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Abstract: Recently, with the rapid growth of the number of datasets with remote sensing images,
it is urgent to propose an effective image retrieval method to manage and use such image data.
In this paper, we propose a deep metric learning strategy based on Similarity Retention Loss (SRL)
for content-based remote sensing image retrieval. We have improved the current metric learning
methods from the following aspects—sample mining, network model structure and metric loss
function. On the basis of redefining the hard samples and easy samples, we mine the positive and
negative samples according to the size and spatial distribution of the dataset classes. At the same
time, Similarity Retention Loss is proposed and the ratio of easy samples to hard samples in the class
is used to assign dynamic weights to the hard samples selected in the experiment to learn the sample
structure characteristics within the class. For negative samples, different weights are set based on
the spatial distribution of the surrounding samples to maintain the consistency of similar structures
among classes. Finally, we conduct a large number of comprehensive experiments on two remote
sensing datasets with the fine-tuning network. The experiment results show that the method used in
this paper achieves the state-of-the-art performance.

Keywords: content-based remote sensing image retrieval (CBRSIR); deep metric learning (DML);
structural ranking consistency

1. Introduction

Due to the wide use of satellite sensors with short revisit time, various forms of remote sensing
images have been accumulated in an unprecedented number. The large amount of generated data that
is nowadays available makes it necessary to be able to extract complex information from these images.
Image retrieval is a popular information extraction mechanism. Its principle is to retrieve visually
consistent images from a predefined database, given a query concept [1,2].

Content-Based Remote Sensing Image Retrieval (CBRSIR) is a specific application of image retrieval
on remote sensing image datasets. The working mode of the CBRSIR system can be summarized as two
basic processes, namely feature extraction and image matching. The purpose of feature extraction is to find
and extract some representative and robust features from the images. The traditional feature extraction
methods rely on artificial descriptors (such as SIFT) [3], which is also a widely used remote sensing image
representation method in RSIR (Remote Sensing Image Retrieval) work [4,5]. The extraction of artificial
features mainly depends on the artificial tags associated with the scene. However, the design of tags
requires sufficient professional knowledge and is time-consuming. At the same time, the quality and
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availability of the tags directly affect the performance of search engines. Therefore, this feature extraction
method has certain defects. On the other hand, some characteristics of the remote sensing images also
hinder the direct application of some commonly used image retrieval techniques (such as geometric
verification, query expansion, etc.). The remote sensing image contains not only one specific target but
also one or more targets and it also has rich geographic information, such as man-made buildings and
large-scale natural landscapes, such as trees, farmland, grassland and so forth. Specifically, the remote
sensing image covers a relatively large geographical area and can contain different numbers of different
semantic objects at the same time, which can be captured by the region at different scales. Although some
common remote sensing datasets contain many images that belong to the same semantic category, these
images are quite different. For instance, they may differ significantly in appearance or originate from
different geographic areas. In addition, the resolution level of remote sensing image and the height of
image acquisition will directly affect the size of the target object and some details. In summary, these
characteristics have led to certain difficulties and challenges in RSIR.

With the further development of deep learning, CBIR has developed from the simple “artificial
descriptor” to the complex “convolutional descriptor” which can be extracted from the Convolutional
Neural Networks (CNNS) [6–8]. The deep convolutional neural network can establish the mapping
relationship between low-level features and high-level semantics. By extracting highly abstract image
information with high-level semantics, the accuracy of RSIR after deep neural network training is
better than RSIR based on traditional artificial features [9–11]. In addition, the deep features can be
automatically learned from the data without human effort, which makes deep learning techniques have
extremely important application value in large-scale RSIR research. Among them, Deep metric learning
(DML) is a technology that combines deep learning and metric learning [12]. The purpose of DML is to
learn the embedding space, which encourages the embedding vectors between similar samples to be
closer, while the dissimilar samples are far away from each other [13–15]. Deep metric learning uses the
discriminative ability of CNNS to embed images into metric space, where semantic metrics between
measured images can be directly calculated by simple metric algorithms such as Euclidean distance,
which makes the implementation process of the algorithm simpler. In addition deep metric learning
has been applied in many natural image domains, such as face recognition [12], visual tracking [16,17],
natural image retrieval [18], cross-model retrieval [19], geometric multi-manifold embedding [20] and
so forth. Although remote sensing images are quite different from ordinary natural images, deep
metric learning still has a full development prospect in CBRSIR.

