
 International Journal of

Geo-Information

Review

Review of Big Data and Processing Frameworks for
Disaster Response Applications

Silvino Pedro Cumbane * and Győző Gidófalvi

Division of Geoinformatics, Department of Urban Planning and Environment,
KTH Royal Institute of Technology, Teknikringen 10A, SE-114 28 Stockholm, Sweden
* Correspondence: silvino@kth.se; Tel.: +46-722774293

Received: 31 May 2019; Accepted: 30 August 2019; Published: 3 September 2019
����������
�������

Abstract: Natural hazards result in devastating losses in human life, environmental assets and
personal, and regional and national economies. The availability of different big data such as satellite
imageries, Global Positioning System (GPS) traces, mobile Call Detail Records (CDRs), social media
posts, etc., in conjunction with advances in data analytic techniques (e.g., data mining and big
data processing, machine learning and deep learning) can facilitate the extraction of geospatial
information that is critical for rapid and effective disaster response. However, disaster response
systems development usually requires the integration of data from different sources (streaming data
sources and data sources at rest) with different characteristics and types, which consequently have
different processing needs. Deciding which processing framework to use for a specific big data
to perform a given task is usually a challenge for researchers from the disaster management field.
Therefore, this paper contributes in four aspects. Firstly, potential big data sources are described and
characterized. Secondly, the big data processing frameworks are characterized and grouped based on
the sources of data they handle. Then, a short description of each big data processing framework is
provided and a comparison of processing frameworks in each group is carried out considering the
main aspects such as computing cluster architecture, data flow, data processing model, fault-tolerance,
scalability, latency, back-pressure mechanism, programming languages, and support for machine
learning libraries, which are related to specific processing needs. Finally, a link between big data and
processing frameworks is established, based on the processing provisioning for essential tasks in the
response phase of disaster management.

Keywords: big data; processing frameworks; disaster response

1. Introduction

Disaster response is one of the most challenging phases of disaster management system since it
addresses immediate threats presented by the disaster, including saving lives, meeting humanitarian
needs (food, shelter, clothing, public health and safety), cleanup, damage assessment, task assignments
and resource allocation. Recent study has shown that the amount of atmospheric greenhouse gas
concentrations is increasing [1], and is unlikely to stabilize anytime soon [2]. Consequently, climate
change is bound to continue and will cause severe natural disasters which support the idea that social,
political and economic environment is as much a cause of disasters as the natural environment [3].
Severe natural disasters have been causing human suffering and deaths, massive infrastructures
(e.g., buildings, roads, etc.) damages and negative economic impacts [4]. For instance, in 2015,
earthquakes struck Nepal in April and May, killing just under 9000 people and injuring more than
22,000, with an estimated economic loss of around one-third of gross domestic product [5]. Recently,
cyclone Idai hit at Beira, a low-lying port city in central Mozambique, causing widespread devastation

ISPRS Int. J. Geo-Inf. 2019, 8, 387; doi:10.3390/ijgi8090387 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0001-7218-9082
http://dx.doi.org/10.3390/ijgi8090387
http://www.mdpi.com/journal/ijgi
https://www.mdpi.com/2220-9964/8/9/387?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2019, 8, 387 2 of 23

in southeastern Africa, which included 1006 deaths (603 in Mozambique, 344 in Zimbabwe, and 59 in
Malawi), around 239,700 houses destroyed, and around 1.77 million acres of crops destroyed [6].

The main characteristics of natural hazards are complexity, unpredictability, and availability of
limited resources in impacted areas [7]. The complexity is associated with the tasks that have to be
carried out in each phase of disaster management, namely:

• mitigation (e.g., risk identification, analysis, public awareness and education, etc.);
• preparedness (e.g., emergency planning, training, early warning systems, etc.);
• response (e.g., searching, rescue operations, etc.); and
• recovery (e.g., rehabilitation and reconstruction).

The unpredictability of natural hazards is associated with the challenge of accurately predicting,
for example, the severity of impacts of a disaster on people and infrastructures (for the response
and recovery purposes), and the path of the hurricane (e.g., for evacuation before the disaster) [8].
The limited availability of resources brings the challenge on how to optimize the resources (human
and material) allocation to minimize the impact of a disaster on people and their assets (during the
mitigation and preparedness phases), as well as to reduce the number of deaths (during the response
phase) [7].

Moreover, to minimize the impacts of disaster on people, an efficient and real-time disaster
response system is needed. However, building such system is still challenging due to: (1) the variety of
data that have to be integrated into the methods and models; and (2) the lack of reliable, scalable and
interactive platform to increase the performance of disaster management systems [9]. In addition to
that, choosing the “right” available big data framework for an application is also a big challenge [10].

Some systematic literature review studies on the application of big data for disaster management
have been conducted. For instance, Selamat [11] discussed the usage of big data for disaster management,
based on nine case studies, focusing on understanding the disaster management phases (prevention,
preparedness, response, and recovery). From the analysis, the author concluded that big data are mainly
used during the response phase. Arslan et al. [12], in addition to the disaster phases, considered the
disaster type (floods, earthquakes, fire, hurricanes, and smog), data used (geoinformatics and sensor
data, seismic intensity data, gas sensor data, Global Positioning System (GPS) traces, social media data,
temperature data, population distribution data, video and socio-economic data), and key technologies
used (Geographical Information Systems (GIS), cloud server, Mysql databases, NoSQL databases,
Hadoop, ZigBee, Hive, Storm, and semantic networks) in each of twelve cases studies. Arslan et al. [12]
found that there is a variety of big data available for each phase of disaster management and that
linking different datasets with different kind of disasters is a big challenge. Recently, Yu et al. [13]
presented a systematic literature review based on 149 selected articles from 101 journal articles. From
this literature review, the authors established the link between disasters management phases, big data
and disasters types.

However, there is no study that clearly shows the link between big data used for disaster management
and processing frameworks. Therefore, this paper presents a systematic literature review on big data for
disaster management, processing frameworks and establish a link between big data and processing
frameworks, focusing on response phase of disaster management. This paper aims to support the
disaster response authorities, mainly the data processors teams.

The remainder of the paper is organized as follows. Section 2 presents and discusses big data for
disaster management. Section 3 presents and discusses the different big data processing frameworks
and summarizes the main differences and similarities between the most popular approaches. Section 4
presents the link between big data and processing framework for disaster response. Finally, Section 5
concludes and presents future directions.



ISPRS Int. J. Geo-Inf. 2019, 8, 387 3 of 23

2. Big Data for Disaster Management

This section first describes the concept of disaster management, followed by a description of big
data used for disaster management.

2.1. Disaster Management

Disaster management is defined as the coordination and integration of all activities necessary to
build, sustain and improve the capabilities to prepare for, respond to, recover from, or militate against
a disasters [14]. Essentially, it deals with the management of resources and information towards a
disastrous event and is measured by how efficiently, effectively and seamlessly one coordinates these
resources [15]. Therefore, the disaster management cycle comprises four phases divided into two
groups, namely risk management (mitigation and preparedness) and crisis management (response
and recovery) [12]. Mitigation phase is designed to reduce or eliminate risk, preparedness deals
with planning the response to a disaster, response aims at maintaining or reestablishing public safety,
and recovery consists on restoring the living conditions in the affected areas. To achieve the goals of
each phase, specifics associated activities have to be carried out, for instance, mitigation consists in
risk identification, analysis, and appraisal, and risk reduction by means of spatial planning, technical
measures, and public awareness and education; preparedness focuses on emergency planning and
training and installation and operation of monitoring, forecasting, and early warning systems; response
consists of searching and rescue operations, and measures to provide for the basic humanitarian needs
of the affected population; and recovery focuses on rapid damage assessment as well as rehabilitation
and reconstruction [16]. Figure 1 presents disaster management phases and the activities associated
with each phase.

Activities
monitoring
forecasting

early warning

PREPAREDNESS

Disaster Management Cycle

Activities
damage assessment

rehabilitation
reconstruction

RECOVERY

Activities
risk identification

risk analysis
risk appraisal

public awareness
public education

M
IT

IG
A

T
IO

N Activities
searching

rescue
measures

R
ESPO

N
SE

Disaster

Figure 1. Disaster management cycle and associated activities from [16].



ISPRS Int. J. Geo-Inf. 2019, 8, 387 4 of 23

2.2. Disaster Response

Disaster response phase is mainly composed of two sub-phases, namely damage assessment
and post-disaster coordination and response. Damage assessment consists of evaluating the affected
areas to provide accurate information about the intensity of the damage which is crucial to guide the
prioritization process of disaster responders. Post-disaster coordination and response consist of search
and rescue operations. However, in many cases, some questions/challenges arise when it comes to
addressing this phase: How can you quickly and effectively conduct the damage assessment, search,
and rescue operations with limited resources? The answer to this question can be for instance using
big data analytics since they provide possible solutions to understand the situations in disaster areas.
However, these big data (e.g., satellite images, call detail records (CDR), crowdsourcing and social
media) come from different sources (streaming data sources and data sources at rest), have different
characteristics (spatial and non-spatial data), and different complexities. In addition, since some of
these data are streams and have peaks (CDR) while others are even in distribution, the computation or
processing framework that one wants to perform on these data sources are also different, e.g., some of
them are continuous, likely window-based, simpler, stream computation while others might be acting
on a dataset and are rather procedural and complex (e.g., task assignment/optimization). Moreover,
some of the computations will nicely fit a Map-Reduce (MR) paradigm, while others (probably the
optimization techniques) might need iteration/looping which MR is not inherently designed for.
Figure 2 summarizes the questions/challenges that need to be answered to effectively address the
disaster response.

Natural Disaster (ND)
response challenges

Information required to
address ND response

Computation needs
(Big data proc. fram)

Operational tasks

- Which kind of tasks have to be performed?
- What are the data sources?
- What are the computation requirements?

- Resource allocation, resource optmization,
task assignment (assessment of disaster damage,
search and rescue operations)

- Spatial or/and non-spatial data?
- Stream or/and Batch ingestion?

