International Journal of

ISPYS Geo-Information MD\Py

Article
Parallelizing Multiple Flow Accumulation Algorithm
using CUDA and OpenACC

Natalija Stojanovic * and Dragan Stojanovic

Faculty of Electronic Engineering, University of Nis, 18000 Nis, Serbia
* Correspondence: natalija.stojanovic@elfak.ni.ac.rs

check for
Received: 29 June 2019; Accepted: 30 August 2019; Published: 3 September 2019 updates

Abstract: Watershed analysis, as a fundamental component of digital terrain analysis, is based
on the Digital Elevation Model (DEM), which is a grid (raster) model of the Earth surface and
topography. Watershed analysis consists of computationally and data intensive computing algorithms
that need to be implemented by leveraging parallel and high-performance computing methods and
techniques. In this paper, the Multiple Flow Direction (MFD) algorithm for watershed analysis is
implemented and evaluated on multi-core Central Processing Units (CPU) and many-core Graphics
Processing Units (GPU), which provides significant improvements in performance and energy
usage. The implementation is based on NVIDIA CUDA (Compute Unified Device Architecture)
implementation for GPU, as well as on OpenACC (Open ACCelerators), a parallel programming
model, and a standard for parallel computing. Both phases of the MFD algorithm (i) iterative DEM
preprocessing and (ii) iterative MFD algorithm, are parallelized and run over multi-core CPU and
GPU. The evaluation of the proposed solutions is performed with respect to the execution time, energy
consumption, and programming effort for algorithm parallelization for different sizes of input data.
An experimental evaluation has shown not only the advantage of using OpenACC programming over
CUDA programming in implementing the watershed analysis on a GPU in terms of performance,
energy consumption, and programming effort, but also significant benefits in implementing it on the
multi-core CPU.

Keywords: watershed analysis; parallel processing; multiple flow accumulation, DEM; CUDA;
OpenACC; GPU

1. Introduction

Geospatial processing and analysis of large amounts of geospatial data in the Geographic
Information System (GIS) represents an application domain that obtains significant benefits from
parallel and high-performance computing [1]. Digital Terrain Analysis (DTA) is one of the fundamental
features of contemporary GISs used in hydrological modeling, soil erosion, flood simulations, landslide
hazard assessment, visibility analysis, telecommunication, and military applications, etc. DTA includes
implementation of various algorithms performed by the digital model of the earth surface and terrain,
most often Digital Elevation Model (DEM), such as watershed analysis, viewshed analysis, terrain
visualization, etc.

Watershed analysis refers to the process of using DEM and iterative operations through raster
(gridded) data to delineate watersheds and to detect watershed features such as streams, stream
network, drainage divides, basin, outlets, etc. The watershed analysis is used in flood control, erosion
detection, and landslide monitoring to provide decision support capabilities.

Watershed analysis consists of several computationally and data intensive tasks (phases) performed
over massive DEM data in an iterative manner. As such, it is suitable for accelerating these tasks
leveraging parallel and high-performance computing (HPC) methods and techniques.

ISPRS Int.]. Geo-Inf. 2019, 8, 386; d0i:10.3390/ijgi8090386 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-3594-1826
https://orcid.org/0000-0003-4893-3814
http://www.mdpi.com/2220-9964/8/9/386?type=check_update&version=1
http://dx.doi.org/10.3390/ijgi8090386
http://www.mdpi.com/journal/ijgi

ISPRS Int. |. Geo-Inf. 2019, 8, 386 20f17

There are several HPC approaches that can be applied to improve the performance of advanced
computationally and data intensive applications, such as the watershed analysis. Such approaches
are based on a parallel computing paradigm applied through multi/many-core computer systems, or
through distributed computing infrastructure, such as a cluster or cloud infrastructure. While multi-core
CPUs are suitable for general-purpose tasks, many-core special purpose processors (Intel Xeon Phi or
GPU), comprising of a larger number of lower frequency cores, have been used in general-purpose
solutions, performing equally well, or even better in scalable applications. The development of a parallel
application and HPC application for such parallel/distributed architectures could be based on various
parallel programming frameworks, including OpenACC, OpenCL (Open Computing Language),
OpenMP (Open Multi-Processing), and NVIDIA CUDA (Compute Unified Device Architecture).
OpenMP is a set of compiler directives, library routines, and environment variables for programming
shared-memory parallel computing systems. Furthermore, OpenMP has been extended to support
programming of heterogeneous systems that contain CPUs and accelerators. General-purpose
computing on a Graphics Processing Unit (GPGPU) represents a new paradigm based on tightly coupled,
massively parallel computing units [2]. It represents a method and a technique for performing general
purpose computations on a GPU by using an appropriate framework, an API, and a programming
model, such as OpenCL, Microsoft’s DirectCompute, and NVIDIA CUDA. OpenCL supports portable
programming for computer architectures provided by various vendors, while CUDA runs only on
NVIDIA Graphics Processing Units (GPU). CUDA combines C/C++ on the host side with C-like
kernels that enable general purpose applications to access massively parallel GPUs for non-graphical
computing. CUDA C/C++ compiler, libraries, and run-time software enable programmers to develop
and accelerate data-intensive applications on GPU. Writing CUDA applications and kernels is a task
that is time-consuming and prone to errors requiring detailed knowledge of the target NVIDIA GPU
architecture and design of kernel maximally tailored for a particular architecture. In order to provide
a parallel programming framework for a large audience and a wide spectrum of multi-core and
many-core architectures, an OpenACC standard and parallel programming model has been developed.

OpenACC is a specification of compiler directives and API routines for writing a parallel code in C,
C++, and FORTRAN. That code can be compiled into different parallel architectures, such as multi-core
CPUs, or many-core parallel accelerators, such as GPUs. In contrast to CUDA where the programmer
is required to explicitly decompose the computation into parallel kernels, when using OpenACC, the
programmer annotates the existing loops and data structures in the code, so that the OpenACC compiler
can target the code to different devices. For NVIDIA GPU devices, the OpenACC compiler generates
the kernels, creates the register and shared memory variables, and applies performance optimization.

In this paper, the focus is on accelerating a sequential watershed analysis algorithm using different
parallel implementations, a native NVIDIA GPU implementation using CUDA, and OpenACC
implementations mapped to both GPU and multi-core CPU. The proposed solutions have been
evaluated with respect to the execution time, energy consumption, and programming effort for
program parallelization for a different size of input DEM data. Experimental evaluation proves
expected improvements in performance of watershed analysis with respect to a single-core CPU-based
solution. It shows feasibility in using CUDA and OpenACC programming frameworks on GPUs and
multi-core CPUs, for digital terrain analysis and similar GIS algorithms. Furthermore, our evaluation
shows better performance of the OpenACC watershed analysis implementation with respect to the
CUDA one, with gains in lower energy consumption and less programming efforts.

