http://dx.doi.org/10.1080/15230406.2015.1128851
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1109/TASSP.1978.1163055
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Motivation
	Running Example
	Contributions

	Related Work
	Trajectory-Simplification Problem
	Outlying-Trajectory Detection

	Preliminaries
	Trajectory Simplification
	Trajectory Outlier Detection
	Problem Statement

	Proposed Approach
	Batch Processing Environment
	t-Fixed Partition (TFP) Algorithm
	k-Ahead Artificial Arcs (KAA) Algorithm
	The Determination of Trajectory-Simplification Parameters for Batch Processing

	Trajectory Simplification in Streaming Environment
	Streaming k-Ahead Artificial Arcs (StreamKAA) Algorithm

	Experimental Results
	Data
	Sensitivity Analysis
	Outlier-Detection

	Conclusions
	Experimental Result
	Overall View for Visual Comparison of Various Trajectory Simplification Algorithm
	References