- Batch processing framework
- Stream processing framework
- Hybrid processing framework
- Hadoop-based spatial data processing framework
- Spark-based spatial data processing framework

Figure 2. Disaster response questions or challenges.

To address these questions and challenges, description of big data used for disaster response to
extract spatial and non-spatial information (e.g., affected areas, infrastructure damage assessment,
people mobility, etc.) which are important for operational task assignment (e.g., resource allocation,
saving lives, meeting humanitarian needs) and existing processing frameworks are presented below.



ISPRS Int. J. Geo-Inf. 2019, 8, 387 5 of 23

2.3. Big Data and Disaster Response

There is no standard definition of big data for disaster management [13] and consequently
for disaster response. Generally, big data refers to large sets of complex data, both structured and
unstructured which traditional processing techniques and/or algorithms are unable to operate on [17],
i.e., the term “big data” is applied to datasets whose size is beyond the ability of commonly used
software tools to capture, manage and process the data within a tolerable elapsed time [18]. The concept
of big data is usually associated with three defining properties or dimensions, namely volume, velocity
and variety well known as 3Vs ([19], Chapter 1). In addition to these three features, there are two
characteristics: value, and veracity [20,21]. In other words, “big data represents the Information
assets characterized by such a High Volume, Velocity and Variety to require specific Technology and
Analytical Methods for its transformation into Value” [22]. Volume is related to overall data size,
which goes from Gigabytes, Terabytes to Petabytes. Velocity refers to the pace of data being generated.
Variety refers to different varieties of data formats being generated. Value highlights the economical
outcome coming from data processing. Veracity refers to the quality and accuracy of data.

Satellite imagery, synthetic aperture radar (SAR), Wireless Sensor Web and Internet of Things
(IoT), spatial data, crowdsourcing, social media records, and GPS traces and mobile Call Detail Record
(CDRs), simulation, aerial imagery and video from Unnamed Aerial Vehicles (UAVs), airborne and
terrestrial Light Detection and Ranging (LiDAR) have been reported as the major big data sources for
disaster response [13], which are described next.

2.3.1. Satellite Imagery

Satellite imagery are images of the Earth collected by imaging satellite that can be used
for post-disaster damage assessing through change detection [23], and disaster risk reduction,
which includes landslide risk reduction [24], human settlement identification [25], and flood risk
assessment [26]. These data are usually collected by passive sensors (sensors that measure reflected
sunlight emitted from the sun). However, these sensors have limitations to capture the reflectance of
Earth surface objects in cloud cover, rain conditions, and at nighttime. To overcome such limitations,
active sensors such as the SAR can be effectively used to enlarge its observational capability during a
natural disaster.

2.3.2. Wireless Sensor Web and Internet of Things (IoT)

Wireless Sensor Web is a group of dispersed and dedicated sensors that collect different kind of
data such as temperature, humidity, wind, etc. These can be used to develop an early warning system
for natural disasters [27] and to facilitate the communication between the affected population and
rescue teams when traditional communication methods fail [28]. IoT-enabled devices such as Grillo
(which means “cricket” in Spanish, is an earthquake alarming sensor network), Brinco (notification
system for earthquake and tsunami), and BRCK (communication system under low connectivity areas)
have been proposed as an alternative solution mainly in cases when there is a poor communication
infrastructure in affected areas [29,30].

2.3.3. Crowdsourcing and Social Media

Crowdsourcing and social media are platforms contributed by the public. Therefore, while the
public contributing in crowdsourcing platform are aware of it, contributors through social media are
passive, which means that they are not aware of their contribution [31]. Moreover, while crowdsourcing
platforms aim to improve disaster response and resource allocation based on real-time reports from
affected people, social media are used to determine public sentiment and reaction to a disaster [13].



ISPRS Int. J. Geo-Inf. 2019, 8, 387 6 of 23

2.3.4. GPS Traces and Mobile Call Detail Record (CDRs)

GPS traces and mobile CDRs data have been used for different purposes in natural hazards
management. Kafi and Gibril [32] reviewed applications of GPS trace data for different disasters,
such as landslide monitoring (for monitoring of gradual changes in distance, height difference
and coordinates of station within the area under study), tsunami monitoring (for building damage
assessment), earthquake management (to monitor inter-seismic ground deformation and co-seismic
displacement), forest fire (used to map fire perimeter and georeference the location and number of
each damaged or destroyed structure), flood management (used together with remote sensing data
and Geographic Information Systems for flood assessment, including the integration of inventory
mapping, location of surface structures and roughness providing information on flow emplacement
parameters). GPS trace data were also used to extract the behavior and mobility patterns after the
occurrence of the Great East Japan Earthquake and Fukushima nuclear accident [33]. The authors
found that people’s mobility is impacted by intensity of disaster, the extent of damage, availability
of government shelters, etc. In addition, they found that people’s mobility and behavior after a large
disaster sometimes is correlated with their mobility pattern during normal days.

Pastor-Escuredo et al. [34] investigated the viability of using mobile CDRs data combined with
other sources of information to characterize the floods that occurred in Tabasco, Mexico in 2009. Using
the variations in the number of active phones connected to each cell tower, the authors extracted the
activity patterns in the most affected locations during and after the floods, which determined the
signatures of the floods—in terms of both infrastructure impact assessment and population information
awareness. In addition, mobile CDRs data were used to assess population displacement after 2015
Nepal Earthquake [35]. Using these data, it was possible to extract population mobility patterns after
the earthquake and the patterns of return to affected areas, at a high level of detail.

2.3.5. Simulation

Modeling and simulation tools have been developed for disaster management with a focus on
the response phase. For instance, Jain and McLean [36] proposed a framework for the integration
of modeling, simulation, and visualization tools for emergency response. The goal of the proposed
framework was to provide the whole picture of disaster to planners, trainers, and responders. Another
study on simulation tools for disaster response was conducted by Massaguer et al. [37]. In this study, the
authors proposed an augmented reality simulation environment for testing the effectiveness of IT solutions
for disaster response using multi-agent simulation (modeling each person involved as an agent). In recent
years, Dou et al. [38] proposed an agent-based framework for human rescue operations in landslide
disaster events to evaluate the contingency plan. The proposed framework uses high-resolution remote
sensing images, simulates a landslide environment based on a three-dimensional landslide geological
model, and uses a multi-agent simulation approach to provide individuals’ behavior simulation under
dynamic disaster scenarios.

2.3.6. Unnamed Aerial Vehicles (UAVs), Drones and LiDAR

UAVs and drones provide high-resolution images and videos that can be applied to flood
monitoring, fire detection, including intervention monitoring and also for post-fire monitoring,
earthquakes rapid mapping and spread of hazardous materials and nuclear accidents [39]. Many
sensors such as weather sensor, cameras, videos, infrared and ultraviolet sensor, among others,
can be embedded in an UAV or drone and data-driven from these sensors can be used for real-time
decision making about evacuation routes, damage assessment and transport logistics ([40], Chapter 1).
In addition to that, LiDAR is a remote sensing based data acquisition method that can be used to
generate detailed maps of topography and digital elevation models necessary for flood modeling and
vulnerability and risks analysis. LiDAR can be applied for disaster monitoring, which includes flood
prediction and assessment, monitoring of the growth of volcanoes and assistance in the prediction of



ISPRS Int. J. Geo-Inf. 2019, 8, 387 7 of 23

eruption, assessment of crustal elevation changes due to earthquakes, and monitoring of structural
damage after earthquakes [41].

LiDAR technology provides the geospatial community with massive amounts of data for use
in a variety of applications. As data collection continues, some challenges such as how to decrease
data transmission, storage and processing requirements arise [18]. This description and challenges fit
with other data sources such as satellite imagery, SAR, aerial imagery and video from UAVs, Wireless
Sensor Web and IoT, simulation, crowdsourcing, social media records, and GPS traces and CDRs.
In addition, LiDAR fits with big data description [18]. Therefore, satellite imagery, SAR, aerial imagery
and video from UAVs, Wireless Sensor Web and IoT, simulation, crowdsourcing, social media records,
and GPS traces and CDRs also fit with LiDAR description and, hence, with big data. Table 1 shows
some examples of applications of big data for disaster response.

Table 1. Example of big data applications for disaster response [13].

Disaster Management Sub-Phase Data Source Application Fields

Damage Assessment
Satellite imagery, UAV and drones,
social media, Wireless Sensor Web
(WSW) and IoT, crowdsourcing

Earthquake, flood, typhoon,
hurricane

Post-Disaster Coordination and
Response

Social media, satellite imagery,
WSW and IoT, UAV, crowdsourcing,
simulation, LiDAR, GPS and CDRs,
and combination of various
data types

General natural disaster, flood
and earthquake

3. Big Data Processing Frameworks

This section is divided into two parts. Section 3.1 describes and compares the most popular big
data processing frameworks. Section 3.2 presents and compares the processing frameworks used to
manipulate big spatial data.

3.1. Popular Big Data Processing Frameworks

Many review papers that compare the most popular big data processing frameworks have been
presented [42–45]. However, almost all compare processing frameworks without categorizing them
according to the data sources that are designed to operate on them (batch, stream or hybrid). The study
conducted by Gurusamy et al. [46] grouped the most popular big data processing frameworks
into three clusters (batch-only, stream-only and hybrid) based on the state of the data they are
designed to handle. However, this study does not explicitly present the aspects considered for the
comparison of frameworks from the same group. Therefore, this paper uses the approach presented
by Gurusamy et al. [46] to group the processing frameworks. Then, a summarized description of
each processing framework is presented. Finally, a comparison of frameworks belonging to the same
group is carried out considering the main aspects such as computing cluster architecture, data flow,
data processing model, fault-tolerance, scalability, latency, back-pressure mechanism, programming
languages, and support for machine learning libraries which are related to specific processing needs.

3.1.1. Batch Processing Frameworks

The term batch is often used to designate window of data i.e., a collection of data that have
been grouped together within a specific time interval. Batch processing framework requires a set of
data collected over time and all the data needed for the batch to be loaded to some type of storage,
a database or file system to then be processed. Batch processing is often used when dealing with large
volumes of data [47].