The main contributions of this paper are shown below.

e We have developed parallel implementation of all phases and steps of the watershed analysis
using CUDA and OpenACC for NVIDIA GPUs and OpenACC for multi-core CPU.

e We have tested and evaluated OpenACC parallel implementation through several large DEM
datasets both for multi-core CPUs and many-core GPUs, over commodity PC NVIDIA GPU,
as well as high end NVIDIA Tesla K80 available through NVIDIA Docker plugin (nvidia-docker)
through scientific cloud infrastructure.

ISPRS Int. |. Geo-Inf. 2019, 8, 386 30f17

e We have shown that the parallel implementation of OpenACC watershed analysis outperforms
corresponding CUDA implementation for different DEM sizes, while consuming less energy and
requiring less programming efforts.

The rest of the paper is organized as follows. Section 2 provides an overview of the related work
in parallel and HPC implementation in DTA in general and watershed analysis in particular. Section 3
describes algorithms for watershed analysis, requirements, and motivation for their acceleration.
Section 4 describes the parallel implementation of watershed algorithm, using CUDA and OpenACC
programming frameworks and APIs (Application Programming Interfaces). Section 5 presents the
experimental evaluation over multi-core CPU and many-core GPUs for large DEM datasets. Lastly,
Section 6 concludes the paper and gives major directions for future research.

2. Related Work

Many GIS algorithms may benefit from parallel processing of geospatial data, such as:
map-matching, viewshed analysis, watershed analysis, spatial overlay, trajectory analysis, and
more [1]. The recent proliferation of distributed and cloud computing infrastructures and platforms,
both public clouds (e.g., Amazon EC2) and private and hybrid computer clouds and clusters, has
provided a rise in processing and analysis of geospatial data. The parallel GIS algorithms implemented
on clusters of multi-core shared-memory computers, based on frameworks such as MPI (Message
Passing Interface), MapReduce/Hadoop, and Apache Spark, have set this paradigm as an emerging
research and development topic [3].

Zhang [4], Xia et al. [5], and Stojanovic and Stojanovic [6] have considered parallel processing of
geospatial data in a personal computing environment. They argued that modern personal computers,
equipped with multi-core CPUs and many-core GPUs, provide excellent support for parallel and
high-performance processing of spatial data, which is comparable in efficiency and even in performance
to cluster and cloud computing solutions using MPI or a MapReduce framework.

2.1. Remote Sensing and DTA Algorithms Implementation on a GPU

Many interesting and computationally and data-intensive algorithms in remote sensing and digital
terrain analysis, such as flood modeling and simulations, LIDAR (Light Detection and Ranging) data
processing, and watershed analysis have recently become the focus of research community oriented to
parallel computing on many-core GPU architectures [7,8].

Li et al. [9] presented a parallel GPU implementation of map reprojection algorithms for raster
datasets using CUDA. They demonstrated performance improvements over a serial version on a CPU
through a series of tests, and achieved speedup from 10 to 100. Wang et al. [10] proposed a hybrid
parallel spatial interpolation algorithm executed on both the CPU and GPU to increase the performance
of massive LiDAR point clouds processing. Their experimental results have shown that their hybrid
CPU-GPU solution outperforms the CPU-only and GPU-only implementations. Kang et al. [11]
proposed a parallel algorithm implemented with OpenACC to use a GPU to parallelize the reservoir
simulations. The experimental results show that the proposed approach outperform the CPU-based one
while preserving the small programming effort for porting the algorithm to a parallel execution on a GPU.
Garcia-Feal et al. [12] presented a new parallel code in NVIDIA CUDA for two-dimensional (2D) flood
inundation modelling using GPU. The experiments show a significant improvement in computational
efficiency that opens up the possibility of using their solution for real-time forecasting of flood events as
well. Liu et al. [13] proposed parallel OpenACC implementation of the two-dimensional shallow water
model for flood simulation. The results of their experiments demonstrated achievements of up to one
order of magnitude in speedup in comparison with the serial solution. Wu et al. [14] presented a parallel
algorithm for DEM generalization implemented using CUDA applied in multi-scale terrain analysis.
They proposed a parallel-multi-point algorithm for DEM generalization that outperforms other
methods, such as ANUDEM (https://fennerschool.anu.edu.au/research/products/anudem), compound,

https://fennerschool.anu.edu.au/research/products/anudem

ISPRS Int. |. Geo-Inf. 2019, 8, 386 40f17

and maximum z-tolerance method, while reducing the response time by up to 96%. Although not in
focus in this research, OpenCL framework have been used in acceleration of several remote sensing and
digital terrain analysis algorithms on GPU architectures as well [15,16]. OpenCL enables cross-platform
parallel programming on heterogeneous platforms such as GPU, CPU, FPGA (Field-Programmable
Gate Array), and DSP (Digital Signal Processing). Zhu et al. [15] have implemented a Non-Local means
(NLM) denoising algorithm for image processing using OpenMP and OpenCL and conducted the
experiment on CPU, GPU, and MIC (Many Integrated Core) Intel Xeon Phi Coprocessor. They show
that OpenCL-based implementation has better performance on Xeon Phi 7120 than on NVIDIA Kepler
K20M GPU, and slightly better performance than OpenMP-based implementation on Intel Xeon Phi
7120. Huang et al. [16] proposed implementation of a parallel compressive sampling matching pursuit
(CoSaMP) for compressed sensing signal reconstruction using the OpenCL framework. Based on
experiments using remote sensing images, they demonstrated that the proposed parallel OpenCL-based
implementation can achieve significant speedup on heterogeneous platforms (AMD HD7350 and
NVIDIA K20Xm), without modifying the application code. Since OpenCL and CUDA have similar
parallel computing capabilities and expected performance improvements, we have not considered
OpenCL in our implementation and experiments.

