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Abstract: The commute of residents in a big city often brings tidal traffic pressure or congestions.
Understanding the causes behind this phenomenon is of great significance for urban space optimization.
Various spatial big data make the fine description of urban residents’ travel behaviors possible, and
bring new approaches to related studies. The present study focuses on two aspects: one is to obtain
relatively accurate features of commuting behaviors by using mobile phone data, and the other is to
simulate commuting behaviors of residents through the agent-based model and inducing backward
the causes of congestion. Taking the Baishazhou area of Wuhan, a local area of a mega city in China,
as a case study, we simulated the travel behaviors of commuters: the spatial context of the model is
set up using the existing urban road network and by dividing the area into space units. Then, using
the mobile phone call detail records of a month, statistics of residents’ travel during the four time
slots in working day mornings are acquired and then used to generate the Origin-Destination matrix
of travels at different time slots, and the data are imported into the model for simulation. Under the
preset rules of congestion, the agent-based model can effectively simulate the traffic conditions of each
traffic intersection, and can induce backward the causes of traffic congestion using the simulation
results and the Origin-Destination matrix. Finally, the model is used for the evaluation of road
network optimization, which shows evident effects of the optimizing measures adopted in relieving
congestion, and thus also proves the value of this method in urban studies.

Keywords: mobile phone data; residents commuting behavior; agent-based model; urban planning;
traffic congestion

1. Introduction

With the expansion of urban scale and the rapid growth of motor vehicles, traffic congestion
has become an increasingly serious urban problem, and the tidal traffic generated by the commuting
of residents is believed to be one of the major causes of traffic congestion [1,2]. Traffic congestion
not only brings energy waste and environmental pollution [3], but is also believed to negatively
affect public health [4]. To address this problem, common approaches including economic or policy
measures based on econometric models are used, such as congestion pricing [1,5–7], encouraging
the use of public transport [8–10], etc. However, models commonly used in these approaches are
static, in which residents’ distribution and mobility in space are seldom considered, thus bringing
inaccuracy of results [11]. Currently, increasing the availability and utilization of urban spatial big
data, especially location-based service (LBS) data from GPS devices, smart cards, and mobile phones,
make it possible to describe urban residents’ travels more accurately on a finer scale [12]. Data of
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residents’ mobility over time and space can be used for urban geographic mapping [13], epidemiological
analysis [14,15], real-time urban monitoring [16], etc. and can also be used for recognition of urban
spatial features [17–19] or measurement of urban vibrancy [20]. Another important scenario of
application is the study of residents’ commuting and urban transport, including the identification of
commuting areas and commuting distances [21,22], and the acquisition of commuter Origin-Destination
(OD) matrices [23–25]. Among various sources of location data, mobile phone data have been widely
employed in studies such as residents’ commuting thanks to its extensive coverage, passive data
collection, and the fact that its data acquisition requires no extra equipment. In comparison, alternative
data sources, such as smart card data or taxi GPS data, have equivalent difficulties in data coverage
but much smaller population coverage [26]. Results of studies based on new data have been shown to
have higher accuracy compared to those that are based on statistical data or measured data, proving
the effectiveness of big data application in urban studies. In general, most of these studies are at an
early stage of describing urban phenomena through data, few studies attempt to go further such as
using big data to identify the connection between residents’ travel and traffic congestion, or to predict
and evaluate measures for traffic improvement [27,28].

After obtaining relatively accurate data for residents’ commuting, modeling and simulation
can be an approach to identifying the mechanism and rules behind the functions of urban spaces.
The agent-based model (ABM) is considered one of the most effective techniques for simulating
complex systems and thus has great advantage to study cities, which are typically complex systems [29].
The distributed characteristics of ABM enable it to reflect differences in the behaviors of different types
of individuals [30]. Therefore, the model can be used to simulate traffic flow and residents’ behaviors
in urban transport, including the residents’ choice of travel modes [31] and carpooling models [32].
Other research applications are found in the optimization of bus routes [33,34], the simulation of
the functioning of the urban composite transportation system [35], the evaluation of the impact of
the intercity high-speed railway on the ecological environment [36], etc. From the perspective of
development trends in research, studies are moving from the simulation of individual decision-making
to that of the composite flow of urban traffic, with increasing complexity of simulation. However, most
of these simulations are still based on survey data, which not only are expensive and time-consuming
to acquire but also lack details of residents’ travel behaviors. For these reasons, big data are considered
to be a better data source for studies of residents’ travel behaviors [37].

Among others, call detail records (CDRs) are commonly employed as a kind of urban spatial
big data. Compared with traditional survey data, it has higher sample coverage, time efficiency in
acquisition, and higher time resolution [38]. On the other hand, as an effective tool for studying
urban spaces, ABM has long been fettered by the lack of data in its earlier developments and it sees
great potential in the current context of smart city development [39]. Therefore, using CDRs in ABM
offers great promises for traffic simulation that reflects actual urban spatial environment and the
spatial distribution of residents. The simulation, in turn, can be used to analyze the causes of traffic
congestion and even to predict traffic conditions under different application scenarios. In previous
studies, although big data is gradually applied to generate the OD matrix of the residents’ travels and
to predict traffic pressure in the actual urban road network, the following weaknesses still exist: first,
most of these studies were conducted on a macro scale of the whole city. At such a scale, road capacity
is often ignored, despite the fact that it is crucial for relieving traffic congestion; second, most studies
presume that all commuting travels begin simultaneous, without addressing the differences in traffic
volume in different time periods. Apparently, considerable errors may occur in the prediction of traffic
conditions on the micro scale. Therefore, these two points were taken into consideration in the model
employed in the present study.