In the DML framework, the loss function plays a key role. With the development of research,
a number of loss functions have been proposed. Kaya M et al. [21] combined with recent research results,
revealed the importance of deep metric learning and summarized the current problems dealt with
in this filed. For instance, the contrastive loss [22,23] captures the similarity or dissimilarity between
pairwise of samples, while the triplet-based loss [12,24] describes the relationship among the triple
samples. Each triplet consists of an anchor sample, a positive sample and a negative sample. In general,
the triplet loss is better than contrastive loss due to the increased relationship between positive and
negative sample pairs. Inspired by this, recent researches have considered the richer representation of
structured information among multiple samples [25–28] and have achieved good performance in many
practical applications (such as image retrieval and image clustering). In particular, Wang et al. [29]
proposed a metric learning loss function based on the angular relationship of constrained triples in
negative samples, which is called “angular loss”. However, the most advanced DML methods still
have some limitations. First of all, we notice that when selecting samples for some loss functions,
only partial sample information is used and differences and permutations between sample classes
are ignored. In this case, not only are some non-trivial samples wasted but the relevant information
between the classes is not fully utilized. In Reference [30], researcher used all non-trivial samples with
non-zero loss (i.e., violating the pair constraint of query) to construct a structure with more information
to learn the embedding vectors, so as to avoid wasting the structural information of some non-trivial
samples. Although the information obtained by the method is abundant, some of them are redundant,
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which would cause a considerable burden on the calculation cost and data storage. Secondly, the spatial
distribution of samples within the class is not considered in the above-mentioned losses but only the
similar samples are made as close as possible. Moreover, we observe that the previous losses are
equal to each positive sample, that is, they do not consider the impact of the quantitative relationship
between simple samples and hard samples on loss optimization. Ideally, a larger weight should be
given to a hard sample with a larger percentage. In Reference [31], the authors proposed Distribution
Structure Learning Loss (DSLL), which considers that the relative spatial structure of the initial state of
negative sample classes is maintained by weighting the negative sample classes. However, it does not
consider the influence of the relationship among the positive samples and the interaction between the
positive and negative samples on the spatial structure. The above methods would lose some similarity
structures and useful sample information within the class.

Based on the above issues, this paper proposes a deep metric learning method based on the
Similarity Retention Loss (SRL). This method is improved in the following two aspects. The first is to
mine samples based on information pairs and the second is to assign different relative weights to all
selected samples. Firstly, we set different thresholds and selection strategies for positive and negative
samples to ensure that the selected samples are both representative and non-redundant. At the same
time, we recommend that attention should be paid to preserve the structural information within the
positive sample class during sample mining. Specifically, we just try to narrow the samples of the
same class to within a certain distance threshold, without forcing them to a point. Secondly, we assign
dynamic weights to selected hard samples according to the ratio of easy samples to hard samples
within the class and weight the loss of ranking consistency based on the distribution of negative sample
classes. We build an end-to-end fine-tuning network architecture for remote sensing image retrieval,
as shown in Figure 1. Our contributions in this paper are listed as follows:

1. We propose the Similarity Retention Loss (SRL) for deep metric learning, which is completed by
two iterative steps, samples mining and pair weights, as shown in Figure 1. The SRL considers
the maintenance of similarity structures within and between classes, which makes the model
more efficient and more accurate in collecting and measuring information pairs, thus improving
the performance of image retrieval.

2. We learn a threshold between similar samples to preserve the distribution of data within the class
instead of narrowing down each class to a certain point in the embedding space. The efficient
information retention within the class is considered so that the spatial structure features of each
class are preserved in the feature space.

3. By using an end-to-end fine-tuning network, we have performed extensive and comprehensive
experiments on remote sensing datasets of PatternNet [11] and UCMD (UC Merced Land Use
Dataset) [32] to validate the SRL theory. The results show that our method is significantly better
than the state-of-the-art technology.