2.2. Watershed Analysis Implementation Using CUDA, OpenACC, and OpenCL

Different parallelization techniques and corresponding computer architectures have been
particularly used for accelerating watershed analysis algorithms. Due to the recursive nature of
the watershed algorithms, their parallelization is not a trivial task and it has been the focus of research
for its acceleration through execution on parallel architectures with distributed memory [17-19],
shared memory [20-22], and many-core GPUs [23-28]. Kauffmann and Piche [23] described a cellular
automation to perform the watershed transformation in N-D images. Due to the local nature of
cellular automation algorithms, these algorithms have been designed to execute on massively parallel
processors and, therefore, be efficiently implemented on low cost consumer GPUs. Quesada-Barriuso
et al. [24] showed that an algorithm for watershed analysis based on a cellular automaton is a good
choice for implementing on the most recent GPU architectures, especially when the synchronization
rules are relaxed. They compared the synchronous and asynchronous implementation of the algorithm.
Their results showed high speedups for both implementations, especially for the asynchronous one.

Hucko and Sramek [25] presented a new algorithm for watershed analysis supporting data
larger than the available memory. They modified one of the previous CPU intended algorithms for
execution on a GPU architecture using OpenCL APL Two variants of the algorithm were designed and
implemented. The tests showed no difference in the running time, which indicates that the storage of
intermediate results in multi-pass algorithms consumes the main part of the running time and can be
shortened using the RAID technology. It was shown that it was possible to reduce computational time
of the watershed analysis approximately three times with respect to the original CPU version.

Ortega and Rueda were among the first to propose a GPU implementation of a classic watershed
analysis algorithm [26]. They used CUDA for parallelizing the single-flow direction algorithm. They
used a structure called the flow-transfer matrix to parallelize the D8 algorithm on a GPU. They achieved
up to eight times speedup increase of CUDA-based drainage network computation with respect
to the corresponding single-core implementation. Quin and Yhan [27] used CUDA to parallelize
and accelerate both iterative DEM preprocessing step and a multiple-flow accumulation step of the
watershed algorithm. Eranen et al. [28] implemented all the steps of the drainage network extraction
algorithm on a GPU, for single flow directions, considering the uncertainty in the input digital
elevation model.

Rueda et al. [29] implemented the flow accumulation step of the D8 algorithm in CPU, using
OpenACC and two different CUDA versions, and compared the length and complexity of the
programming code and its performance on different datasets. They concluded that, although OpenACC
cannot match the performance of CUDA optimized implementation (3.5x slower in average), it provides

ISPRS Int. . Geo-Inf. 2019, 8, 386 50f17

a significant performance improvement against the CPU implementation (2—-6x) with a much simpler
parallel code and less implementation effort.

3. Algorithms for Watershed Analysis

Watersheds are catchment areas or drainage basins representing an extent from the land surface
where water from different sources like rain, melting snow, and others, converges to the same point,
called the outlet. Watersheds can be modeled considering a DEM as a grid model, where the cells
represent the elevation of a square surface. Extracting a digital representation of the flow network is an
essential step in the study of watershed delineation, erosion sites, mineral or pollution distribution,
the cost estimation, the design of constructing new roads, the simulation of flood plains in paddy fields,
and more.

The watershed analysis consists of two steps (phases): (1) DEM preprocessing concerning flow
directions over flat areas and depressions in DEMs, and (2) Computation of flow distribution of each
cell to its neighboring cells.

The DEM preprocessing algorithm is used to fill in depressions and remove flat areas existing in
real DEMs. The result of depression filling in the DEM preprocessing phase is illustrated in Figure 1.
The most proposed preprocessing algorithms are based on increasing the elevation of the cells located
in a depression until the sink is filled (Figure 1) and the flow is routed over a flat area to the next lower
cell. In this paper, the DEM preprocessing algorithm proposed in [30] is used.

Figure 1. Depression filling.

The DEM preprocessing algorithm gets elevation raster ZDEM as an input, and generates elevation
raster wDEM as an output, by performing the following.

1. Adding a thick layer of water to each cell of elevation raster zZDEM, except for the boundary cells.
2. Removing excess water since, for each cell, there is a non-increasing path to the boundary with

two operations.
zDEM(c) > wDEM(n) + ¢ = wDEM(c) = zDEM(c) @)

wDEM(c) > wDEM(n) + ¢ = wDEM(c) = wDEM(n) + ¢ 2)

where c represents a current cell on the position (j, j), n represents a boundary cell on the position
(k, 1), and ¢ is a slope of filled depression.

3. Aslong as the removal of the excess water (added in the first step) is possible, processing of the
whole DEM is repeating iteratively in the while loop.

The second step in the watershed analysis represents computation of flow distribution from each
cell to its neighboring cells. Two approaches can be used in this step: (i) Single Flow Direction (SFD)
algorithms, where the flow is always passed to one of the eight neighboring cells, and (ii) Multiple
Flow Direction (MFD) algorithms, where the flow is distributed to multiple neighbors, according to
the predefined rule (Figure 2). In this paper, the MFD algorithm was used, which is better than SFD
from the perspective of the algorithm error.

ISPRS Int. |. Geo-Inf. 2019, 8, 386 6of 17

3 12| 4 3.1 2 | 4
738 7 2 8
! !

T 1|9 711109

@) (b)

Figure 2. (a) Single flow direction. (b) Multiple flow direction.

In the MFD algorithm fraction of water d; from the current cell to the i-th neighboring cell is
calculated by the following expression.

(tan ﬁl‘)p X L;
di= —3 7 ®)
ijl(tanﬁj) X Lj

p = 89xmin(e, 1) + 1.1 e = max { tan B, tanpy, ..., tanPg }

where tan §; represents the slope between the current cell and the i-th cell. The value of L; depends
on the position of the neighboring cell and it is calculated only for a cell whose elevation is less than
the current cell elevation. Its value is 0.354 for diagonal cells and 0.5 for cardinal cells. In most MFD
algorithms, the value of exponent p is equal to 1. There is a slight modification of the MFD algorithm,
named MFD-md, where the value of p depends on terrain conditions, and it is calculated using
Equation (3). Experimental results have shown that MFD-md gives more accurate results compared to
classic MFD and SFD. Therefore, MFD-md was implemented. The MFD-md algorithm consists of two
steps: (i) calculation of flow directions and (ii) calculation of flow accumulations. Calculation of flow
directions is performed according to Equation (3), as shown in Figure 3.

6 6 6 N 2079 I,V

79.3% 79.3%

3.8%

4 4 6 l“"m T7.1% , 22.9%

0.5% 95.7%

1 4 2 Outlet — Outlet

Figure 3. Calculation of flow directions in the MFD-md algorithm [18].