2. Materials and Methods

The present research comprises two major parts: the acquisition of the features of residents’
commuting behavior and simulation of commuting behavior of urban residents.
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2.1. Mobile Phone Data Processing

As mobile phone data is directly related to the spatial distribution of the base stations, its accuracy
in positioning is also determined by the density of base stations and varies across different areas.
In addition, due to the different way of work and life of various users, the acquired phone call behavior
is also fuzzy data with an uneven distribution over time. In general, mobility studies using mobile
phone data usually take areas with densely distributed base stations such as city centers as case
studies. User’s location is represented by the location of the base station that has recorded the most
frequent phone calls by the user within a specific period (one month or several months) at a specific
time (working hours or at an interval of several hours). Subsequently, by associating the locations
of various base stations along the timeline, user’s mobility trajectory can be generated using CDR
data [17,19,21,23–25,38,40–42]. The present study uses a similar approach while focusing on the rush
hours and dividing the timeline on an hourly basis. Data are processed in combination with the ArcGIS
platform, and the raw mobile phone data (Table 1) comprise CDRs of 7 million users in the case city
over a time period of one month.

Data processing followed the procedures below:

a. Invalid data and users who make less than three phone calls per month were removed. After the
screening, 3.8 million users remained.

b. Users’ CDR data were sorted into working hours (7:00 to 18:00, Monday to Friday) and
non-working hours (Saturday and Sunday, and 7pm to 6am on weekdays). Base station locations
with the highest call frequency during the two time periods were identified as the place of work and
residence, respectively.

c. Frequency of phone calls on working days (Monday to Friday) was calculated based on user’s
CDRs every 24 hours, and field value of the base station ID with the highest call frequency during the
period was extracted (as shown in Table 2).

d. The four hours from 6:00 to 9:00 were identified as the peak commuting period. Based on space
unit division and base station location, base station ID and space unit code were associated (Figure 1).
By comparing the codes of space unit and residence location of a user at each hour, the departure time
was determined and the base station ID matrix of origin and destination was obtained. (The decision
rule is: if a user’s space unit code is 0 at 6:00, and is different from the code of the residence space unit
at 7:00, 6:00 is thus decided as the departure time, the code of the residence space unit is decided as the
origin, and the code of space unit at 7:00 is decided as the destination. If the code of space unit at 7:00
is still 0, the departure time is further extended to the next time period till the code is not 0 and code of
space unit is different from the residence code. If the space unit code at 6:00 is not 0, users with space
unit codes at 6:00 and 7:00, 8:00 and 9:00, or 6:00, 7:00, 8:00, 9:00 and 11:00 are searched respectively.
Whenever a change in space unit codes occurs, the different units will be decided as the origin and
destination. Furthermore, an OD matrix for different hours is generated.)

Subsequently, the OD matrix of residents’ travels in the case area were imported into the ABM as
basic data.

Table 1. Sample of mobile phone call data.

User ID Time of Phone Call Base Station ID

10000001 2016-03-09-9.11.49.000000 287305843
10000002 2016-03-09-9.15.24.000000 5760859194
10000003 2016-03-09-9.15.18.000000 2872636812
10000004 2016-03-09-9.15.49.000000 2893525929
10000005 2016-03-09-9.24.13.000000 2871037354
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Table 2. Sample statistics of base stations assigned to user ID at different hours of a day.

User ID Base Station
ID at 7:00

Base Station
ID at 8:00

Base Station
ID at 9:00

Base Station
ID at 10:00

Base Station
ID at 11:00

10000001 2897825643 2870117513 2870117513 2870140338 2897825643
10000002 2871865415 2871865415 2871865415 2871865415 2871865415
10000003 2870124605 2870125269 2893463025 2893410062 2893463025
10000004 2896212261 2870140337 2870129511 2870129511 2870129511
10000005 2897112172 2897112173 2897112172 2897155404 0
10000006 2896857636 2896840168 2896829356 2873044533 2896851574
10000007 2919549932 2919543433 2919549932 2919549932 2919440084
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Figure 1. Procedures of assigning a user to a spatial unit.

2.2. Agent-Based Model

ABM is often used in complex giant systems such as cities. Generally speaking, a Multi-Agent
System (MAS) contains many types of agents, including mobile agents such as urban residents and
static agents such as urban roads. Agents run by pre-defined rules and interact with one another,
producing movement and dynamic changes starting from an individual agent to the whole. As this
mechanism resembles the interaction between human individuals, human and space in the city, ABM
is considered as one of the best tools to understand urban functioning [43]. The model in the present
study is established on the Repast S platform, and the settings of external environment and agent
mobility draw reference from the open source model RepastCity [44–46]. Since residents’ traveling is
the only behavior studies in the research, the modeling of urban environment can be simplified into
the spatial units of travel (i.e., origin and destination) as well as urban roads. Agents’ behavior rules
mentioned below are coded by Java and added to the RepastCity model to make it run as we designed.
The rules for model running are that a resident agent moves from one spatial unit (origin) to another
spatial unit (destination) at a specific time point. When the resident agent runs on the road, it may
lower its speed of movement due to preset traffic congestion conditions (Figure 2).
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2.3. Model Hypothesis and Parameter Setting

The following hypothesis and rules are made regarding the generation of an Agent in the model
and its behaviors:

First, each Agent (urban resident) generated has a specific origin and destination of travel, at a
specific time point of departure. In the model, all resident Agents are generated simultaneously but are
set with a specific delay value each, according to their different departure time. For example, residents
depart at 6:00 have a delay value of 0 s, while those who depart at 7:00 have a delay value of 3600 s.
In addition, each resident Agent is represented by a private car whose initial speed of travel is based
on the driving speed of a normal motor vehicle.