The most popular open-source batch processing framework today is Hadoop. It was proposed
by Google and comes with MapReduce as its default engine [48]. Hadoop is composed of several



ISPRS Int. J. Geo-Inf. 2019, 8, 387 8 of 23

components that work together to process batch data, namely Hadoop Distributed File System (HDFS),
Yet Another Resource Negotiator (YARN) and MapReduce [46].

HDFS is designed to store very large data sets reliably [49] and to ensure that the data remains
available despite inevitable host failures [46]. It is also used as a source of data and to store intermediate
processing results and make it available for the final computation. HDFS is composed of two
architecture, namely master (NameNode) and slave (DataNode) [50]. The NameNode handles the
responsibility of managing the namespace of the file system and governs the access by clients to files.
The namespace records the creation, deletion and modification of files by users. NameNode maps data
blocks to DataNodes and manages file system operations such as opening, closing and renaming of
files and directories. Through the directions of NameNode, the DataNodes performs operations on
blocks of data such as creation, deletion and replication.

YARN is a cluster which coordinates the components of Hadoop framework. The basic idea
behind YARN is to split up the two major functionalities of the JobTracker, resource management and
job scheduling into separate daemons [50].

MapReduce consists of two functions, namely map and reduce. The beauty of Hadoop MapReduce
is that users usually only have to define the map and reduce functions. The framework takes care of
everything else such as parallelization and failover. The Hadoop MapReduce framework utilizes a
distributed file system to read and write its data. Typically, Hadoop MapReduce uses HDFS to store
data and YARN to manage the resources and schedule the job [48], and its overall architecture can be
found on [50].

3.1.2. Stream Processing Frameworks

Streaming processing deals with continuous data and is key to turning big data into fast data.
It requires data to be fed into an analytics tool, often in micro-batches, and in real-time [47].

There is a considerable number of stream processing frameworks such as S4 [51] and more
recent systems such as MillWheel [52], and Photon [53]. However, the most popular big data stream
processing frameworks are Apache Storm and Apache Samza [46].

Apache Storm

Storm is an open source framework for processing big data in real time built by Twitter. It is
designed to be scalable, resilient, extensible, efficient and easy to administrate [54]. The main goal
beyond the design is to avoid loss of a message due to node failures and to guarantee at-least-once
processing [55].

The basic architecture of Storm consists of streams of tuples flowing through topologies which
works by orchestrating DAGs (Directed Acyclic Graphs) where the vertices represent computation and
the edges represent the data flow between the computation components. These topologies describe
the various transformations or steps that will be taken on each incoming piece of data as it enters the
system. According to Gurusamy et al. [46], the topologies are composed of streams, spouts, and bolts.
Streams are conventional data streams, responsible for unbounded data that are continuously arriving
at the system. Spouts are sources of data streams at the edge of the topology. These can be APIs,
queues, etc. that produce data to be operated on. Bolts represent a processing steps that consumes
streams, applies an operation to them, and outputs the result as a stream. Bolts are connected to each
of the spouts and then connect to each other to arrange all of the necessary processing. At the end of
the topology, the final bolt output may be used as an input for a connected system. To perform the
processing task, Storm distributes bolts across multiple nodes to process the data in parallel.

Storm is based on two daemons called Nimbus (in master node) and a supervisor for each slave
node. Nimbus keeps track of the progress of the worker nodes, supervises the slave nodes and assigns
tasks to them. If it detects a node failure in the cluster, it reassigns the task to another node. Each
supervisor controls the execution of its tasks (affected by the nimbus). It can stop or start spouts
following the instructions of Nimbus. The coordination between supervisor nodes and the Nimbus



ISPRS Int. J. Geo-Inf. 2019, 8, 387 9 of 23

happens through the ZooKeeper. Each topology submitted to Storm cluster is divided into several
tasks [56].

Topologies can be created using a high-level abstraction query model called Trident. This model
provides high-level operators such as filters, joins, grouping, aggregations and functions [55].
In contrast to Storm, Trident API provides a stronger ordering guarantee, exactly-once processing
semantics, works in micro-batches and introduces batch size as a parameter to increase throughput at
the cost of latency. However, their topologies are not suitable for implementing iterative algorithms since
they are directed acyclic graphs (DAGs) [57]. The architecture of Storm Trident can be found on [57].

Apache Samza

Apache Samza is an open source distributed processing framework developed by LinkedIn. This
processing framework was created to solve various kinds of stream processing requirements such
as efficient use of resources and at scale, handle failures gracefully, and scalability [58]. It provides
at-least-once processing semantics and once-at-a-time processing model [57]. It uses Apache Kafka to
provide fault tolerance, buffering and state storage [46], and Hadoop YARN for distributed resource
allocation and scheduling [56]. The concept behind Kafka when dealing with data is based on five
components, namely: Producer, Topics, Consumer, Partitions, and Brokers [46]. Producer write
a topic to Kafka system. Topic is each stream of data entering the Kafka system that carry a key.
The topic is read by a Consumer which is responsible for maintaining their own offset to be used
in case a failure occurs. The incoming data/topic is divided into Partitions among the nodes based
on key. Each node that makes up a Kafka cluster is called Brokers. Samza is based on three layers.
The first one uses Apache Kafka to transmit the data flow. The second layer uses the YARN resource
manager to handle the distributed execution of Samza processing and to manage CPU and memory
usage across a multi-tenant cluster of machines. The processing capabilities are available in the third
layer, which represents the Samza core and provides API for creating and running stream tasks in
the cluster [56]. The architecture of Samza can be found on [57]. Differently from Storm, Samza does
not need a back-pressure algorithm, it uses buffering data between processing steps, which makes
intermediate results available to unrelated parties, for instance, other teams in the company [57].

Comparative Analysis between Storm, Storm Trident and Samza: Main Differences and Similarities

This section highlights the main differences and similarities between Storm, Trident and Samza
in order to help in decision making about which streaming processing framework based on cluster
architecture, data flow, data processing model, fault-tolerance, latency, scalability, back-pressure
mechanism, programming languages, and support for machine learning libraries.

Computing Cluster Architecture

Storm and Storm Trident use Nimbus (Storm Master) for scheduling and monitoring tasks,
Zookeeper for handling the coordination of tasks and JVM runs spouts and bolts as a task for each
work. However, Samza lies on Kafka and Hadoop YARN to supervise one or more containers.

Data Flow

Storm uses a data pipeline called topology which consists of a directed graph where the nodes that
ingest data and initiate the data flow are called spouts. Spouts emit tuples to downstream nodes called
bolts. The bolts apply operations to tuples, and output is saved in external storage, and tuples are sent
to further downstream bolts, and so on until the final output. However, Storm Trident Topologies
(STT) are based on directed acyclic graphs (DAGs) since there is not support to cycles. Therefore, STT
are less suitable for iterative algorithms. In addition, STT are not tuple-based data processing but
micro-batch, which introduce a new parameter called batch size to increase the throughput. Samza
lies on Kafka queuing system and messages entering the system is partitioned. Messages in the same
partition are ordered, and there is no order guarantee for messages in different partitions. Differently



ISPRS Int. J. Geo-Inf. 2019, 8, 387 10 of 23

from what happens with Storm where the tuples are sent directly from one bolt to further downstream
bolts, Samza output is written to Kafka. For further processing, Samza job may get the output of
previous from Kafka as its input, and so on until the final output which is also written in Kafka.

Data Processing

Storm and Samza do provide at-least-once processing semantics. However, Storm does not give
any guarantee on which order tuples will be processed while Samza offers sequential processing for
messages in the same partition. However, Storm Trident provides exactly-once processing semantics
and by default, batches are processed in sequence but it is possible to configure the parallel processing.

Fault-Tolerance

Recent Storm versions (≥ 1.0.0) are fault-tolerant, i.e., provide state implementations that can
recover from Supervisor’s failure. If a bolt involved in processing does not acknowledge successful
processing or if it explicitly signs a failure, Nimbus will take action to fix the problem. Storm Trident
uses Storm’s acknowledge feature to guarantee that each tuple is processed only once in the persistent
state by maintaining additional information side state and by applying transactional updates [57].
Samza persists state in a local database and replicates state updates to Kafka. It uses periodical
checking-points and reprocesses all data from a point ahead in case of failure registration.

Latency

In Storm, the topologies do not display end-to-end latency below 50 ms due to garbage
collection and network latency impact ([59], Chapter 7). Even with the introduction of batch size,
the periodic garbage collection that is triggered automatically may still have a negative impact of
several milliseconds for small batches [60], therefore Storm Trident is a good choice for near real-time
processing [46]. Even though persistence hop in single Kafka may only delay a message by milliseconds,
complex analytics adds latency, which can be higher than compared to Storm implementations [57].

Scalability

To achieve scalability, Storm by default allows groupings that control data flow between nodes.
The grouping consists of hash-partitioning or shuffling or arbitrary user-defined grouping of a stream
of tuples by specific attribute value. Storm Trident allows user configuration for multiple batches
processing in parallel. In Samza, scalability is achieved by running a Samza job in several parallel
tasks, each of which consumes a separate Kafta partition and by avoiding the dynamic increase of the
number of tasks during the runtime.

Back-pressure Mechanism

Storm version greater than 1.0.0 and Storm Trident have a back-pressure mechanism that controls
the data flow and stops data ingestion when data are ingested faster than the processing capacity [57].
On the other hand, the use of Kafka and the possibility of buffering data between processing steps
eliminate the need for a back-pressure algorithm for Samza.

Programming Languages

Storm and Storm Trident have a Java programming language based API that has adapters for
numerous languages such as Python, Perl, and Ruby. However, Samza supports JVM languages,
particularly Java.

Support for Machine Learning

Neither Storm nor Samza has a native machine learning library. However, these streaming
processing frameworks support multi-language and user can use ML libraries available in the language



ISPRS Int. J. Geo-Inf. 2019, 8, 387 11 of 23

of your his/her choice. Both streaming processing frameworks are compatible with SAMOA API, which is
a distributed streaming ML framework that contains a programming abstraction for distributed streaming
ML algorithms [56]. However, Storm Trident has native ML library (Trident-ML) [61].