When flow directions are determined in DEM, in the second phase, the flow accumulations are
calculated. In this paper, the Flow-Transfer Matrix (FTM)-based algorithm is used for parallelization of
calculating the flow accumulation, as proposed in [26,27]. This is because its iterative version enables
parallelization in each round of the iterative process. The FTM algorithm represents iterative process
where, in each iteration (round), the flow accumulation for every cell, originated from its neighboring
cells, is calculated. These values are recorded in a flow-transfer matrix, FlowTransfer(i). The iterative
process finishes when the zero flow-transfer matrix is obtained. The final FlowAccumulation matrix is
obtained as the sum of FlowTransfer(i) matrices.

ISPRS Int. |. Geo-Inf. 2019, 8, 386 7 of 17

4. Parallelization of Watershed Analysis

In order to accelerate sequential execution of the watershed algorithm, we have implemented
parallel applications using CUDA and OpenACC frameworks. Watershed analysis algorithm consists
of two phases that can be executed either sequentially, or in parallel: (i) DEM preprocessing and
(ii) computation of flow distribution of each cell to its neighboring cells. In this research, both steps in
achieving a maximum increase in performance are parallelized. Both a CUDA solution for execution on
a GPU and an OpenACC solution for execution on a GPU and a multi-core CPU have been implemented.
The source code and executables for Watershed analysis implementation, as well as experimental DEM
datasets, are available at public GitHub repository listed in Supplementary Materials section at the end
of the paper.

As mentioned in Section 3, the DEM preprocessing algorithm in the first phase consists of two
steps: the water covering step and the water removal step, and parallelization of both steps has been
implemented. wDEM][i][j] > zDEM][i][j]is denoted as U(0). The conditions defined in Equations (1) and (2)
are denoted as U(1) and U(2), respectively. The pseudo code for DEM preprocessing implementation is
given in Figure 4.

1: DEMpreprocessing (zDEM, wDEM, width, height, 0.01)
2 A

3 wDEM=WaterCovering(zDEM)

4. finished=false

S: while (!finished)

6 {

7 finished = true;

8: for each cell [i][j] in DEM (except boundary, in any order)
9: {

10: if U(0) then

11: {

12: for each neighbor [k][1] of cell [i][j] (in any order)
13: {

14: if U(1) then

15: {

16: operation (1); finished = false;

17: }

18: else if U(2) then

19: {

20: operation (2); finished = false;

21: }

22: }

23: }

24 }

25: }

26: }

Figure 4. Pseudo code of the DEM preprocessing algorithm.

Regarding DEM preprocessing algorithm parallelization, we have used the fact that computation
for the current cell is based on values of the neighboring cells that have been updated during the
current iteration. As a consequence, computations in all cells can be performed in parallel during
current iteration. This fact is exploited in both CUDA and OpenACC solutions.

ISPRS Int. |. Geo-Inf. 2019, 8, 386 8 of 17

As the pseudo-code inside double outer for loops (statements 13-22 in Figure 4) can be executed
by single CUDA thread, its implementation can be placed into the appropriate kernel function.
In this case, a double for loop is replaced with a kernel function. When the kernel function is called,
a two-dimensional grid containing as many threads as the number of cells in the DEM is launched
on the GPU. The kernel function is called from the host part of the algorithm (executed on a CPU)
iteratively until none of the cells in DEM change their value during the current iteration of DEM
preprocessing. Part of the host code is shown in Figure 5.

1: while (!finished)

2:

3 finished = true;

4. d_finished « finished;

5: DepressionFillingKernel(dimGrid, dimBlock,

6: d_wDEM,d_zDEM,width, height,epsilon, d_pFinished);
7 finished « d_finished;

8

}

Figure 5. Part of the host pseudo code with the kernel launch.

In the case of OpenACC implementation, the independence of operations in the DEM processing
algorithm is also taken into account. However, the parallelization is done in a different way in order
to optimize execution of an OpenACC implementation. First of all, MFD algorithm is divided into
functions: DEMpreprocessing, GenerateFlowDirections, GenerateFlowFractions, and FlowAccumulation.
Each function contains OpenACC directives for parallel loop processing because there is no dependence
of operations between loop iterations. In addition, it must be ensured that required data is stored in
a GPU memory at the start of each parallel region. Data transfer has to be performed in an optimal way
with respect to time consumption. For example, the input data for DEM preprocessing is zZDEM and it
must be transferred from the host to the device memory (GPU memory) beforehand. Since the DEM
preprocessing function generates wDEM, it is not necessary to copy its values into the device memory.
It is sufficient to allocate GPU memory for it. ZDEM values are needed only during preprocessing,
while wDEM is needed in other model processing functions. Thus, we need to assure that its values
remain in the device memory during further execution of the successive functions.

One solution to the data transfer problem is to perform it once at the beginning of the parallel
region in each of the four functions. In that case, the data transfer will be performed in each function,
which is a time-consuming solution.

A better approach that was applied in this paper is to completely separate the OpenACC data
transfer region and the parallel region. The necessary allocation of the device memory can be made
and the necessary data can be copied from/to the host memory, using one OpenACC region (Figure 6).

#pragma acc data create(WDEM][:size], RMFD[:height][:width], flowFractions[:sizel])

#pragma acc data copyin(zDEM][:size])

#pragma acc data copyout(flowAccumulation]:size])

{
DEMpreprocessing(WDEM, zDEM, width, height, 0.01);
GenerateFlowDirections(WDEM, RMFD, width, height);
GenerateFlowFractions(wDEM, RMFD, flowFractions, cellSize, width, height);
FlowAccumulation(wDEM, flowFractions, flowAccumulation, RMFD, width, height);

Figure 6. OpenACC parallel solution.

ISPRS Int. |. Geo-Inf. 2019, 8, 386 9of17

When calling any function involved in processing of the DEM model, the necessary data (WDEM)
is available in the device memory. However, since each parallel region is out of the “scope” of the region
that controls the parallel processing of data, the compiler cannot conclude that the data processed
in each function has already been stored in the device memory. As a result, the compiler generates
a generic data transfer region in each parallel region. To prevent this, we used additional OpenACC
directives to notify the compiler that the data processed in a parallel region already exists in the device
memory. Therefore, inside the DEM preprocessing function, before parallelization of both the water
covering step and the water removal step, we added the following directive:

#pragma acc data present (WDEM [:size], zZDEM [:size])

to determine compiler data processed in parallel regions that already exist in the device memory.
The same directive has to be used before the parallel region in the GenerateFlowDirections function with
wDEM [:size], RMFD [:height] [:width] as parameters, before the parallel region in GenerateFlowFractions
function with wDEM][:size], RMFD[:height][:width], flowFractions [:sizel] as parameters, and before
the parallel region in FlowAccumulation function with wDEM [:length], flowFractions [:sizel], RMFD
[:height] [:width], flow Accumulation[:length] as parameters.