Second, on each plot, a certain number of Agents is generated which is calculated using the
number of residents acquired through phone data, then divided by operator’s market share, and finally
multiplied by the ratio of motor vehicle travel of residents.

Thirdly, traffic congestion emerges when a certain number of resident Agents concentrate in
the same road intersection, and the traveling speed of residents varies in accordance to the level of
congestion. Roads and nodes in the mode are generated from a shape file built in ArcGIS and are
converted to Agents in RepastCity.

Fourth, residents choose the shortest route to their destination and do not change route before
their arrival. The choice of path by Agents is based on the Dijkstra algorithm. Codes of space units as
origin and destination are acquired in the OD matrix, and the shortest route is calculated in accordance
with the road network and algorithm.
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There are three major parameter variables in the commuting travel model of urban residents in
the study area:

The first one is the commuter travel data of residents in each plot acquired from the OD travel
matrix, and the number of travels of the corresponding Agent. The number of Agents is decided based
on two factors: first, the number of residents acquired through phone data is converted to get the
number of commuting residents, and is converted to get the number of travels by motor vehicles.
As the Baishazhou area is located in the outskirt of the city near the Third Ring road with no subway
lines, and the number of bus lines is far less than those in the inner city area, it is assumed that the
majority of travels are made by private cars. The number of residents acquired through phone data
is divided by the market share of the telecom operator and then the number of private car travels is
acquired at a conversion factor of 1 to 1. The second factor is the ratio of the number of Agents in the
simulation to the actual number of residents traveling by cars. In the statistics, we observed that there
~15,000 people traveling at the 9–10:00 period when the amount of travels is at the lowest in the study
area. Previous test modeling showed that, with increasing number of Agents, the speed of simulation
drops significant, while the precision of simulation results does not increase accordingly. Therefore, in
the present simulation, the number of Agents is reduced so as to improve the efficiency of simulation
and the traffic capacity of roads has been adjusted proportionally. The final resident-to-Agent ratio is
set at 1:10, that is, one Agent represents 10 residents.

The second parameter is the speed setting. Considering the hierarchy of roads in the study area,
such as urban expressways, artery roads, etc., the Agent’s speed on the roads is also differentiated.
In the study, two different speeds are set, i.e., the expressway speed, at 50 km/h and the artery
road speed, at 30 km/h. This parameter is achieved by specifying the field of road attribute in GIS,
corresponding to the speed parameters of 13.9 m/s and 8.3 m/s, respectively. The speed setting also
correlates the Agent’s travelling speed with the actual time unit, that is, each operation cycle (1 tick in
simulation) is equal to 1 second of real time.

The third parameter is the road congestion settings. As the present study is conducted on a
meso to macro scale area, roads are not categorized on a finer level, nor is the overlapping of vehicles
considered. Congestion is defined by the instantaneous density of Agents on the road as vehicle
density can directly demonstrate the congestion level on a road and road occupancy is often used as a
quantitative indicator in traffic analysis [47]. According to the methods used in previous literature [48],
the present study defines road occupancy at 0.5–1 as serious congestion, 0.3–0.5 as slight congestion,
and below 0.3 as no congestion.

3. Case Study

This Baishazhou area (Location: 30.42◦~30.53◦ N, 114.25◦~114.30◦ E) in Wuhan was selected as
the case study of commuting simulation based on the following considerations: first, Baishazhou is
a new area of Wuhan, which is mostly residential in function. Therefore, the study of the impact of
commuting on traffic condition in this area is of practical value. Second, since the area is still under
construction and development, follow-up observations are possible to identify the differences between
the simulation results of various planning programs and the traffic condition in reality. Thus, the
proposed optimization and improvement measures may be of great practicality. Finally, as there is a
city-level artery road in this area, i.e., the Baishazhou Avenue, the overall urban layout is distributed
along the road in a belt-like shape. With frequent and extensive interactions with the surrounding areas
and evident concentration of vehicle traffic, the area is deemed a valid case to evaluate the effectiveness
of the model.