2. Related Work

The fine-tuning network for remote sensing image retrieval consists of samples, network model
structure and loss function. These three compositions constitute a complete end-to-end image retrieval
system through deep metric learning training. In the following, we will discuss the related work on
our main contributions around these three aspects.

2.1. Fine-Tunning Network

The fine-tuning of the network is an alternative method applied directly to a pre-trained network.
The method is initialized by a pre-trained classification network and then trained for different tasks.
Image feature learning on large-scale datasets (i.e., ImageNet) has strong generalization capabilities
and can be effectively migrated to other small-scale datasets [33]. In the process of CNN transfer
learning, the output value of the fully connected layer should be considered [7]. However, since the



ISPRS Int. J. Geo-Inf. 2020, 9, 61 4 of 22

value of the local feature of the convolutional layer expression image is relatively large [34], we usually
use convolutional layer features instead of fully connected layers.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 4 of 23 
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Pooling is another major concept in CNNS and is actually a form of down-sampling. Pooling layer
imitate the visual input system by reducing the dimension and abstraction of the visual input object.
It has the following three functions—feature invariance, feature dimension reduction and avoidance
of over-fitting. There are some general pooling models, the most common of which is sum pooling
proposed by Babenko and Lempitsky [35] and it performs well in combination with descriptor
whitening. Subsequently, Kalantidis et al. proposed weighted sum pooling [36], which can also be
seen as a method of transfer learning. The hybrid scheme of linear combination of maximum and sum
pooling is the R-Mac [37]. A global hybrid pooling is proposed for image retrieval [38], which is a
standard local pooling for object recognition [39].

In this paper, we first use the pre-trained network to fine-tune the network, then select sample
pairs from the remote sensing image dataset to train the network and finally optimize our proposed
SRL for the final remote sensing image retrieval task. Observing the remote sensing data, we find
that the image covers a large geographical area and the area contains rich background information
and different numbers of different semantic pairs. We compared several common pooling methods
and choose the most appropriate SPoC (Sum-pooled Convolutional Features) pooling layer as the
aggregation layer. This convergence layer serves as the last layer of fine-tuning the convolutional
neural network to build the system that is best suited for CBRSIR.

2.2. Hard Sample Mining

Sample pair-based metric learning usually use a large number of paired samples but these samples
often contain much redundant information. These redundant samples greatly reduce the actual
function and convergence speed of the model. Therefore, the sampling strategy plays a particularly
critical role in measuring the training speed of the learning model. In contrastive loss, the method of
selecting training samples is the simplest, that is, randomly selecting positive and negative sample
pairs in the data. Initially, some researches on embedded learning tended to use the simple pairs
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training in Siamese network [23,40]. The Siamese network is composed of two computing branches,
each of which contains a CNN component. However, this method reduces the convergence speed of
the network.

In order to solve this problem, the hard negative mining methods have been proposed and widely
used [12,41–43]. Schroff et al. [12]. proposed a hard negative mining scheme by exploring semi-hard
triplets. The scheme defines a negative pair father than the positive. However, this negative mining
method only generate a small number of valid semi-hard triples and network training usually requires
large samples. Harwood et al. [41] proposed a framework called smart mining to collect the samples
from the entire dataset. The method will incur high off-line computing costs. Ge et al. [43] proposed
the Hierarchical Triplet Loss (HTL), which constructs a hierarchical tree of all categories and collects
hard negative pairs through dynamic margin. In Reference [42], the problem of sample mining in deep
metric learning was discussed and a distance weighted sample mining was proposed to select pairs of
negative samples.

Although all samples within the threshold were mined by the above methods, the differences
between the negative sample classes and the influence of surrounding samples on the samples were
not considered. In this paper, the diversity and difference of samples are fully considered. Based on
this, we select multiple positive samples and negative samples of different classes and set the distance
to the samples according to the distribution of negative neighbor samples. We propose a new hard
samples mining method, that is, selecting different mining strategies to select positive sample pairs and
negative sample pairs by sorting the sample similarity and class information. In this way, the sample
selection is both representative and non-redundant, thereby achieving faster convergence and better
performance of the model.