5. Experimental Evaluation

5.1. Experimental Settings

The proposed implementations have been tested on DEMs of different dimensions to evaluate
efficiency and performance depending on the size of input data. Efficiency has been measured with
respect to execution time, energy consumption, and programming efforts for algorithm parallelization.
The experiment was carried out on the following parallel architectures.

e Intel(R) Core i5-4670K processor running at 3.40GHz, 8GB RAM (Random Access Memory), and
NVIDIA GTX 770 graphic card.

e TeslaK80GPU available on Hasso Plattner Institute (HPI) Future SOC (Service-Oriented Computing)
Lab infrastructure (https://hpi.de/en/research/future-soc-lab-service-oriented-computing). NVIDIA
Tesla K80 Accelerator contains 4992 cores, 24 GB of GDDR5 memory, and 480 GB/s memory
bandwidth, according to the specification. We implemented the Docker image for our Watershed
algorithm implementation and ran a container on Tesla K80 using NVIDIA Docker plugin
(nvidia-docker) and its options.

e Intel® Xeon® Processor E5-2620 v4, with eight physical and 16 logical cores, 128 GB RAM, which
is also available at HPI Future SOC Lab infrastructure.

We have applied the Watershed analysis over DEMs of several dimensions: 1691 x 2877, 2414 x
2912, 2433 x 4152, 3278 x 4277, and 3308 x 5967 to evaluate the scalability of implementation with
the data size increasing. These DEMs represent the models of digital terrain in Alaska displayed in
Figure 7 in the original form, using isohypses and hill shade relief, respectively, downloaded from the
EarthExplorer USGS (United States Geological Survey) service (http://earthexplorer.usgs.gov).

To measure the execution time and the energy consumption for both GPU and CPU, we used the
MeterPU library (https://www.ida.liu.se/labs/pelab/meterpu/). The execution times were measured
in seconds and energy consumption in Joules. We also calculated programming productivity, i.e.,
programming effort for program parallelization Ef f,,r defined as:

LOCP!ZV

Ef fpar = 100+ (4)

where LOCj (Lines of Code total) represents total lines of code and LOC, (Lines of Code parallel) number
of code lines, which are used for code parallelization.

https://hpi.de/en/research/future-soc-lab-service-oriented-computing
http://earthexplorer.usgs.gov
https://www.ida.liu.se/labs/pelab/meterpu/

ISPRS Int. . Geo-Inf. 2019, 8, 386 10 of 17

Figure 7. DEM for evaluation.

5.2. Experimental Results

For the implemented MFD algorithm, we have compared results for sequential (single-core)
program execution, parallel multi-core CPU program execution (parallelized using OpenACC library),
parallel many-core GPU execution (parallelized using OpenACC library), and parallel many-core GPU
execution (parallelized using native CUDA code). The experimental results are shown in Tables 1-4.

According to these experiments, CPU and GPU execution times increases with DEM size,
as expected. In the first dataset, CUDA and OpenACC GPU implementations outperform single-core
CPU implementation by 11.2x and 25.7X%, respectively, and multi-core CPU implementation by 5.4x
and 12.5X%, respectively. In the largest DEM dataset, CUDA and OpenACC GPU implementations
outperform multi-core CPU implementation by 6.2x and 17.2x, respectively, and single-core CPU
implementation by 12.3x and 34.2x, respectively.

Table 1. Experimental results for Single core (sequential) MFD.

Single Core (Sequential) MFD

DEM Size Execution Time (s) Programming Effort for Program Parallelization
1691 x 2827 126.11

2414 x 2912 253.65

2433 x 4152 370.63 0

3278 x 4227 632.03

3308 x 5967 866.43

Table 2. Experimental results for Multicore-OpenACC MFD.

Multi-Core OpenACC MFD

DEM Size Execution Time (s) Programming Effort for Program Parallelization
1691 x 2827 61.33

2414 x 2912 119.65

2433 x 4152 176.91 0.03

3278 x 4227 304.57

3308 x 5967 434.89

ISPRS Int. |. Geo-Inf. 2019, 8, 386 11 0f 17

Table 3. Experimental results for CUDA many-core GPU MFD.

CUDA Many-Core GPU MFD

DEM Size Execution Time (s) Programming Effort for Program Parallelization
1691 x 2827 11.30

2414 x 2912 19.85

2433 x 4152 29.35 0.31

3278 x 4227 48.11

3308 x 5967 70.53

Table 4. Experimental results for OpenACC many-core GPU MFD.

OpenACC Many-Core GPU MFD

DEM Size Execution Time (s) = Programming Effort for Program Parallelization
1691 x 2827 4.89

2414 x 2912 8.35

2433 x 4152 12.57 0.03

3278 x 4227 18.79

3308 x 5967 25.35

For better performance evaluation, we calculated the Speedup (S) to compare the execution time
of parallel implementations of the MFD algorithm (Taie1) to the execution time of sequential MFD
implementation on a single core CPU processor (Tseguentiar):

5 — Tseqential (5)
Tpumllel

Figure 8 shows experimental results for the speedup of the corresponding parallel solution with

respect to the sequential solution for different sizes of input DEM.

g2
©
§. 2 m SC/MC
1
)
SC/CUDA

5 — SC/OpenACC
o | mm - - - -

1691x 2414x 2433x 3278x 3308x
2827 2912 4152 4227 5967

DEM dimension

Figure 8. Speedup for the MFD algorithm.

It can be concluded that all parallel implementations have speedup greater than 1 with respect to
the sequential solution (marked as SC in Figure 8). Thus, OpenACC multi-core implementation (marked
as MC in Figure 8) shows the speedup is, on average, 2.1, CUDA many-core implementation (marked as
CUDA in Figure 8) shows the speedup, on average, is 12.4, and OpenACC many-core implementation

ISPRS Int. |. Geo-Inf. 2019, 8, 386 12 of 17

(marked as OpenACC in Figure 8) shows the speedup, on average, is 30.1. The results in Figure 8
illustrate that OpenACC many-core GPU implementation achieves higher speedup than counterpart
CUDA implementations. The reason is found in the fact that, in the OpenACC implementation, all
phases of DEM processing through to the final result are parallelized: preprocessing, generating
auxiliary matrices (a matrix that stores the direction of the water flow and a matrix that memorizes
the percentage of water swelling in each direction), while, in the CUDA implementation, only the
preprocessing and processing of DEM data are parallelized. In addition, the OpenACC implementation
eliminates unnecessary data transfers between the host and GPU at the beginning of the execution of
each phase, which are performed in the CUDA version. This has a significant impact on the overall
execution time of OpenACC implementation.