3.1. Data Acquisition and Processing

After the processing of mobile phone data is completed, the most important step is to allocate the
residence and work places of residents at each hour to the space units. This is realized by overlapping
aerial photographs, vector electronic map, and existing roads onto previously generated space units.
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Working with a huge dataset like mobile phone data, the number of time division, and space unit
division by different hours of a day may lead to an exponential increase in total statistical size. Therefore,
except for the case study area, the division of urban space is minimized to reduce the total number of
spatial units. Finally, 34 space units were generated (see Figure 3). Based on these space units, statistics
were extracted for the four rush hours on each workday morning. Among these units, plots No. 1 to
No. 27 were taken as the core research objects, in which commuting data of residents were acquired.
Since the accurate travel routes in other plots cannot be obtained without a fine division, these plots
were selected only as destinations but not origins.
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Using Monday to Friday every week as the time periods in the present study, temporal features of
the residents’ commute were obtained. In regular commuting, residents’ travel from home to work
in the morning rush hours and then from work to home during the evening rush hours. In order to
reduce the amount of data in space unit division, the division of land for work is simplified. Therefore,
only the commuting of residents during the morning rush hours, i.e., the four hours from 6:00–10:00,
were considered in the present simulation. Using the base station data in the four hours of 6:00, 7:00,
8:00, and 9:00, the number of plots at 11:00, the number of travels at each hour and at each plot were
generated and further generated an OD matrix (Table 3). The number of residents’ travels in each
core space unit at different hours separately was acquired (Figure 4). The ranking of the numbers for
the four time slots was 7:00 > 8:00 > 6:00 > 9:00, which is consistent with our daily experience: since
most employers in China set working hours between 9:00 to 17:00, residents leave home for work
between 7:00 to 8:00 to reserve enough time for commuting even in face of the possible traffic jam
during morning rush hours. Therefore, this period is the most popular departure time for commuters.

Table 3. Sample statistics of travel volume at each hour and at each plot.

Departure
Lot No.

Destination
Lot No.

Departure at
6:00

Departure at
7:00

Departure at
8:00

Departure at
9:00

1 3 20 10 10 0
1 4 20 20 20 0
1 9 10 0 0 0
1 14 0 10 0 0
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3.2. Model Simulation and Result Verification

Figure 5 presents real-time screenshot images at several time nodes during the running of the
model. As the visual interface could not offer quantified traffic features, road intersections are numbered
and the number of Agents at each running cycle is obtained in order to detect the occurrence, time, and
level of traffic congestions. The numbering of road intersection is shown in Figure 6a.
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Finally, the number of vehicles at each intersection in the study area was calculated in various
periods each with a 90-s duration to obtain Figure 7. As shown by the changes in the number of agents
at all intersections during various time periods, although differences can be seen in terms of the total
number of commuter residents, the number of commuter residents on each plot, and the destinations
of residents, the overall line charts generated for the four hours of study demonstrate a consistent
pattern, representing similar features in the commuting of residents at each hour. Specifically, for road
intersections, the peak in the line chart represents the maximum number of traffic generated, and the
duration of time indicates the occurrence of congestion. Therefore, it can be seen that the most obvious
congestion occurs at Intersection 10, i.e., the intersection of Baishazhou Avenue and the Third Ring
Road. Other more congested intersections include No.6, No.9, and No.37.
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Furthermore, the causes of congestion at each intersection can be analyzed. Combining the
congestion process presentation at each intersection in the visual interface, and the number of residents
departing from each block in different time periods (Table 3). Traffic in the surrounding area along the
Baishazhou Avenue consists of two parts: commuting traffic from the area adjacent to Intersection 10
(the Qingling Interchange) to Plot 27 (the South Lake Area) and Plot 31 (the Optics Valley Area). While
traffic in Intersection 37 (the Meijiashan interchange) comes from commuting to Plot 31 and Plot 30 (the
Xudong Area). As a result, the commuting traffic flows have great impact on the road intersections near
the two interchanges. In addition, as cross-river traffic in the entire area is still mainly directed to Plot
34, tension in traffic is mostly concentrated along the cross-river bridge (the Baishazhou Bridge) route.

Chinese web map providers, such as Gaode, Baidu, etc., provide not only navigation information,
but also traffic forecasts based on their historical traffic data and projections of traffic conditions at
different periods of a day. In the present study, traffic forecasts for the case study, the Baishazhou
area, at the four time nodes, i.e., 7:00, 8:00, 9:00, and 10:00, are extracted from Gaode map as shown in
Figure 8. Since these traffic forecasts are generated based on historical data, they can be considered as
road traffic conditions with the highest probability of each road in the past years, and therefore, we
used them in the study to verify the results of the model simulation.
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Since Gaode’s data is only accurate to the hour and cannot be matched with the temporal
granularity of traffic conditions in this simulation, comparisons can only be made on a similar time
precision. Traffic at the end of each hour of simulation was used for the comparison, which means the
simulation result for traffic starting at 6:00 was used for comparison with the traffic forecast at 7:00,
and so on. It can be seen from the traffic forecast for Gaode that it covers only the city artery roads
and above, but not the secondary roads or below, and the dark red, red, yellow, and green colors in
the diagram represent increasingly better traffic conditions, from serious congestion to smooth flow.
Therefore, it can be seen that the traffic condition is the worst at 8:00 when a dark red section appears
at the Qingling Interchange at the intersection of Baishazhou Avenue and Third Ring Road, and the
section is in yellow at the other three time nodes, indicating slight congestion. Another congestion
occurs in sections along the Baishazhou Avenue ahead of and behind the Meijishan Interchange, where
the heaviest traffic, in dark red color, also appears at the 8:00 time node while the sections are in yellow
color at the other three time nodes. The rest of the time point is yellow. Compared to the roads in
the model, intersections corresponding to the Qingling Interchange are Intersection 10, 12, and 16,
while those corresponding to the Meijiahan Interchange are Intersection 35 and 37. It can be seen that
most sections of congestion projected by Gaode are in accordance with the congested intersections as
simulated in the model. Based on the above analysis, the results of the present model’s simulation are
consistent with traffic forecasts of Gaode.