For better understanding, Table 2 summarizes the main differences and similarities among stream
processing frameworks (Storm, Storm Trident and Samza).

Table 2. Comparison of stream processing frameworks.

Framework Storm Trident Samza

Computing cluster
architecture Nimbus Nimbus Hadoop YARN and Kafka

Data Flow
cyclic graph (stream -
spout - bolt - bolt ...
output)

directed acyclic graphs
(DAGs) Kafka - Kafka job - Kafka

Data Processing
Model at-least-once exactly-once at-least-once

Fault-Tolerance Yes Yes Yes

Latency several milliseconds several milliseconds for
small batches several milliseconds

Scalability Yes User defined parallel
processing Yes

Back-pressure
mechanism Yes Yes No (uses buffering)

Programming
Languages

Java API with adapters
for Python, Ruby and
Perl

Java API with adapters
for Python, Ruby and
Perl

Mostly uses Java

Support for
Machine Learning

compatible with SAMOA
API Trident-ML compatible with SAMOA

API

3.1.3. Hybrid Processing Frameworks

While some projects require one kind of processing frameworks, others may require both batch
and stream workloads. In these cases, the usage of hybrid processing frameworks comes to action.
The most popular hybrid processing frameworks are Apache Spark and Apache Flink.

Apache Spark

Apache Spark is hybrid processing framework built using similar principles of Hadoop’s
MapReduce engine with main goal of processing optimization by speeding up the batch processing
workloads by full in-memory computation [46].

Spark interacts with storage layer only in the initial stage to load the data into memory and in
the end of process to persist the final result. Unlike in Apache MapReduce, in Spark, all processing
and intermediate results are, respectively, done and stored in-memory. Spark operation is based on
distributed data structures called Resilient Distributed Datasets (RDDs). RDDs are fault-tolerant and
automatically place tasks into partitions, maintaining the locality of persisted data. Beyond this, RDDs
are versatile tools that allow programmers to persist intermediate results into memory or disk for
reusability purposes. It also allows customizing the partitioning to optimize data placement. In case of
data loss, each RDD is reconstructed based on the information on “lineage”, which is responsible on
tracking all the lazy operations performed by RDD [44].

Besides the Spark core, many libraries have been developed on top of the core to complement
the basics functionalities of Spark. The most popular libraries are Machine Learning library (MLlib),
Spark Streaming, Spark SQL, and Spark GraphX. MLlib is designed to simplify the ML pipeline
in big data and its main functionalities include classification, regression, clustering, collaborative



ISPRS Int. J. Geo-Inf. 2019, 8, 387 12 of 23

filtering, optimization, and dimensionality reduction [62]. Spark Streaming allows the use of Spark’s
API to quickly process data, which can come from different data sources such as HDFS, Flume or
Kafka in streaming environments by using mini-batches [44]. Spark Streaming divides input data
streams into batches and stores them in Spark’s memory. It then executes a streaming application
by generating Spark jobs to process the batches [63]. Spark SQL is an Apache Spark module that
integrates relational processing with Spark’s functional programming API. It supports relational
processing both within Spark programs (on native RDDs) and on external data sources using a
programmer friendly API, provides high performance using established DBMS techniques, easily
supports new data sources, including semi-structured data and external databases amenable to query
federation, and enables extension with advanced analytics algorithms such as graph processing and
machine learning [64]. Spark GraphX is an Apache Spark’s module that combines the advantages of
both data-parallel and graph-parallel systems by efficiently expressing graph computation within the
Spark data-parallel framework. It consists on distributed graph representation to efficiently distribute
graphs as tabular data-structures and takes the advantage of advances in data-flow systems to exploit
in-memory computation and fault-tolerance [65]. The overall architecture of Apache Spark SQL can be
found on [64].

Apache Flink

Apache Flink offers a hybrid data processing framework supported by his two main APIs namely
DataStream and DataSet. It embraces data-stream processing as the unifying model for real-time
analysis, continuous streams, and batch processing both in the programming model and in the
execution engine [66]. It focuses on working with large data with very low data latency and high
fault tolerance on distributed systems [44]. Flink programs can compute both early and approximate,
as well as delayed and accurate, results in the same operation, obviating the need to combine different
systems for the two use cases [66].

There are many libraries built on top of Flink processing framework, but the most popular are:
FlinkML, Gelly, and Table API and SQL, FlinkCEP [44,67]. FlinkML is the machine learning library for
Flink which aims to provide scalable machine learning algorithms and tools and primitives that help
to design complex machine learning systems [68]. Gelly is the graph processing system in Flink which
contains methods and utilities for the development of graph analysis applications. Table API and
SQL is a SQL-like expression language for relational stream and batch processing enables the custom
of SQL queries over the data. They are well embedded on both the DataStream and DataSets APIs
and influence the usage of relational operators such as selection, aggregations, and joins. FlinkCEP is
the complex event processing library which allows detecting complex events patterns in streams. The
overall architecture of Apache Flink can be found on [66].

Comparative Analysis between Spark and Flink: Main Differences and Similarities

This section highlights the main differences and similarities between Spark and Flink in order to
help in decision making about which hybrid processing framework to use based on cluster architecture,
data flow, data processing model, fault-tolerance, latency, scalability, back-pressure mechanism,
programming languages, and support for machine learning libraries.

Computing Cluster Architecture

Spark has high-level API that is composed by RDDs (Resilient Distributed Datasets) which are
grouped in different API levels using Hadoop YARN or Apache Mesos. Flink offers web-based
scheduling API to easily manage tasks and view the system. This processing framework can easily be
integrated with YARN, HDFS, and Kafka for resources and tasks management.



ISPRS Int. J. Geo-Inf. 2019, 8, 387 13 of 23

Data Flow

Spark is based on micro-batch processing model which consists of a simple queue of RDDs called
DStream. In this model, the incoming data are divided into small parts and processed one-at-time.
To maintain the locality of persisted data, RDDS distributes operations on RDDs automatically into
partitions. Moreover, RDDS give the possibility to programmers to persist intermediate results either
into memory or disk for which can be used in the future in case of failure. This option customizes the
partitioning to optimize data placement. However, in Flink, data are handled item-by-item as true
stream [46]. In this processing framework, streams from any source enter in the system, where some
functions are applied and new streams are generated. The output (new stream) flows out Flink system
through Sinks that can be either database or another system. Moreover, Spark has ordering guarantee
between batches while Flink provides within partition ordering guarantee.

Data Processing Model

While Flink is a native streaming processing framework with the possibility of batch processing,
Spark was designed to work with static data with the possibility of real-time processing. However,
both Spark and Flink provide exactly-once processing semantic. On the other hand, while Spark
schedules its tasks using an acyclic graph approach in each iteration, Flink uses cyclic graph semantic
to iteratively process the data. In addition, Flink uses one-at-a-time processing model.

Fault-Tolerance

Spark is fault-tolerance since it uses lineage to track lazy operations performed on each RDD.
The tracked operations are used to reconstruct each RDD any moment in case of failure. Similar to
Spark, Flink has a high fault-tolerance mechanism that recovers the state of data streaming in case of
failure. This mechanism consists of generating snapshots of the distributed data stream and operator
state which can be used by the system to fall back in case of failure.

Latency

Spark uses batch-stream processing model and notifies the scheduler at the end of each task.
Invoking the scheduler at the end of each task adds overheads and results in decreased throughput
and increased latency [69]. However, while operating at max throughput, Flink achieves a median
latency of 26 milliseconds, and a 99th percentile latency of 51 ms, meaning that 99% of all latencies
were below 51 ms [70].

Scalability

Spark parallelize the computation on user demand to achieve the scalability. However, Flink
offers several APIs, which allows a user to consistently launch distributed computation in an easy
manner [56]. This process consists on decomposing the job into a graph of operators, and the execution
of each operator is physically decomposed into multiple parallel operator instances. For performance
reasons, for iterative tasks, Flink carries out the computation on the node where the data are stored.
In the case of a change in the data, it can do computation only on the changed data. As Flink, Spark
also allows parallel processing to promote scalability in batch or stream big data.

Back-Pressure Mechanism

Spark and Flink offer back-pressure mechanism. In Spark, the back-pressure mechanism controls
the receiving rate based on the current batch scheduling delays and processing times so that the system
receives only as quickly as the system can process. Therefore, Back-pressure is a highly demanded
feature that allows the ingestion rate to be set dynamically and automatically, based on previous
micro-batch processing time [71]. Flink does not need a special mechanism for handling back-pressure,
as data shipping in Flink doubles as a back-pressure mechanism. Therefore, Flink guarantees that



ISPRS Int. J. Geo-Inf. 2019, 8, 387 14 of 23

there are always enough buffers to make some progress, but the speed of this progress is determined
by the user program and the amount of available memory [72].

Programming Languages

Spark is mostly written in Scala; however, it has API for Scala, Java and Python. Apache Flink is a
distributed streaming dataflow engine written in Java and Scala.

Machine Learning

Spark and Flink provide Machine Learning (ML) facilities. Therefore, Spark has MLlib, which is a
ML library that simplifies the ML pipeline in big data and allows performing classification, regression,
clustering, and collaborative filtering, among others. On the other hand, Flink has a powerful ML
library (FlinkML) designed to provide facilities for building complex ML systems.

For better understanding, Table 3 summarizes the main differences and similarities among hybrid
processing frameworks (Spark and Flink).

Table 3. Comparison of hybrid processing frameworks.