Since there are no parallel constructions in the serial implementation, the programming effort for
the serial implementation is zero. There are no instructions for parallel processing (Table 1). Since the
same code was extended with the OpenACC parallel processing directives used to generate multi-core
programs and many-core GPU programs, the value of the programming effort is the same for both,
which is 0.03 (Tables 2 and 4). This value is less than 1%, or less than 1% of the instruction of the entire
code referring to the parallelization of the program. On the other hand, the programming effort for the
original CUDA application is 0.3012 (Table 3), or almost one third of the instructions in the code are
instructions for parallel processing. As is shown, the optimal solution is based on OpenACC applied
on a GPU because it is easy to parallelize to obtain satisfactory results.

In order to measure the execution time and the energy consumption of Watershed analysis, the
MeterPU library is provided for advanced architectures, such as NVIDIA Tesla K80 and Intel® Xeon®
Processor E5-2620 v4 CPU that we used at a Future SOC Lab. The experimental results of the sequential
and parallel CUDA and OpenACC implementations on these architectures are presented in Tables 5-8.
The Speedup achieved for different parallel implementations with respect to the sequential ones is
presented in Table 9 and displayed in Figure 9.

Table 5. Single core-Intel® Xeon® Processor E5-2620 v4.

Single core—Intel® Xeon® Processor E5-2620 v4

DEM Size Execution Time (s) Energy Consumption—CPU (J) Energy Consumption—GPU (J)

1691 x 2827 159.776 12,135.8 4871.3
2414 x 2912 315.515 24,538.2 9619.4
2433 x 4152 459.171 35,769.8 14,007 .4
3278 x 4227 781.827 61,060.6 23,862.2
3308 x 5967 1090.010 85,613.0 33,238.4

Table 6. Multi—core—OpenACC—Inte1® Xeon® Processor E5-2620 vA4.

Multi-core—OpenACC-Intel® Xeon® Processor E5-2620 v4

DEM Size Execution Time (s) Energy Consumption—CPU (J) Energy Consumption—GPU (J)

1691 x 2827 9.5034 1307.65 290.28
2414 x 2912 17.0548 2469.39 519.83
2433 x 4152 37.1679 5228.46 1132.68
3278 x 4227 43.5649 6579.67 1328.08

3308 x 5967 61.8061 9400.93 1883.37

ISPRS Int. . Geo-Inf. 2019, 8, 386

Table 7. OpenACC-Tesla K80.

13 of 17

OpenACC-Tesla K80

DEM Size Execution Time (s) Energy Consumption—CPU (J) Energy Consumption—GPU (J)
1691 x 2827 6.2446 435.93 690.64
2414 x 2912 10.0951 707.68 1147.29
2433 x 4152 14.2851 942.79 1697.09
3278 x 4227 19.8665 1469.80 2442 .86
3308 x 5967 26.8563 1973.31 3359.60

Table 8. CUDA—native-Tesla K80.
CUDA—Native-Tesla K80

DEM Size Execution Time (s) Energy Consumption—CPU (J) Energy Consumption—GPU(J)
1691 x 2827 9.7792 714.52 1099.04
2414 x 2912 16.6563 1196.26 1945.94
2433 x 4152 24.0191 1737.13 2849.46
3278 x 4227 39.0244 2875.51 4789.63
3308 x 5967 55.9863 4104.54 6941.10

Table 9. Speedup (Tesla K80).
Speedup (Tesla K80)
DEM SC/MC SC/CUDA SC/OpenACC
1691 x 2827 16.8125 16.3383 25.5863
2414 x 2912 18.5001 18.9427 31.2543
2433 x 4152 12.3540 19.1169 32.1434
3278 x 4227 17.9463 20.0343 39.3540
3308 x 5967 17.6360 19.4692 40.5868
45
40
35
30
S
§ 22 I d J
3
15
5
0

1691 x 2827 2414 x 2912 2433 x 4152 3278
DEM dimensions

ESC/MC mSC/CUDA mSC/OpenACC

Figure 9. Speedup Tesla K80.

x 4227

3308 x 5967

ISPRS Int. . Geo-Inf. 2019, 8, 386 14 of 17

Based on Tables 5-9 and Figure 9, it can be concluded that Open ACC multi-core CPU implementation
(marked as MC in Figure 9) shows speedup on average 16.6 (maximum 18.5), CUDA many-core GPU
implementation (marked as CUDA in Figure 9) shows speedup on average 18.7 (maximum 20), and
OpenACC many-core GPU implementation shows speedup on average 33.7 (maximum 40.6). These
results show similar behavior to the previous results shown in Figure 8, and they confirm previously
presented conclusions. The obtained results are better with respect to the results shown in Figure 8
because, this time, we used more powerful hardware. The significant difference in Speedup is especially
visible in the case of OpenACC multi-core CPU solution since the Intel Xeon processor is used.

Regarding energy consumption, all parallel solutions consume less total energy (CPU+GPU) than
the corresponding sequential solution. The total energy consumption of multi-core OpenACC solution
is comparable to the CUDA GPU solution. The first one consumes more CPU energy while the second
one consumes more GPU energy (Figures 10 and 11). When comparing GPU-based solutions, OpenACC
implementation consumes almost two times less energy than its CUDA counterpart (Figure 11).

Energy consumption- CPU

90000
80000
70000
60000
50000
40000
30000
20000

10000 ~ =0

Energy consumption (J)

1691 x 2827 2414 x 2912 2433 x 4152 3278 x 4227 3308 x 5967
DEM dimension

=@=SC =@=|\IC OpenACC-GPU CUDA-GPU

Figure 10. Energy consumption CPU-Intel Xeon E5-2620 v4 @ 2.10GHz.

Energy consumption-GPU

25000

10000

Energy consumption (J)
=
vl
o
o
o

0 — — ¢ o

1691 x 2827 2414x2912 2433x4152 3278 x4227 3308 x 5967

DEM dimension

=@=SC =@=\IC OpenACC-GPU CUDA-GPU

Figure 11. Energy consumption GPU-Tesla K80.

ISPRS Int. |. Geo-Inf. 2019, 8, 386 15 of 17

6. Conclusions

Advances in remote sensing, geo-sensor networks, and mobile positioning in recent years, have
provided a generation of massive geospatial data of various formats. This has caused great interest in
processing, analysis, and visualization of Big geospatial and spatio-temporal data, both offline and as
fast data streams in recent years. GPGPU represents a new parallel computing paradigm that provides
significant gains in term of performance improvements in various data intensive applications. This
paper shows that using OpenACC and CUDA parallel programming paradigms can significantly
improve the performance in executing various computation and data intensive GIS algorithms and
that using parallelization and high-performance computing in GIS represents a promising direction for
research and development.