4. Discussion

Statistics in the OD matrix of residents’ travels at different hours show that, most of the spatial
units follow the pattern of minimum traffic at 9:00, but there are also a few plots, such as Plot 27,
that do not match the major pattern of travel numbers. Situated in the South Lake area and serving
mainly residential functions, Plot 27 is one of the most congested areas in Wuhan during rush hours.
A possible explanation is that the residents of the area choose to delay their departure time to 9:00 in
order to avoid the traffic congestion period from 7:00 to 8:00, or they are stalled in traffic for too long
and are considered as having not departed from the area in the statistics. This result, to some extent,
verifies the significance of OD statistics and simulation by each hour: when the travel patterns of each
space unit during the four hours change, traffic pressure at each intersection may also vary, and the
causes behind these changes demand further analysis with the support of simulations. This is also
why this study divides the unit time span of commuting travels into a one-hour basis.

In order to test the simulation results of the model for different schemes, and combined with the
analysis of the causes of congestion, the roads in the study area are optimized according to the Wuhan
master plan. As a measure of optimization, a waterfront north–south road along the Yangtze River and
the road to the South Lake area are planned (Figure 6b). The planned and optimized road network is
simulated in the model and compared with the original one. In this simulation, it is assumed that the
population in this area remains unchanged and so do the places of residence and work. Comparing
the simulation results of the two schemes (Figure 9), it can be seen that the optimized scheme is
evidently better than the scheme before optimization: first, traffic has been distributed to multiple
road intersections instead of being concentrated at an intersection before the optimization. Second,
duration of traffic congestion is significantly shortened, which means congestions can be alleviated
quickly even if they do occur.

According to Gaode’s Traffic Report on major cities in China, 81% of them suffer from congestions
during rush hours of residents’ commuting [49]. Therefore, studying residents’ commuting behavior
as a starting point to address the wider problem of urban traffic congestion bears practical significance,
not only for China but also for the world at large. The era of big data is coming. When it is less difficult
to acquire data, how to use them in urban research becomes an issue that calls for deliberation [40].
Previous studies prove that mobile phone call data can more accurately reflect the commuting features
of urban residents. However, most studies focus on the overall analysis of cities on a macro scale and
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the visual representations. Few studies are found on the micro scale dynamic analysis of residents’
commuting behaviors, or on how commuting relates urban traffic.

However, as the sole data source used in the present study to understand residents’ mobility,
CDR data still has limitations because it is a relatively sparse data in recording the travel trajectory
of residents. It is difficult to obtain the traffic mode (or speed) of residents’ travel through statistical
analysis. Thus, the specific correlations between commuter vehicles and mobile phone users are not
discussed in the present study. Therefore, in follow-up studies, additional data sources such as bus
card and traffic cameras at road intersections may facilitate the cross-examination of our research
results or the setting rules of residents’ commuting at a finer time-scale. Of course, these rely on the
availability of data, which remain difficult to collect compared with other sources at present.
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5. Conclusions

In the present study, the Agent-based model is used to simulate traffic condition during commuting
hours in a local urban area. First, the commuting demand of residents calculated by mobile phone
data is used to simulate congestions on the existing urban road network. Then, data backtracking is
used to identify the causes of congestion and to analyze the simulation results. Finally, the results
of simulation are proven to be consistent with the actual traffic conditions. Although the data used
are simplified for the easiness of processing and modeling, the study is still believed to be a positive
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endeavor of combining big data and ABM in an urban study, and it offers a valuable approach to
studying residents’ commuting and urban traffic.

The approach used in the paper has several limitations that merit future consideration: first,
vehicles other than commuter cars, such as buses are not considered. Prospective studies are expected
to incorporate other available data sources and machine learning approaches to further specify modes
of commuter travels and incorporate buses as a major means of transportation. Second, in the present
model’s construction, lanes and traffic flow directions on the roads are not specified. In a congestion
setting, only the density of vehicles in a certain section is considered while the overlapping of vehicles
is neglected. This means that the model cannot sufficiently reflect traffic conditions in reality and also
leads to the fact that the simulation results cannot be analyzed on a finer scale for deduction of the
processes. Prospective studies are expected to further refine the road and traffic systems of the model.

Author Contributions: Conceptualization, Y.Y.; Methodology, L.L.; Validation, H.W. and L.L.; Formal Analysis,
H.J.; Data Curation, Z.P.; Writing—Original Draft Preparation, H.W.; Writing—Review & Editing, Y.Y.; Project
Administration, H.W.; Supervision, Z.P.; Funding Acquisition, H.W. and Q.N.

Funding: The research was funded by the China Postdoctoral Science Foundation (No. 2016M600609), the MOE
Layout Foundation of Humanities and Social Sciences (No. 19YJCZH187); the National Natural Science Fund for
Young Scholars (No. 51708425); the Natural Science Fund of China (No. 51778503); and the National Natural
Science Fund for Young Scholars (No. 51708426).