Framework Spark Flink

Computing cluster
architecture Hadoop YARN and Apache Mesos Hadoop YARN and Kafka

Data Flow
simple queue of RDDs called
DStream processed one-at-a-time
using micro-batching cluster

stream − > system (operators) − >
sinks

Data Processing Model exactly-once exactly-once

Fault-Tolerance Yes (using lineage) Yes (generating snapshots)

Latency high low

Scalability Yes (on user demand) Yes (parallelize the tasks that can be
done in parallel)

Back-pressure mechanism Yes Yes

Programming Languages API for Scala, Java and Python Java and Scala

Support for Machine
Learning Yes (SparkMLlib) Yes (FlinkML)

3.2. Big Spatial Data Processing Frameworks

Geospatial information supports a wide range of government and community activities such
as helping emergency authorities locate addresses and other important information so they can
quickly respond [73]. This information is extracted through big spatial data and big spatial data
processing frameworks. To analyze big spatial data to extract geospatial information, support for
certain generic geospatial operations such as distance-based query, k-nearest neighbor (KNN) queries,
filter-based queries (e.g., WithinDistance, Intersects, etc.), and others is needed. Therefore, big spatial
data processing frameworks support these geospatial operations.

Big data processing frameworks originally deal with rednon-spatial data processing and analysis.
Hadoop MapReduce based spatial data processing frameworks such as Parallel-Secondo [74],
Hadoop-GIS [75], and SpatialHadoop [76] have been proposed to deal with spatial data processing and
analysis. However, the most popular Hadoop-based spatial processing frameworks are Hadoop-GIS
and SpatialHadoop. Similar to what happens with the non-spatial Hadoop MapReduce based
processing framework, the spatial versions are also fault tolerant since for parallel processing the
intermediate results are written in the disk. Therefore, there are six Spark based spatial processing
frameworks namely Magellan [77], SpatialSpark [78], GeoMesa [79], GeoSpark [80], Simba [81], and



ISPRS Int. J. Geo-Inf. 2019, 8, 387 15 of 23

STARK [82]. The two most popular Spark-based spatial processing frameworks are GeoSpark and
SpatialSpark.

3.2.1. Popular Hadoop-Based Spatial Processing Frameworks

Hadoop-GIS

Hadoop-GIS is a MapReduce based spatial data warehouse system for running large scale data
partitioning and spatial queries [75]. Spatial queries include descriptive queries, spatial relationship
based queries, distance-based queries, and spatial mining and statistics such as spatial clustering
and spatial regression [83]. It utilizes SATO spatial partitioning (similar to KD-Tree) and local spatial
indexing to achieve efficient query processing. However, it does not offer support of complex geometry
types including convex/concave polygons, line string, multi-point, and multi-polygon. In addition,
Hadoop-GIS only supports data up to two dimensions and two query types: box range queries and
spatial joins over geometric objects with predicates such as within (within distance).

SpatialHadoop

To overcome Hadoop-GIS limitations, SpatialHadoop was proposed, which is a full-fledged
MapReduce framework with native support for spatial data, spatial indexes and efficient spatial
operations [84]. It extends MapReduce API with two new components, namely SpatialFileSplitter
and SpatialRecordReader, for efficient and scalable spatial data processing. SpatialHadoop supports
various geometry types, such as polygon, point, line string, multi-point, and others and multiple spatial
partitioning techniques including uniform grids, R-Tree, Quad-Tree, KD-Tree, and Hilbert curves [85].
It also comes with several predefined spatial operations including box range queries, kNN queries
and spatial joins over geometric objects using conditions such as within and intersect. In addition,
SpatialHadoop supports different geometric objects, e.g., segments and polygons, and operations over
them, e.g., generating convex hulls and skylines, which makes it a distributed geometric data analytics
system over MapReduce.

Table 4 presents a comparison among the most popular Hadoop-based spatial big data processing
frameworks. The comparison is based on the commonly used features such as spatial partitioning,
spatial indexing, KNN query, distance query, distance join, filter (WithinDistance), etc. [78,86,87].
For instance, WithinDistance operator creates buffers using the buffer distance around the source
features and returns all the features intersecting the buffer zones. For example, select infrastructures
within 100 m of a river that will be flooded for pre-disaster evacuation.

Table 4. Comparison of Hadoop-based spatial big data processing frameworks.

Feature Hadoop-GIS SpatialHadoop

DataFrame API 7 7

In-memory processing 7 7

Spatial Partitioning SATO Multiple
Spatial Indexing R-Tree R-/Quad-Tree
KNN query X X
Query optimizer 7 7

Distance query X X
Distance join X X
Filter (Contains) X X
Filter (ContainedBy) X X
Filter (Intersects) X X
Filter (WithinDistance) X X



ISPRS Int. J. Geo-Inf. 2019, 8, 387 16 of 23

3.2.2. Popular Hadoop-based Spatial Processing Frameworks

SpatialSpark

SpatialSpark is built on top of Spark RDD to provide range query, spatial join, spatial filtering
techniques and R-Tree index and R-Tree partitioning to speed up queries [78]. SpatialSpark is an
in-memory big data system implementation, which is designed to support two spatial join operators,
namely broadcast spatial join and partitioned spatial join [88]. Broadcast spatial join for joining one big
dataset with another small dataset efficiently and partitioned spatial join for joining two big datasets.
To achieve efficient joining, the right relation is indexed using an R-tre,ewhich is then made available
to all worker nodes using Spark’s broadcast variables. SpatialSpark provides Fixed Grid Partitioning,
Binary Space Partitioning, and Sort Tile Partitioning with and without using an R-tree as the index to
fetch the relations in case they do not fit into memory. It supports range queries with the predicates
contains, within (containedBy), and withinDistance [78]. However, k-nearest neighbor (KNN) queries
are not possible. In addition to that, there is no real API and many things still have to be done by
hand by the user. Moreover, the result of a join returns only the matched pairs IDs, which requires
additional joins afterward to retrieve the complete tuple in the application.

GeoSpark

GeoSpark is an in-memory cluster computing framework built on top of Spark for processing
large-scale spatial data in a very fast manner compared to SpatialHadoop [86]. GeoSpark extends the
RDDs concept and SparkSQL to support spatial data types, indexes, and geometrical operations at scale.
GeoSpark provides a spatial RDD Application Programming Interface (API), which allows the Apache
Spark programmers to easily develop their spatial analysis programs using operational (e.g., Java and
Scala) and declarative (i.e., SQL) languages. It supports spatial data partitioning techniques such as
uniform grid, R-tree, Quad-Tree, KDB-Tree, and KNN queries. GeoSpark comes with an optimizer
which adaptively selects a proper join algorithm to strike a balance between the run time performance
and memory/CPU utilization in the cluster [87]. Table 5 presents a comparison among the most
popular Hadoop-based spatial big data processing frameworks.

Table 5. Comparison of Spark-based spatial big data processing frameworks.

Feature SpatialSpark GeoSpark

DataFrame API 7 X
In-memory processing X X
Spatial Partitioning Multiple Multiple
Spatial Indexing R-Tree R-/Quad-Tree
KNN query 7 X
Query optimizer 7 X
Distance query X X
Distance join X X
Filter (Contains) X X
Filter (ContainedBy) X 7

Filter (Intersects) X X
Filter (WithinDistance) X 7

4. Big Data and Processing Frameworks for Disaster Response

The big data concept raises new challenges such as how to analyze, archive, share, transfer
and process large datasets across organizations [21]. To overcome such challenges, the big data
paradigm provides data management tools and techniques for storage, processing and security the
data. Therefore, the Big data paradigm can be divided into four main application areas: (i) big data
methods, which focus on uncovering hidden trends and patterns from collection of data; (ii) big data
storage, which deals with database management systems to store data; (iii) processing, which provides



ISPRS Int. J. Geo-Inf. 2019, 8, 387 17 of 23

data processing frameworks to do batch and stream processing; and (iv) representation, which provides
visualizations based on the processed data [12]. This study focuses on the third application area (big
data processing frameworks).

4.1. Link between Big Data and Processing Frameworks for Disaster Response

The disaster response phase consists of two sub-phases, namely: damage assessment and
post-disaster coordination and response. Both sub-phases involve different big data (e.g., satellite
imagery, UAV and drones, LiDAR, social media records, crowdsourcing, GPS traces, CDRs, etc.) that
have to be integrated, analyzed, processed, and used by various teams to support a quick and effective
decision making. Since these data are from different data sources, and have different characteristics
and types (spatial and non-spatial), a challenge arises when it comes to deciding which processing
framework to use in order to extract useful information from the data (e.g., people mobility estimation
and prediction, affected areas estimation, infrastructures damage assessment, etc.). To address this
challenge, it is important to know how the data will be injected (batch, streaming or hybrid ingestion)
in the application program. Figure 3 summarizes the process of big data processing frameworks
selection based on data type and data ingestion.

Data

Type

Non-Spatial Spatial

Ingestion Ingestion

Batch Stream Batch Hybrid

Proc. Fram

Hadoop Spark Flink Storm Samza Hadoop-GIS SpatialHadoop SpatialSpark GeoSpark

Proc. Fram Proc. Fram Proc. Fram

Hybrid

Proc. Fram

Figure 3. Big data processing framework selection flowchart.

However, in many cases, the selection process ends with more than one choice, namely: Storm
and Samza in the case of streaming processing needs or Spark and Flink for hybrid processing needs
for non-spatial data, and Hadoop-GIS and SpatialHadoop or SpatialSpark and GeoSpark for batch
and hybrid spatial processing needs respectively. To select the most suitable processing framework for
each case (spatial or non-spatial data) for a given application, detailed task requirements have to be
considered. In the case of non-spatial data processing frameworks, the needs of support for machine
learning, scalability, programming language, latency, etc., have to be evaluated. Tables 2 and 3 can
be used to support that purpose. For the spatial data, the selection of the most suitable processing



ISPRS Int. J. Geo-Inf. 2019, 8, 387 18 of 23

framework will be based on the type of spatial operations that have to be performed (e.g., partitioning,
distance query, filtering, etc.). Tables 4 and 5 can be used for that purpose.

4.2. Use Case—Big Data and Processing Framework for Flooding Response

This section presents a use case conceptual example of big data and processing frameworks for
flooding response.

Problem 1. Let us assume that there is a need to measure flooded areas (from Digital Elevation Model (DEM),
land cover data, and satellite imagery), access the damage to structures (houses and roads) from crowdsourcing
data and satellite imagery, estimate the precipitation from wireless sensors data, and there is a need to allocate
the response team to aid the evacuation of population at risk based on a population density/mobility prediction
model and potentially streaming location information in form of CDRs. Which processing frameworks should be
used to implement all of this?