2.3. Loss Functions for Deep Metric Learning

The loss function plays a key role in deep metric learning. It is to increase or decrease the distance
between samples by adjusting the similarity between samples. In Reference [44], it is recommended
to use triplets as training samples to learn the feature space, where the similarity of the positive
sample pairs of triples is higher than that of the negative sample pairs. Specifically, the feature space
assigns equal weight to the selected sample pairs. In addition, quadruple loss functions have been
studied, such as histogram loss [45]. N-pair-mc [23] learns the embedded features by using the
structured relationship between multiple samples. The goal is to extract N-1 negative samples from
N-1 categories, one negative sample for each category and improve triplet loss by interacting with
more negative samples and categories. Concretely, the samples selected in N-pair loss are also assigned
the same weight. Movshovitz-Attias et al. proposed Proxy-NCA Loss [42], which uses a proxy instead
of the original sample to solve the sampling problem. Static proxy assignment is a proxy for each
class and its performance is better than dynamic proxy assignment. However, Proxy-NCA cannot
retain the scalability of DML, so the number of classes need to be proposed. Dong et al. proposed a
binomial deviance loss [46] and used binomial bias to evaluate the loss between labels and similarity.
Binomial deviance cost makes the model mainly train on the hard pairs, that is, the model focuses
more on negative samples near the boundary. Unlike the hinge loss, the binomial deviance loss assigns
different weights to the sample pairs based on their distance differences. Later, Song et al. proposed
Lifted Struct [25], which learns the embedded features by combining all negative samples. The purpose
of Lifted Struct is to draw the positive sample pair as close as possible and push all negative samples
to a position farther than the margin.

Observing the above loss, triplet loss and N-pair loss give the same weight to the positive and
negative sample pairs. Unlike them, binomial Deviance Loss considers self-similarity and Lifted Struct
Loss sets weights for positive and negative sample pairs according to negative relative similarity.
However, these methods ignore the distribution of samples in the class and the differences between
different classes between classes. In this work, we propose the Similarity Retention Loss (SRL). We sort
all the samples except the query image according to the learned feature space similarity score with
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the query. Then we weight the selected sample pairs according to the feature sorting and label, that
is, the degree to which each pair violates the constraint. SRL avoids the limitations of traditional
methods by merging a number of hard samples and exploring the inherently structured information.
For negative sample pairs, the distance should be as large as possible, so the higher the similarity,
the greater the impact and the higher the weight. For positive samples, on the contrary, the lower
the similarity, the more attention needs to be paid and the higher the weight. The illustration and
comparison of different ranking-motivated losses and our method is presented in Figure 2.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 6 of 23 

 

illustration and comparison of different ranking-motivated losses and our method is presented in 
Figure 2. 

 
Figure 2. The illustration and comparison of different ranking-motivated losses and our method. 

3. The Proposed Approach 

Our target is to identify all examples that match this query image from other samples in the 
dataset, given any query image of any class in the remote sensing dataset. Set X = ሼ(x୧, y୧)ሽ୧ୀଵ୒  as the 
input data, where (x୧, y୧) represents the i-th image whose class label is y୧.The number of classes is 
C, where y୧ ∈ ሾ1,2, … , Cሿ. Let ሼX୧ୡሽ୧ୀଵ୒ౙ  be the set of images in class c,where the total number of images 
in class c is Nୡ. 

3.1. Sampling Mining 

For the query images, we mine both informative positive and negative samples. Given a query 
sample X୧ୡ, we sort all other samples by their similarity to X୧ୡ. P୧ୡ is a collection of the same class as 
the query image which is expressed as P୧ୡ = ൛X୨ୡหj ≠ iൟ ,  |P୧ୡ| = Nୡ − 1 . N୧ୡ  is a collection of other 
images, denoted as N୧ୡ = ൛X୨୩หk ≠ c, j ∈ ሾ1,2, … , N୩ሿൟ, |N୧ୡ| = ∑ N୩୩ஷୡ . We create a dataset consisting of 
tuples (X୧ୡ , P(X୧ୡ) , N(X୧ୡ)), where X୧ୡ  represents the query image, P(X୧ୡ)  is the positive set that 
selected from P୧ୡ and N(X୧ୡ) is the negative set selected from N୧ୡ. The training image pairs consist of 
these tuples, where each tuple corresponds to |P(X୧ୡ)| positive sample pairs and |N(X୧ୡ)| negative 
sample pairs. 