Acknowledgments: The authors acknowledge the contribution of all the anonymous reviewers that improved
the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Vickrey, W.S. Congestion Theory and Transport Investment. Am. Econ. Rev. 1969, 59, 251–260.
2. Zhou, J.; Murphy, E.; Long, Y. Commuting efficiency in the Beijing metropolitan area: An exploration

combining smartcard and travel survey data. J. Transp. Geogr. 2014, 41, 175–183. [CrossRef]
3. Scott, D.M.; Kanaroglou, P.S.; Anderson, W.P. Impacts of commuting efficiency on congestion and emissions:

Case of the Hamilton CMA, Canada. Transp. Res. Part D Transp. Environ. 1997, 2, 245–257. [CrossRef]
4. Friedman, M.S.; Powell, K.E.; Hutwagner, L.; Graham, L.M.; Teague, W.G. Impact of changes in transportation

and commuting behaviors during the 1996 Summer Olympic Games in Atlanta on air quality and childhood
asthma. Jama J. Am. Med. Assoc. 2001, 285, 897–905. [CrossRef] [PubMed]

5. Brueckner, J.K. Urban Sprawl: Diagnosis and Remedies. Int. Reg. Sci. Rev. 2000, 23, 160–171. [CrossRef]
6. Arnott, R.; De Palma, A.; Lindsey, R. A structural model of peak-period congestion—A traffic bottleneck

with elastic demand. Am. Econ. Rev. 1993, 83, 161–179.
7. Anas, A.; Xu, R. Congestion, land use, and job dispersion: A general equilibrium model. J. Urban Econ. 1999,

45, 451–473. [CrossRef]
8. Gonzales, E.J.; Daganzo, C.F. Morning commute with competing modes and distributed demand: User

equilibrium, system optimum, and pricing. Transp. Res. Part B Methodol. 2012, 46, 1519–1534. [CrossRef]
9. Chatman, D.G. Does TOD Need the T? On the Importance of Factors Other Than Rail Access. J. Am. Plan. Assoc.

2013, 79, 17–31. [CrossRef]
10. Salon, D. Neighborhoods, cars, and commuting in New York City: A discrete choice approach. Transp. Res.

Part A Policy Pract. 2009, 43, 180–196. [CrossRef]
11. Fosgerau, M.; Kim, J.; Ranjan, A. Vickrey meets Alonso: Commute scheduling and congestion in a monocentric

city. J. Urban Econ. 2018, 105, 40–53. [CrossRef]
12. Song, C.M.; Koren, T.; Wang, P.; Barabasi, A.L. Modelling the scaling properties of human mobility. Nat. Phys.

2010, 6, 818–823. [CrossRef]
13. Ratti, C.; Frenchman, D.; Pulselli, R.M.; Williams, S. Mobile Landscapes: Using Location Data from Cell

Phones for Urban Analysis. Environ. Plan. B Plan. Des. 2006, 33, 727–748. [CrossRef]
14. Wesolowski, A.; Eagle, N.; Tatem, A.J.; Smith, D.L.; Noor, A.M.; Snow, R.W.; Buckee, C.O. Quantifying the

Impact of Human Mobility on Malaria. Science 2012, 338, 267–270. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jtrangeo.2014.09.006
http://dx.doi.org/10.1016/S1361-9209(97)00015-1
http://dx.doi.org/10.1001/jama.285.7.897
http://www.ncbi.nlm.nih.gov/pubmed/11180733
http://dx.doi.org/10.1177/016001700761012710
http://dx.doi.org/10.1006/juec.1998.2104
http://dx.doi.org/10.1016/j.trb.2012.07.009
http://dx.doi.org/10.1080/01944363.2013.791008
http://dx.doi.org/10.1016/j.tra.2008.10.002
http://dx.doi.org/10.1016/j.jue.2018.02.003
http://dx.doi.org/10.1038/nphys1760
http://dx.doi.org/10.1068/b32047
http://dx.doi.org/10.1126/science.1223467
http://www.ncbi.nlm.nih.gov/pubmed/23066082


ISPRS Int. J. Geo-Inf. 2019, 8, 313 15 of 16

15. Bengtsson, L.; Lu, X.; Thorson, A.; Garfield, R.; Von Schreeb, J. Improved Response to Disasters and Outbreaks
by Tracking Population Movements with Mobile Phone Network Data: A Post-Earthquake Geospatial Study
in Haiti. PLoS Med. 2011, 8, 8. [CrossRef] [PubMed]

16. Calabrese, F.; Colonna, M.; Lovisolo, P.; Parata, D.; Ratti, C. Real-Time Urban Monitoring Using Cell Phones:
A Case Study in Rome. Ieee Trans. Intell. Transp. Syst. 2011, 12, 141–151. [CrossRef]

17. Aasa, A. Application of mobile phone location data in mapping of commuting patterns and functional
regionalization: A pilot study of Estonia. J. Maps 2013, 9, 10–15.