Given that the data (mobile CDRs, satellite images, DEM, crowdsourcing and wireless sensors)
are from different data sources (streaming data sources and data sources at rest), have different
characteristics (spatial and non-spatial data), the information to be extracted from them (people
mobility, affected areas, infrastructure damage, and precipitation) are complex, and they require
both batch and stream processing frameworks, Flink and Spark are good candidates. Although
both Spark and Flink are good candidates, the decision can be made based on user needs (latency,
APIs, programming languages, etc.). For instance, from the latency point of view, Flink is better;
however, Spark provides more APIs for the users. In addition to this, Spark offers spatial data
analysis/operations (spatial partitioning, spatial index, KNN query, distance-based query and join,
etc.) through SpatialSpark and GeoSpark processing frameworks, which are very important for the
process of decision making. Therefore, Spark processing framework in conjunction with GeoSpark
(which offers more spatial operations than SpatialSpark) can be suggested to perform these tasks.
Figure 4 summarizes the data sources, data type, processing needs and output.

Data CDRs Sat. data, DEM
and Land cover

Crowdsourcing
and Satellite data

Wireless sensors

Computation
needs Batch or Stream Batch Hybrid Stream

Output
Information

People Mobility and
population estimation
and prediction

Flooded areas
and

Change detection

Infrastructure
damage

(houses and roads)

Precipitation
estimation

Tasks
Assignment Resource allocation, saving lives, meeting humanitarian needs

Figure 4. Big data and processing framework for disaster response.

5. Conclusions and Future Directions of Research

This paper presents an in depth analysis of existing big data processing frameworks. The paper is
structured in three main parts that: describe the big data that have been used for disaster management,
present the differences and similarities between most popular big data processing frameworks,
and establish the link between big data and processing frameworks focusing on response phase
of disaster management.



ISPRS Int. J. Geo-Inf. 2019, 8, 387 19 of 23

The first part of the paper identifies the main challenges of disaster response phase and describe
the different big data that have been used to address some of the challenges. The second part group
and describe different big data processing frameworks and presents the comparative analysis between
processing frameworks belonging to the same group. It also presents and compares the popular
big spatial data processing frameworks, which offer the spatial operations to efficiently deal with
spatial data. The last part of this paper establishes a link between big data and processing frameworks
focusing on the response phase of the disaster management cycle.

The use case shows that selecting the right processing frameworks to perform tasks using data
from different data sources is challenging and require in-depth analysis of the characteristics and the
complexity of the response system to be developed. In addition to that, the use of spatial operators
needs to be analyzed for a better selection of spatial processing framework.

While a substantial amount of research has been invested in the application of big data in
natural disaster management and link between big data and processing frameworks for disaster
response (focusing on Flood), there is still a need of establishment of a link between big data,
processing frameworks for different types of disasters (wildfire, flood, hurricane, earthquake, typhoon,
landslide, volcano, etc.), and disaster management phases, to support the researchers and disaster
management institutions.

Author Contributions: Silvino Pedro Cumbane and Győző Gidófalvi contributed in the study conception and
design of literature review paper. Silvino Pedro Cumbane also contributed in acquisition of the reviewed papers,
analysis of the literature review and the writing. In addition, Győző Gidófalvi provided comments for the revision
of the paper.

Funding: This research received no external funding.

Acknowledgments: We thank the anonymous reviewers for their insightful comments, which significantly
improved the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Olivier, J.G.; Schure, K.; Peters, J. Trends in Global CO2 and Total Greenhouse Gas Emissions; PBL Netherlands
Environmental Assessment Agency: The Hague, The Netherlands, 2017; p. 5.

2. Radford, T. Human Carbon Emissions to Rise in 2019. 2019. Available online: https://climatenewsnetwork.
net/human-carbon-emissions-to-rise-in-2019/ (accessed on 3 July 2019).

3. Blaikie, P.; Cannon, T.; Davis, I.; Wisner, B. At Risk: Natural Hazards, People’s Vulnerability and Disasters;
Routledge: New York, NY, USA, 2005.

4. Bank, W.; Nations, U. Natural Hazards, Unnatural Disasters: The Economics of Effective Prevention; The World
Bank: Washington, DC, USA, 2010.

5. IFRC. Resilience: Saving Lives Today, Investing for Tomorrow; World Disasters Report; International Federation
of Red Cross and Red Crescent Societies: Geneva, Switzerland, 2016.

6. USAID. SOUTHERN AFRICA—TROPICAL CYCLONE IDAI. 2019. Available online:
https://www.usaid.gov/sites/default/files/documents/1866/04.25.19_-_USAID-DCHA_Southern_
Africa_Tropical_Cyclone_Idai_Fact_Sheet_9.pdf (accessed on 20 May 2019).

7. Celik, S.; Corbacioglu, S. Role of information in collective action in dynamic disaster environments. Disasters
2010, 34, 137–154. [CrossRef] [PubMed]

8. Sutanta, H.; Bishop, I.; Rajabifard, A. Integrating Spatial Planning and Disaster Risk Reduction at the Local Level
in the Context of Spatially Enabled Government; Leuven University Press: Leuven, Belgium, 2010.

9. Habiba, M.; Akhter, S. A cloud based natural disaster management system. In International Conference on
Grid and Pervasive Computing; Springer: Berlin/Heidelberg, Germany, 2013; pp. 152–161.

10. Voss, P. Choosing the Right Big Data Execution Framework: Why One Size Doesn’t Fit All. 2015. Available
online: https://venturebeat.com/2015/01/27/choosing-the-right-big-data-execution-framework-why-
one-size-doesnt-fit-all/ (accessed on 12 May 2019).

11. Selamat, N.S. An Overview of Big Data Usage in Disaster Management. J. Inf. Syst. Res. Innov. 2017,
11, 35–40.

https://climatenewsnetwork.net/human-carbon-emissions-to-rise-in-2019/
https://climatenewsnetwork.net/human-carbon-emissions-to-rise-in-2019/
https://www.usaid.gov/sites/default/files/documents/1866/04.25.19_-_USAID-DCHA_Southern_Africa_Tropical_Cyclone_Idai_Fact_Sheet_9.pdf
https://www.usaid.gov/sites/default/files/documents/1866/04.25.19_-_USAID-DCHA_Southern_Africa_Tropical_Cyclone_Idai_Fact_Sheet_9.pdf
http://dx.doi.org/10.1111/j.1467-7717.2009.01118.x
http://www.ncbi.nlm.nih.gov/pubmed/19682005
https://venturebeat.com/2015/01/27/choosing-the-right-big-data-execution-framework-why-one-size-doesnt-fit-all/
https://venturebeat.com/2015/01/27/choosing-the-right-big-data-execution-framework-why-one-size-doesnt-fit-all/


ISPRS Int. J. Geo-Inf. 2019, 8, 387 20 of 23

12. Arslan, M.; Roxin, A.M.; Cruz, C.; Ginhac, D. A Review on Applications of Big Data for Disaster Management.
In Proceedings of the 2017 13th International Conference on Signal-Image Technology & Internet-Based
Systems (SITIS), Jaipur, India, 4–7 December 2017; pp. 370–375.

13. Yu, M.; Yang, C.; Li, Y. Big data in natural disaster management: A review. Geosciences 2018, 8, 165. [CrossRef]
14. Norris, A.C.; Martinez, S.; Labaka, L.; Madanian, S.; Gonzalez, J.J.; Parry, D. Disaster E-Health: A New

Paradigm for Collaborative Healthcare in Disasters. In Proceedings of the ISCRAM 2015, Kristiansand,
Norway, 24–27 May 2015.

15. Modh, S. Introduction to Disaster Management; Macmillan: Mumbai, India, 2009.
16. Poser, K.; Dransch, D. Volunteered geographic information for disaster management with application to

rapid flood damage estimation. Geomatica 2010, 64, 89–98.
17. Taylor-Sakyi, K. Big Data: Understanding Big Data. arXiv 2016, arXiv:abs/1601.04602.
18. Kozak, M.; LaClair, V. LiDAR The “I” in Big Data. 2012. Available online: https://eijournal.com/print/

articles/lidar-the-i-in-big-data (accessed on 15 July 2019).
19. Furht, B.; Villanustre, F. Introduction to big data. In Big Data Technologies and Applications; Springer: Cham,

Switzerland, 2016; pp. 3–11.
20. Sharma, S.; Mangat, V. Technology and trends to handle big data: Survey. In Proceedings of the 2015 Fifth

International Conference on Advanced Computing & Communication Technologies (ACCT), Haryana, India,
21–22 February 2015; pp. 266–271.

21. Fredriksson, C.; Mubarak, F.; Tuohimaa, M.; Zhan, M. Big data in the public sector: A systematic literature
review. Scand. J. Public Adm. 2017, 21, 39–62.

22. De Mauro, A.; Greco, M.; Grimaldi, M. What is big data? A consensual definition and a review of key
research topics. AIP Conf. Proc. 2015, 1644, 97–104.