The benefits of parallel processing of geospatial data is confirmed in parallelization of watershed
analysis algorithms and they are evaluated on multi-core CPU and many-core GPU using CUDA and
OpenACC frameworks.

Adaptation of sequential watershed algorithm implementation to many-core GPU requires
significant code transformations and optimizations for CUDA parallel implementation, and that is
why we considered OpenACC for parallel implementation for many-core GPU, but also for multi-core
CPU. OpenACC requires less development effort, lower risk of errors, and better code readability with
respect to the CUDA GPU solution. We have implemented the watershed analysis algorithm that
consists of two computationally intensive and time-consuming phases: (1) iterative DEM preprocessing
and (2) iterative MFD algorithm, which are both suitable for parallelization. Experimental evaluation
indicates improvement in performance with respect to a single-core CPU-based solution and shows
feasibility of using GPU and multicore CPU for watershed analysis. The evaluation of proposed
solutions is performed with respect to execution time, energy consumption, and programming effort
for program parallelization for a different size of input data. The experimental results show benefits of
using the OpenACC framework over CUDA for parallelization of watershed analysis using the MFD
algorithm and, thus, its feasibility for GIS analytic algorithms over Big raster and vector geospatial data.

Supplementary Materials: The following are available online at http://www.mdpi.com/2220-9964/8/9/386/s1.
The source code and executables for Watershed analysis implementation, as well as experimental DEM datasets
are available online at https://github.com/drstojanovic/Watershed Analysis.

Author Contributions: Conceptualization, N.S. and D.S. Methodology, N.S. and D.S. Investigation, N.S. and
D.S. Software, N.S. and D.S. Validation, N.S. and D.S. Formal Analysis, N.S. and D.S. Writing-Original Draft
Preparation, N.S. and D.S. Writing-Review & Editing, N.S. and D.S. Supervision, N.S. and D.S.

Funding: The Ministry of Education, Science and Technological Development, Republic of Serbia, as part of the
project “Environmental Protection and Climate Change Monitoring and Adaptation”, I11-43007, partly funded
this research.

Acknowledgments: The Ministry of Education, Science and Technological Development, Republic of Serbia,
as part of the project “Environmental Protection and Climate Change Monitoring and Adaptation,” I1I-43007
and Research grant for Hasso-Plattner-Institute (HPI) Future SOC Lab cloud computing infrastructure (https:
//hpi.de/en/research/future-soc-lab-service-oriented-computing.html) supported research presented in this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Stojanovic, N.; Stojanovic, D. High-performance computing in GIS: Techniques and applications. Int. |.
Reason. Based Intell. Syst. IJRIS 2013, 5, 42-49. [CrossRef]

2. Kirk, D.; Hwu, WM. Programming Massively Parallel Processors: A Hands-on Approach; Elsevier: Amsterdam,
The Netherlands, 2010.

3. Stojanovic, N.; Stojanovic, D. A hybrid MPI + OpenMP application for processing big trajectory data.
Stud. Inform. Control 2015, 24, 229-236. [CrossRef]

4. Zhang,]. Towards personal high-performance geospatial computing (HPC-G): Perspectives and a case study.
In Proceedings of the ACM SIGSPATIAL—HPDGIS 2010 Workshop, San Jose, CA, USA, 2-5 November 2010;
pp. 3-10. [CrossRef]

http://www.mdpi.com/2220-9964/8/9/386/s1
https://github.com/drstojanovic/WatershedAnalysis
https://hpi.de/en/research/future-soc-lab-service-oriented-computing.html
https://hpi.de/en/research/future-soc-lab-service-oriented-computing.html
http://dx.doi.org/10.1504/IJRIS.2013.055126
http://dx.doi.org/10.24846/v24i2y201511
http://dx.doi.org/10.1145/1869692.1869694

ISPRS Int. |. Geo-Inf. 2019, 8, 386 16 of 17

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Xia, Y; Li, Y.; Shi, X. Parallel viewshed analysis on GPU using CUDA. In Proceedings of the 3rd International
Joint Conference on Computational Science and Optimization, Huangshan, China, 28-31 May 2010; Volume 1,
pp. 373-374. [CrossRef]

Stojanovic, N.; Stojanovic, D. High performance processing and analysis of geospatial data using CUDA on
GPU. Adv. Electr. Comput. Eng. 2014, 14, 109-114. [CrossRef]

Strnad, D. Parallel terrain visibility calculation on the graphics processing unit. Concurr. Comput. Pract. Exp.
2011, 23, 2452-2462. [CrossRef]

Stojanovic, N.; Stojanovic, D. Performance improvement of viewshed analysis using GPU. In Proceedings
of the 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting
Services (TELSIKS), Nis, Serbia, 16-19 October 2013; pp. 397—400. [CrossRef]

Li, J.; Finn, M.P;; Castano, M.B. A lightweight CUDA-based parallel map reprojection method for raster
datasets of continental to global extent. ISPRS Int.]. Geo Inf. 2017, 6, 92. [CrossRef]

Wang, H.; Guan, X.; Wu, H. A hybrid parallel spatial interpolation algorithm for massive LiDAR point clouds
on heterogeneous CPU-GPU systems. ISPRS Int.]. Geo Inf. 2017, 6, 363. [CrossRef]

Kang, Z.; Deng, Z.; Han, W.; Zhang, D. Parallel reservoir simulation with OpenACC and domain
decomposition. Algorithms 2018, 11, 213. [CrossRef]

Garcia-Feal, O.; Gonzélez-Cao, J.; Gomez-Gesteira, M.; Cea, L.; Manuel Dominguez, J.; Formella, A.
An accelerated tool for flood modelling based on Iber. Water 2018, 10, 1459. [CrossRef]

Liu, Q.; Qin, Y.; Li, G. Fast simulation of large-scale floods based on GPU parallel computing. Water 2018,
10, 589. [CrossRef]

Wu, Q.; Chen, Y.; Wilson, J.P; Liu, X; Li, H. An effective parallelization algorithm for DEM generalization
based on CUDA. Environ. Model. Softw. 2019, 114, 64-74. [CrossRef]