18. Kung, K.S.; Greco, K.; Sobolevsky, S.; Ratti, C. Exploring Universal Patterns in Human Home-Work
Commuting from Mobile Phone Data. PLoS ONE 2014, 9, e96180. [CrossRef] [PubMed]

19. Tu, W.; Cao, J.; Yue, Y.; Shaw, S.L.; Zhou, M.; Wang, Z.; Chang, X.; Xu, Y.; Li, Q. Coupling mobile phone and
social media data: A new approach to understanding urban functions and diurnal patterns. Int. J. Geogr. Inf.
Sci. 2017, 31, 2331–2358. [CrossRef]

20. Yue, Y.; Zhuang, Y.; Yeh, A.G.; Xie, J.Y.; Ma, C.L.; Li, Q.Q. Measurements of POI-based mixed use and their
relationships with neighbourhood vibrancy. Int. J. Geogr. Inf. Syst. 2017, 31, 658–675. [CrossRef]

21. Doyle, J.; Hung, P.; Farrell, R.; McLoone, S. Population Mobility Dynamics Estimated from Mobile Telephony
Data. J. Urban Technol. 2014, 21, 109–132. [CrossRef]

22. Pei, T.; Sobolevsky, S.; Ratti, C.; Shaw, S.L.; Li, T.; Zhou, C. A new insight into land use classification based on
aggregated mobile phone data. Int. J. Geogr. Inf. Sci. 2014, 28, 1988–2007. [CrossRef]

23. Pei, T.; Sobolevsky, S.; Ratti, C.; Shaw, S.L.; Li, T.; Zhou, C. Development of origin-destination matrices using
mobile phone call data. Transp. Res. Part C Emerg. Technol. 2014, 40, 63–74.

24. Calabrese, G.F.; Lorenzo, D.; Liu, L.; Ratti, C. Estimating origin-destination flows using mobile phone location
data. IEEE Pervasive Comput. 2011, 10, 264–323. [CrossRef]

25. Alexander, L.; Jiang, S.; Murga, M.; González, M.C. Origin–destination trips by purpose and time of day
inferred from mobile phone data. Transp. Res. Part C Emerg. Technol. 2015, 58, 240–250. [CrossRef]

26. Yue, Y.; Lan, T.; Yeh, A.G.; Li, Q.Q. Zooming into individuals to understand the collective: A review of
trajectory-based travel behaviour studies. Travel Behav. Soc. 2014, 1, 69–78. [CrossRef]

27. Çolak, S.; Lima, A.; González, M.C. Understanding congested travel in urban areas. Nat. Commun. 2016, 7,
10793. [CrossRef]

28. Yao, Y.; Hong, Y.; Wu, D.; Zhang, Y.; Guan, Q. Estimating the effects of "community opening" policy on
alleviating traffic congestion in large Chinese cities by integrating ant colony optimization and complex
network analyses. Comput. Environ. Urban Syst. 2018, 70, 163–174. [CrossRef]

29. Nguyen, Q.T.; Bouju, A.; Estraillier, P. Multi-agent Architecture with Space-time Components for the
Simulation of Urban Transportation Systems. Procedia Soc. Behav. Sci. 2012, 54, 365–374. [CrossRef]

30. Doniec, A.; Mandiau, R.; Piechowiak, S.; Espié, S. A behavioral multi-agent model for road traffic simulation.
Eng. Appl. Artif. Intell. 2008, 21, 1443–1454. [CrossRef]

31. Ciari, F.; Balmer, M.; Axhausen, K.W. A new mode choice model for a multi-agent transport simulation.
In Proceedings of the 8th Swiss Transport Research Conference, Ascona, Switzerland, 6–8 October 2008.

32. Knapen, L.; Keren, D.; Cho, S.; Bellemans, T.; Janssens, D.; Wets, G. Analysis of the Co-routing Problem in
Agent-based Carpooling Simulation. In Ant 2012 And Mobiwis 2012; Shakshuki, E., Younas, M., Eds.; Elsevier
Science Bv: Amsterdam, The Netherlands, 2012; pp. 821–826.

33. Kaddoura, I.; Kickhöfer, B.; Neumann, A.; Tirachini, A. Optimal Public Transport Pricing: Towards an
Agent-based Marginal Social Cost Approach. J. Transp. Econ. Policy 2016, 49, 200–218.

34. Dimitrov, S.; Ceder, A.; Chowdhury, S.; Monot, M. Modeling the interaction between buses, passengers and
cars on a bus route using a multi-agent system. Transp. Plan. Technol. 2017, 40, 592–610. [CrossRef]

35. Liu, J.; Kockelman, K.M.; Boesch, P.M.; Ciari, F. Tracking a system of shared autonomous vehicles across the
Austin, Texas network using agent-based simulation. Transportation 2017, 44, 1261–1278. [CrossRef]

36. Lu, M.; Hsu, S.C. Spatial Agent-based model for environmental assessment of passenger transportation.
J. Urban Plan. Dev. 2017, 143, 04017016. [CrossRef]

37. Bellemans, T.; Bothe, S.; Cho, S.; Giannotti, F.; Janssens, D.; Knapen, L.; Körner, C.; May, M.; Nanni, M.;
Pedreschi, D.; et al. An Agent-Based Model to Evaluate Carpooling at Large Manufacturing Plants. In Ant
2012 And Mobiwis 2012; Shakshuki, E., Younas, M., Eds.; Elsevier Science Bv: Amsterdam, The Netherlands,
2012; pp. 1221–1227.