23. Pradhan, B.; Tehrany, M.S.; Jebur, M.N. A new semiautomated detection mapping of flood extent from
TerraSAR-X satellite image using rule-based classification and taguchi optimization techniques. IEEE Trans.
Geosci. Remote Sens. 2016, 54, 4331–4342. [CrossRef]

24. Raspini, F.; Bardi, F.; Bianchini, S.; Ciampalini, A.; Del Ventisette, C.; Farina, P.; Ferrigno, F.; Solari, L.;
Casagli, N. The contribution of satellite SAR-derived displacement measurements in landslide risk
management practices. Nat. Hazards 2017, 86, 327–351. [CrossRef]

25. Pesaresi, M.; Ehrlich, D.; Ferri, S.; Florczyk, A.; Freire, S.; Haag, F.; Halkia, M.; Julea, A.; Kemper, T.; Soille,
P. Global human settlement analysis for disaster risk reduction. Int. Arch. Photogramm. Remote Sens. Spat.
Inf. Sci. 2015, 40, 837–843. [CrossRef]

26. McCallum, I.; Liu, W.; See, L.; Mechler, R.; Keating, A.; Hochrainer-Stigler, S.; Mochizuki, J.; Fritz, S.;
Dugar, S.; Arestegui, M.; et al. Technologies to support community flood disaster risk reduction. Int. J. Dis.
Risk Sci. 2016, 7, 198–204. [CrossRef]

27. Chen, D.; Liu, Z.; Wang, L.; Dou, M.; Chen, J.; Li, H. Natural disaster monitoring with wireless sensor
networks: A case study of data-intensive applications upon low-cost scalable systems. Mobile Netw. Appl.
2013, 18, 651–663. [CrossRef]

28. Khalil, I.M.; Khreishah, A.; Ahmed, F.; Shuaib, K. Dependable wireless sensor networks for reliable and
secure humanitarian relief applications. Ad Hoc Netw. 2014, 13, 94–106. [CrossRef]

29. Sakhardande, P.; Hanagal, S.; Kulkarni, S. Design of disaster management system using IoT based
interconnected network with smart city monitoring. In Proceedings of the International Conference
on Internet of Things and Applications (IOTA), Pune, India, 22–24 January 2016; pp. 185–190.

30. Ray, P.P.; Mukherjee, M.; Shu, L. Internet of things for disaster management: State-of-the-art and prospects.
IEEE Access 2017, 5, 18818–18835. [CrossRef]

31. Stefanidis, A.; Crooks, A.; Radzikowski, J. Harvesting ambient geospatial information from social media
feeds. GeoJournal 2013, 78, 319–338. [CrossRef]

32. Kafi, K.M.; Gibril, M.B.A. GPS Application in Disaster Management: A Review. Asian J. Appl. Sci. 2016,
4, 63–67.

33. Song, X.; Zhang, Q.; Sekimoto, Y.; Shibasaki, R. Prediction of human emergency behavior and their mobility
following large-scale disaster. In Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 5–14.

http://dx.doi.org/10.3390/geosciences8050165
https://eijournal.com/print/articles/lidar-the-i-in-big-data
https://eijournal.com/print/articles/lidar-the-i-in-big-data
http://dx.doi.org/10.1109/TGRS.2016.2539957
http://dx.doi.org/10.1007/s11069-016-2691-4
http://dx.doi.org/10.5194/isprsarchives-XL-7-W3-837-2015
http://dx.doi.org/10.1007/s13753-016-0086-5
http://dx.doi.org/10.1007/s11036-013-0456-9
http://dx.doi.org/10.1016/j.adhoc.2012.06.002
http://dx.doi.org/10.1109/ACCESS.2017.2752174
http://dx.doi.org/10.1007/s10708-011-9438-2


ISPRS Int. J. Geo-Inf. 2019, 8, 387 21 of 23

34. Pastor-Escuredo, D.; Morales-Guzmán, A.; Torres-Fernández, Y.; Bauer, J.M.; Wadhwa, A.; Castro-Correa, C.;
Romanoff, L.; Lee, J.G.; Rutherford, A.; Frias-Martinez, V.; et al. Flooding through the lens of mobile phone
activity. arXiv 2014, arXiv:1411.6574.

35. Wilson, R.; zu Erbach-Schoenberg, E.; Albert, M.; Power, D.; Tudge, S.; Gonzalez, M.; Guthrie, S.;
Chamberlain, H.; Brooks, C.; Hughes, C.; et al. Rapid and near real-time assessments of population
displacement using mobile phone data following disasters: The 2015 Nepal Earthquake. PLoS Curr. 2016, 8.
[CrossRef]

36. Jain, S.; McLean, C. Simulation for emergency response: A framework for modeling and simulation for
emergency response. In Proceedings of the 35th Conference on Winter Simulation: Driving Innovation,
Winter Simulation Conference, New Orleans, LA, USA, 7–10 December 2003; pp. 1068–1076.

37. Massaguer, D.; Balasubramanian, V.; Mehrotra, S.; Venkatasubramanian, N. Multi-agent simulation of
disaster response. In Proceedings of the First International Workshop on Agent Technology for Disaster
Management, Hakodate, Japan, 8–12 May 2006; pp. 124–130.

38. Dou, M.; Chen, J.; Chen, D.; Chen, X.; Deng, Z.; Zhang, X.; Xu, K.; Wang, J. Modeling and simulation
for natural disaster contingency planning driven by high-resolution remote sensing images. Future Gener.
Comput. Syst. 2014, 37, 367–377. [CrossRef]

39. Restas, A. Drone applications for supporting disaster management. World J. Eng. Technol. 2015, 3, 316–321.
[CrossRef]

40. Nonami, K.; Kendoul, F.; Suzuki, S.; Wang, W.; Nakazawa, D. Introduction. In Autonomous Flying Robots;
Springer: Tokyo, Japan, 2010; pp. 1–29.

41. Trinder, J.; Salah, M. Airborne Lidar as a Tool for Disaster Monitoring and Management. In Proceedings of
the GeoInformation for Disaster Management, Antalya, Turkey, 3–8 May 2011.

42. Chandarana, P.; Vijayalakshmi, M. Big data analytics frameworks. In Proceedings of the 2014 International
Conference on Circuits, Systems, Communication and Information Technology Applications (CSCITA),
Mumbai, India, 4–5 April 2014; pp. 430–434.

43. Inoubli, W.; Aridhi, S.; Mezni, H.; Jung, A. Big Data Frameworks: A Comparative Study. arXiv 2016,
arXiv:abs/1610.09962.

44. García-Gil, D.; Ramírez-Gallego, S.; García, S.; Herrera, F. A comparison on scalability for batch big data
processing on Apache Spark and Apache Flink. Big Data Anal. 2017, 2, 1. [CrossRef]

45. Alkatheri, S.; Abbas, S.; Siddiqui, M. A Comparative Study of Big Data Frameworks. Int. J. Comput. Sci.
Inf. Secur. 2019, 17, 66–73.

46. Gurusamy, V.; Kannan, S.; Nandhini, K. The Real Time Big Data Processing Framework: Advantages and
Limitations. Int. J. Comput. Sci. Eng. 2017, 5, 305–312. [CrossRef]

47. Balkenende, M. The Big Data Debate: Batch Versus Stream Processing. 2018. Available online: https:
//thenewstack.io/the-big-data-debate-batch-processing-vs-streaming-processing/ (accessed on 10 July 2019).

48. Dittrich, J.; Quiané-Ruiz, J.A. Efficient big data processing in Hadoop MapReduce. Proc. VLDB Endow. 2012,
5, 2014–2015. [CrossRef]

49. Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R. The hadoop distributed file system. In Proceedings of
the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), Lake Tahoe, NV, USA,
3–7 May 2010; pp. 1–10.

50. Kulkarni, A.P.; Khandewal, M. Survey on Hadoop and Introduction to YARN. Int. J. Emerg. Technol. Adv. Eng.
2014, 4, 82–87.

51. Abadi, D.J.; Ahmad, Y.; Balazinska, M.; Cetintemel, U.; Cherniack, M.; Hwang, J.H.; Lindner, W.; Maskey, A.;
Rasin, A.; Ryvkina, E.; et al. The design of the borealis stream processing engine. CIDR 2005, 5, 277–289.

52. Akidau, T.; Balikov, A.; Bekiroğlu, K.; Chernyak, S.; Haberman, J.; Lax, R.; McVeety, S.; Mills, D.;
Nordstrom, P.; Whittle, S. MillWheel: Fault-tolerant stream processing at internet scale. Proc. VLDB
Endow. 2013, 6, 1033–1044. [CrossRef]

53. Ananthanarayanan, R.; Basker, V.; Das, S.; Gupta, A.; Jiang, H.; Qiu, T.; Reznichenko, A.; Ryabkov, D.;
Singh, M.; Venkataraman, S. Photon: Fault-tolerant and scalable joining of continuous data streams.
In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, New York, NY,
USA, 22–27 June 2013; pp. 577–588.

http://dx.doi.org/10.1371/currents.dis.d073fbece328e4c39087bc086d694b5c
http://dx.doi.org/10.1016/j.future.2013.12.018
http://dx.doi.org/10.4236/wjet.2015.33C047
http://dx.doi.org/10.1186/s41044-016-0020-2
http://dx.doi.org/10.26438/ijcse/v5i12.305312
https://thenewstack.io/the-big-data-debate-batch-processing-vs-streaming-processing/
https://thenewstack.io/the-big-data-debate-batch-processing-vs-streaming-processing/
http://dx.doi.org/10.14778/2367502.2367562
http://dx.doi.org/10.14778/2536222.2536229


ISPRS Int. J. Geo-Inf. 2019, 8, 387 22 of 23

54. Toshniwal, A.; Taneja, S.; Shukla, A.; Ramasamy, K.; Patel, J.M.; Kulkarni, S.; Jackson, J.; Gade, K.; Fu, M.;
Donham, J.; et al. Storm@ twitter. In Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data, Snowbird, UT, USA, 22–27 June 2014; pp. 147–156.

55. Kamburugamuve, S.; Fox, G.; Leake, D.; Qiu, J. Survey of distributed stream processing for large stream
sources. Grids Ucs Indiana Edu. 2013, 2, 1–16.

56. Inoubli, W.; Aridhi, S.; Mezni, H.; Maddouri, M.; Nguifo, E. A Comparative Study on Streaming Frameworks
for Big Data. In Proceedings of the VLDB 2018-44th International Conference on Very Large Data Bases:
Workshop LADaS-Latin American Data Science, Rio de Janeiro, Brazil, 27 August 2018; pp. 1–8.

57. Wingerath, W.; Gessert, F.; Friedrich, S.; Ritter, N. Real-time stream processing for Big Data. Inf. Technol.
2016, 58, 186–194. [CrossRef]

58. Noghabi, S.A.; Paramasivam, K.; Pan, Y.; Ramesh, N.; Bringhurst, J.; Gupta, I.; Campbell, R.H. Samza:
Stateful scalable stream processing at LinkedIn. Proc. VLDB Endow. 2017, 10, 1634–1645. [CrossRef]

59. Grover, M.; Malaska, T.; Seidman, J.; Shapira, G. Hadoop Application Architectures: Designing Real-World Big
Data Applications; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2015.