Zhu, H.; Wu, Y;; Li, P; Wang, D.; Shi, W.; Zhang, P,; Jiao, L. A parallel Non-Local means denoising algorithm
implementation with OpenMP and OpenCL on Intel Xeon Phi Coprocessor. J. Comput. Sci. 2016, 17, 591-598.
[CrossRef]

Huang, E; Tao, J.; Xiang, Y.; Liu, P; Dong, L.; Wang, L. Parallel compressive sampling matching pursuit
algorithm for compressed sensing signal reconstruction with OpenCL. J. Syst. Archit. 2017, 72, 51-60.
[CrossRef]

Plaza, A.; Plaza, J.; Valencia, D.; Martinez, P. Parallel segmentation of multi-channel images using
multi-dimensional mathematical morphology. In Advances in Image and Video Segmentation; IGI Global:
Hershey, PA, USA, 2006; pp. 270-291. [CrossRef]

Wu, S.; Yingshuai, H. Parallelization research on watershed algorithm. In Proceedings of the International
Conference on Automatic Control and Artificial Intelligence (ACAI), Xiamen, China, 24-26 March 2012;
pp. 1524-1527. [CrossRef]

Swiercz, M.; Iwanowski, M. Fast, parallel watershed algorithm based on path tracing. In Proceedings of
the International Conference on Computer Vision and Graphics, Warsaw, Poland, 20-22 September 2010;
Springer: Berlin, Germany, 2010; pp. 317-324. [CrossRef]

Wagner, B.; Dinges, A.; Miiller, P; Haase, G. Parallel volume image segmentation with watershed
transformation. In Proceedings of the Scandinavian Conference on Image Analysis, Oslo, Norway,
15-18 June 2009; Lecture Notes in Computer Science 5575. Springer: Berlin/Heidelberg, Germany, 2009;
pp. 420-429. [CrossRef]

Mahmoudi, R.; Akil, M. Real-time topological image smoothing on shared memory parallel machines.
In Proceedings of the Real-Time Image and Video Processing, San Francisco, CA, USA, 24-25 January 2011;
Proc.SPIE 7871. p. 787109. [CrossRef]

Van Neerbos, J.; Najman, L.; Wilkinson, M.H.F. Towards a parallel topological watershed: First results.
In Proceedings of the International Symposium on Mathematical Morphology and Its Applications to Signal
and Image Processing, Verbania-Intra, Italy, 6-8 July 2011; Springer: Berlin/Heidelberg, Germany, 2011;
pp. 248-259. [CrossRef]

Kauffmann, C.; Piche, N. Cellular automaton for ultra-fast watershed transform on GPU. In Proceedings of
the 19th International Conference on Pattern Recognition, Tampa, FL, USA, 8-11 December 2008; IEEE: New
York, NY, USA, 2008; pp. 1-4. [CrossRef]

http://dx.doi.org/10.1109/CSO.2010.12
http://dx.doi.org/10.4316/AECE.2014.04017
http://dx.doi.org/10.1002/cpe.1808
http://dx.doi.org/10.1109/TELSKS.2013.6704407
http://dx.doi.org/10.3390/ijgi6040092
http://dx.doi.org/10.3390/ijgi6110363
http://dx.doi.org/10.3390/a11120213
http://dx.doi.org/10.3390/w10101459
http://dx.doi.org/10.3390/w10050589
http://dx.doi.org/10.1016/j.envsoft.2019.01.002
http://dx.doi.org/10.1016/j.jocs.2016.07.001
http://dx.doi.org/10.1016/j.sysarc.2016.07.002
http://dx.doi.org/10.4018/978-1-59904-777-5.ch016
http://dx.doi.org/10.1049/cp.2012.1272
http://dx.doi.org/10.1007/978-3-642-15907-7_39
http://dx.doi.org/10.1007/978-3-642-02230-2_43
http://dx.doi.org/10.1117/12.872275
http://dx.doi.org/10.1007/978-3-642-21569-8_22
http://dx.doi.org/10.1109/ICPR.2008.4761628

ISPRS Int. |. Geo-Inf. 2019, 8, 386 17 of 17

24.

25.

26.

27.

28.

29.

30.

Quesada-Barriuso, P; Heras, D.B.; Argiiello, F. Efficient GPU asynchronous implementation of a watershed
algorithm based on cellular automata. In Proceedings of the 10th IEEE International Symposium on Parallel
and Distributed Processing with Applications, Leganés, Spain, 10-13 July 2012; IEEE: New York, NY, USA,
2012; pp. 79-86. [CrossRef]

Hucko, M.; Sramek, M. Streamed watershed transform on GPU for processing of large volume data.
In Proceedings of the 28th Spring Conference on Computer Graphics, Budmerice, Slovakia, 2—-4 May 2012;
ACM: New York, NY, USA, 2013; pp. 137-141. [CrossRef]

Rueda, L.; Ortega, A.J. Parallel drainage network computation on CUDA. Comput. Geosci. 2010, 36, 171-178.
[CrossRef]

Qin, C.Z.; Zhan, L. Parallelizing flow accumulation calculations on graphics processing units from iterative
DEM preprocessing algorithm to recursive multiple-flow direction algorithm. Comput. Geosci. 2012, 43, 7-16.
[CrossRef]

Erédnen, D.; Oksanen, J.; Westerholm, J.; Sarjakoski, T. A full graphics processing unit implementation of
uncertainty-aware drainage basin delineation. Comput. Geosci. 2014, 73, 48-60. [CrossRef]

Rueda, AJ.; Noguera,] M.; Luque, A. A comparison of native GPU computing versus OpenACC for
implementing flow-routing algorithms in hydrological applications. Comput. Geosci. 2016, 87, 91-100.
[CrossRef]

Planchon, O.; Darboux, F. A fast, simple and versatile algorithm to fill the depressions of digital elevation
models. CATENA 2002, 46, 159-176. [CrossRef]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ISPA.2012.19
http://dx.doi.org/10.1145/2448531.2448549
http://dx.doi.org/10.1016/j.cageo.2009.07.005
http://dx.doi.org/10.1016/j.cageo.2012.02.022
http://dx.doi.org/10.1016/j.cageo.2014.08.012
http://dx.doi.org/10.1016/j.cageo.2015.12.004
http://dx.doi.org/10.1016/S0341-8162(01)00164-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Remote Sensing and DTA Algorithms Implementation on a GPU
	Watershed Analysis Implementation Using CUDA, OpenACC, and OpenCL

	Algorithms for Watershed Analysis
	Parallelization of Watershed Analysis
	Experimental Evaluation
	Experimental Settings
	Experimental Results

	Conclusions
	References