http://dx.doi.org/10.1371/journal.pmed.1001083
http://www.ncbi.nlm.nih.gov/pubmed/21918643
http://dx.doi.org/10.1109/TITS.2010.2074196
http://dx.doi.org/10.1371/journal.pone.0096180
http://www.ncbi.nlm.nih.gov/pubmed/24933264
http://dx.doi.org/10.1080/13658816.2017.1356464
http://dx.doi.org/10.1080/13658816.2016.1220561
http://dx.doi.org/10.1080/10630732.2014.888904
http://dx.doi.org/10.1080/13658816.2014.913794
http://dx.doi.org/10.1109/MPRV.2011.41
http://dx.doi.org/10.1016/j.trc.2015.02.018
http://dx.doi.org/10.1016/j.tbs.2013.12.002
http://dx.doi.org/10.1038/ncomms10793
http://dx.doi.org/10.1016/j.compenvurbsys.2018.03.005
http://dx.doi.org/10.1016/j.sbspro.2012.09.756
http://dx.doi.org/10.1016/j.engappai.2008.04.002
http://dx.doi.org/10.1080/03081060.2017.1314504
http://dx.doi.org/10.1007/s11116-017-9811-1
http://dx.doi.org/10.1061/(ASCE)UP.1943-5444.0000403


ISPRS Int. J. Geo-Inf. 2019, 8, 313 16 of 16

38. Calabrese, F.; Ferrari, L.; Blondel, V.D. Urban Sensing Using Mobile Phone Network Data: A Survey of
Research. Acm Comput. Surv. 2014, 47, 25. [CrossRef]

39. Batty, M.; Axhausen, K.W.; Giannotti, F.; Pozdnoukhov, A.; Bazzani, A.; Wachowicz, M.; Ouzounis, G.;
Portugali, Y. Smart cities of the future. Eur. Phys. J. Spec. Top. 2012, 214, 481–518. [CrossRef]

40. Wu, H.; Liu, L.; Yu, Y.; Peng, Z. Evaluation and Planning of Urban Green Space Distribution Based on Mobile
Phone Data and Two-Step Floating Catchment Area Method. Sustainability 2018, 10, 214. [CrossRef]

41. Song, C.; Qu, Z.; Blumm, N.; Barabási, A.L. Limits of Predictability in Human Mobility. Science 2010, 327,
1018–1021. [CrossRef]

42. Yang, C.; Zhang, Y.; Ukkusuri, S.V.; Zhu, R. Mobility Pattern Identification Based on Mobile Phone Data. In
Transportation Analytics in the Era of Big Data; Ukkusuri, S.V., Yang, C., Eds.; Springer International Publishing:
Basel, Switzerland, 2012; pp. 217–232.

43. Levy, S.; Martens, K.; Van Der Heijden, R. Agent-based models and self-organisation: : Addressing common
criticisms and the role of agent-based modelling in urban planning. Town Plan. Rev. 2016, 87, 321–338.
[CrossRef]

44. Malleson, N. Extending RepastCity. 2012. Available online: https://code.google.com/p/repastcity/wiki/
ExtendingRepastCity3 (accessed on 23 July 2019).

45. Malleson, N. RepastCity-Model Structure. 2012. Available online: https://code.google.com/p/repastcity/wiki/
RC3ModelStructure (accessed on 23 July 2019).

46. Malleson, N. RepastCity-A Demo Virtual City. 2012. Available online: https://code.google.com/p/repastcity/

wiki/RepastCity3 (accessed on 23 July 2019).
47. Kopf, J.; Ishimaru, J.M.; Nee, J.; Hallenbeck, M.E. Central Puget Sound Freeway Network Usage and

Performance, 2003 Update. Highway Traffic Control. 2005. Available online: http://www.highwaytraffic.
com.au/#!/ (accessed on 23 July 2019).

48. Widyantoro, D.H.; Munajat, M.E. Fuzzy traffic congestion model based on speed and density of vehicle.
In Proceedings of the 2014 International Conference of Advanced Informatics: Concept, Theory and
Application, Bandung, Indonesia, 20–21 August 2014.

49. Gaode Map. Traffic Report on Major Cities in China 2017. 2018. Available online: http://cn-hangzhou.oss-
pub.aliyun-inc.com/download-report/download/yearly_report/2017/ (accessed on 23 July 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2655691
http://dx.doi.org/10.1140/epjst/e2012-01703-3
http://dx.doi.org/10.3390/su10010214
http://dx.doi.org/10.1126/science.1177170
http://dx.doi.org/10.3828/tpr.2016.22
https://code.google.com/p/repastcity/wiki/ExtendingRepastCity3
https://code.google.com/p/repastcity/wiki/ExtendingRepastCity3
https://code.google.com/p/repastcity/wiki/RC3ModelStructure
https://code.google.com/p/repastcity/wiki/RC3ModelStructure
https://code.google.com/p/repastcity/wiki/RepastCity3
https://code.google.com/p/repastcity/wiki/RepastCity3
http://www.highwaytraffic.com.au/#!/
http://www.highwaytraffic.com.au/#!/
http://cn-hangzhou.oss-pub.aliyun-inc.com/download-report/download/yearly_report/2017/
http://cn-hangzhou.oss-pub.aliyun-inc.com/download-report/download/yearly_report/2017/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Mobile Phone Data Processing 
	Agent-Based Model 
	Model Hypothesis and Parameter Setting 

	Case Study 
	Data Acquisition and Processing 
	Model Simulation and Result Verification 

	Discussion 
	Conclusions 
	References