60. Ericsson. Trident—Benchmarking performance. 2014. Available online: https://www.ericsson.com/
research-blog/trident-benchmarking-performance/ (accessed on 7 April 2019).

61. Nalya, A.; Jain, A. Using Trident-ML. 2018. Available online: https://www.oreilly.com/library/view/
learning-storm/9781783981328/ch09s02.html (accessed on 15 July 2019).

62. Meng, X.; Bradley, J.; Yavuz, B.; Sparks, E.; Venkataraman, S.; Liu, D.; Freeman, J.; Tsai, D.; Amde, M.;
Owen, S.; et al. MLlib: Machine Learning in Apache Spark. J. Mach. Learn. Res. 2016, 17, 1–7.

63. Zaharia, M.; Das, T.; Li, H.; Hunter, T.; Shenker, S.; Stoica, I. Discretized streams: Fault-tolerant streaming
computation at scale. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, Farmington, PA, USA, 3–6 November 2013; pp. 423–438.

64. Armbrust, M.; Xin, R.S.; Lian, C.; Huai, Y.; Liu, D.; Bradley, J.K.; Meng, X.; Kaftan, T.; Franklin, M.J.;
Ghodsi, A.; et al. Spark sql: Relational data processing in spark. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, Melbourne, Victoria, Australia, 31 May–4 June 2015;
pp. 1383–1394.

65. Xin, R.S.; Gonzalez, J.E.; Franklin, M.J.; Stoica, I. Graphx: A resilient distributed graph system on spark.
In Proceedings of the First International Workshop on Graph Data Management Experiences and Systems,
New York, NY, USA, 23 June 2013; p. 2.

66. Carbone, P.; Katsifodimos, A.; Ewen, S.; Markl, V.; Haridi, S.; Tzoumas, K. Apache flink: Stream and batch
processing in a single engine. Bull. IEEE Comput. Soc. Tech. Community Data Eng. 2015, 36, 28–38.

67. Kanchana, R.; Shashikumar, D. A Survey on Big Data Stream Processing Technological; International Journal of
Engineering Development and Research: Karnataka, India, 2017.

68. Aridhi, S.; Nguifo, E.M. Big graph mining: Frameworks and techniques. Big Data Res. 2016, 6, 1–10.
[CrossRef]

69. Venkataraman, S.; Panda, A.; Ousterhout, K. Low Latency Execution For Apache Spark. 2016. Available online:
https://databricks.com/session/low-latency-execution-for-apache-spark (accessed on 10 April 2019).

70. Tzoumas, K. High-throughput, low-latency, and exactly-once stream processing with Apache Flink. 2015.
Available online: https://data-artisans.com/blog/high-throughput-low-latency-and-exactly-once-stream-
processing-with-apache-flink (accessed on 10 April 2019).

71. Jiang, L. Enable Back Pressure To Make Your Spark Streaming Application Production Ready. 2017. Available
online: https://www.linkedin.com/pulse/enable-back-pressure-make-your-spark-streaming-production-
lan-jiang (accessed on 10 April 2019).

72. Celebi, U. Enable Back Pressure To Make Your Spark Streaming Application Production Ready. 2015. Available
online: https://data-artisans.com/blog/how-flink-handles-backpressure (accessed on 10 April 2019).

73. NZGO. What Is Geospatial Information? 2015. Available online: https://www.linz.govt.nz/about-linz/our-
vision-purpose-and-values/our-location-strategy/what-geospatial-information (accessed on 7 July 2019).

74. Lu, J.; Güting, R.H. Parallel secondo: Boosting database engines with hadoop. In Proceedings of the 2012
IEEE 18th International Conference on Parallel and Distributed Systems, Singapore, 17–19 December 2012;
pp. 738–743.

75. Aji, A.; Wang, F.; Vo, H.; Lee, R.; Liu, Q.; Zhang, X.; Saltz, J. Hadoop gis: A high performance spatial data
warehousing system over mapreduce. Proc. VLDB Endow. 2013, 6, 1009–1020. [CrossRef]

http://dx.doi.org/10.1515/itit-2016-0002
http://dx.doi.org/10.14778/3137765.3137770
https://www.ericsson.com/research-blog/trident-benchmarking-performance/
https://www.ericsson.com/research-blog/trident-benchmarking-performance/
https://www.oreilly.com/library/view/learning-storm/9781783981328/ch09s02.html
https://www.oreilly.com/library/view/learning-storm/9781783981328/ch09s02.html
http://dx.doi.org/10.1016/j.bdr.2016.07.002
https://databricks.com/session/low-latency-execution-for-apache-spark
https://data-artisans.com/blog/high-throughput-low-latency-and-exactly-once-stream-processing-with-apache-flink
https://data-artisans.com/blog/high-throughput-low-latency-and-exactly-once-stream-processing-with-apache-flink
https://www.linkedin.com/pulse/enable-back-pressure-make-your-spark-streaming-production-lan-jiang
https://www.linkedin.com/pulse/enable-back-pressure-make-your-spark-streaming-production-lan-jiang
https://data-artisans.com/blog/how-flink-handles-backpressure
https://www.linz.govt.nz/about-linz/our-vision-purpose-and-values/our-location-strategy/what-geospatial-information
https://www.linz.govt.nz/about-linz/our-vision-purpose-and-values/our-location-strategy/what-geospatial-information
http://dx.doi.org/10.14778/2536222.2536227


ISPRS Int. J. Geo-Inf. 2019, 8, 387 23 of 23

76. Eldawy, A.; Mokbel, M.F. Spatialhadoop: A mapreduce framework for spatial data. In Proceedings of the
2015 IEEE 31st international conference on Data Engineering, Seoul, Korea, 13–17 April 2015; pp. 1352–1363.

77. Sriharsha, R. Magellan: Geospatial Analytics on Spark. 2015. Available online: https://github.com/
harsha2010/magellan (accessed on 9 July 2019).

78. You, S.; Zhang, J.; Gruenwald, L. Large-scale spatial join query processing in cloud. In Proceedings of the
2015 31st IEEE International Conference on Data Engineering Workshops, Seoul, Korea, 13–17 April 2015;
pp. 34–41.

79. Hughes, J.N.; Annex, A.; Eichelberger, C.N.; Fox, A.; Hulbert, A.; Ronquest, M. Geomesa: A distributed
architecture for spatio-temporal fusion. Proc. SPIE 2015, 9473, 94730F.

80. Yu, J.; Wu, J.; Sarwat, M. Geospark: A cluster computing framework for processing large-scale spatial data.
In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information
Systems, Seattle, WA, USA, 3–6 November 2015; p. 70.

81. Xie, D.; Li, F.; Yao, B.; Li, G.; Zhou, L.; Guo, M. Simba: Efficient in-memory spatial analytics. In Proceedings
of the 2016 International Conference on Management of Data, San Francisco, CA, USA, 26 June–1 July 2016;
pp. 1071–1085.

82. Hagedorn, S.; Räth, T. Efficient Spatio-Temporal Event Processing with STARK. In Proceedings of the 20th
International Conference on Extending Database Technology (EDBT), Venice, Italy, 21–24 March 2017.

83. Chen, X.; Vo, H.; Aji, A.; Wang, F. High performance integrated spatial big data analytics. In Proceedings of
the 3rd ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, Dallas, TX, USA,
4 November 2014; pp. 11–14.

84. Eldawy, A.; Mokbel, M.F. Analyze Your Spatial Data Efficiently Data Efficiently. 2017. Available online:
http://spatialhadoop.cs.umn.edu/ (accessed on 13 May 2019).

85. Eldawy, A.; Mokbel, M.F.; Jonathan, C. HadoopViz: A MapReduce framework for extensible visualization
of big spatial data. In Proceedings of the 2016 IEEE 32nd International Conference on Data Engineering
(ICDE), Helsinki, Finland, 16–20 May 2016; pp. 601–612.

86. Lenka, R.K.; Barik, R.K.; Gupta, N.; Ali, S.M.; Rath, A.; Dubey, H. Comparative analysis of SpatialHadoop
and GeoSpark for geospatial big data analytics. In Proceedings of the 2016 2nd International Conference on
Contemporary Computing and Informatics (IC3I), Greater Noida, India, 14–17 December 2016; pp. 484–488.

87. Yu, J.; Zhang, Z.; Sarwat, M. Spatial data management in apache spark: The GeoSpark perspective and
beyond. GeoInformatica 2018. [CrossRef]

88. You, S.; Zhang, J.; Gruenwald, L. Spatial join query processing in cloud: Analyzing design choices and
performance comparisons. In Proceedings of the 2015 44th International Conference on Parallel Processing
Workshops (ICPPW), Beijing, China, 1–4 September 2015; pp. 90–97.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/harsha2010/magellan
https://github.com/harsha2010/magellan
http://spatialhadoop.cs.umn.edu/
http://dx.doi.org/10.1007/s10707-018-0330-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Big Data for Disaster Management
	Disaster Management
	Disaster Response
	Big Data and Disaster Response
	Satellite Imagery
	Wireless Sensor Web and Internet of Things (IoT)
	Crowdsourcing and Social Media
	GPS Traces and Mobile Call Detail Record (CDRs)
	Simulation
	Unnamed Aerial Vehicles (UAVs), Drones and LiDAR


	Big Data Processing Frameworks
	Popular Big Data Processing Frameworks
	Batch Processing Frameworks
	Stream Processing Frameworks
	Hybrid Processing Frameworks

	Big Spatial Data Processing Frameworks
	Popular Hadoop-Based Spatial Processing Frameworks
	Popular Hadoop-based Spatial Processing Frameworks


	Big Data and Processing Frameworks for Disaster Response
	Link between Big Data and Processing Frameworks for Disaster Response
	Use Case—Big Data and Processing Framework for Flooding Response

	Conclusions and Future Directions of Research
	References