Positive sample set P(X୧ୡ). Based on the spatial characteristics of the samples, we observe that 
the positive samples closer to the query not only do not have much useful information to train the 
network but also increase the cost of samples calculations. Therefore, based on the CNN descriptor 
distance, we select from P୧ୡ a fixed number of positive samples that are least similar to the query 
image as hard positive samples for training iterations. The choice of hard positive samples depends 
on the current CNN’s parameters and is refreshed per epoch. 

Figure 2. The illustration and comparison of different ranking-motivated losses and our method.

3. The Proposed Approach

Our target is to identify all examples that match this query image from other samples in the

dataset, given any query image of any class in the remote sensing dataset. Set X =
{(

xi, yi

)}N

i=1
as the

input data, where
(
xi, yi

)
represents the i-th image whose class label is yi.The number of classes is C,

where yi ∈ [1, 2, . . . , C]. Let
{
Xc

i

}Nc

i=1
be the set of images in class c, where the total number of images in

class c is Nc.

3.1. Sampling Mining

For the query images, we mine both informative positive and negative samples. Given a query
sample Xc

i , we sort all other samples by their similarity to Xc
i . Pc

i is a collection of the same class as the

query image which is expressed as Pc
i =

{
Xc

j

∣∣∣j , i
}
,
∣∣∣Pc

i

∣∣∣ = Nc − 1. Nc
i is a collection of other images,

denoted as Nc
i =

{
Xk

j |k , c, j ∈ [1, 2, . . . , Nk]
}
,
∣∣∣Nc

i

∣∣∣ = ∑
k,c Nk. We create a dataset consisting of tuples

(Xc
i , P

(
Xc

i

)
, N

(
Xc

i

)
), where Xc

i represents the query image, P
(
Xc

i

)
is the positive set that selected from
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Pc
i and N

(
Xc

i

)
is the negative set selected from Nc

i . The training image pairs consist of these tuples,

where each tuple corresponds to
∣∣∣∣P(

Xc
i

)∣∣∣∣ positive sample pairs and
∣∣∣∣N(

Xc
i

)∣∣∣∣ negative sample pairs.

Positive sample set P
(
Xc

i

)
. Based on the spatial characteristics of the samples, we observe that the

positive samples closer to the query not only do not have much useful information to train the network
but also increase the cost of samples calculations. Therefore, based on the CNN descriptor distance,
we select from Pc

i a fixed number of positive samples that are least similar to the query image as hard
positive samples for training iterations. The choice of hard positive samples depends on the current
CNN’s parameters and is refreshed per epoch.

Negative sample N
(
Xc

i

)
. Since the classes are non-overlapping, we select negative samples from

classes that are different from the class of the query image. We only select hard negative samples [47,48],
that is, mismatched samples with the most similar descriptor to the query image. K-nearest neighbors
from all mismatched samples are selected. At the same time, there are multiple similar samples in the
same class, which would lead to redundancy of sample information. A fixed number of samples each
class is allowed, which provide greater variability in the negative samples. The choice of hard negative
samples depends on the parameters of the current CNN and is refreshed multiple times per epoch.

3.2. Loss-Based Sample Weight

Our algorithm aims to bring the positive samples closer to the query image than any negative
samples, while pushing the negative samples farther than a predetermined boundary τ. In addition,
we try to separate the positive sample boundary from the negative sample boundary by the margin α,
that is, the positive samples are within the query sample τ− α distance. Therefore, α is the margin
between the negative and positive samples.

For each query image, the similarity between the selected positive and negative samples and
their similarity to the query sample are different. In order to make the most of them, we recommend
weighting them according to the loss value of the selected samples, that is, the degree to which each
sample pair violates the constraint.

We set a hard positive sample mining threshold between the positive samples and the query
according to the spatial distribution features of the samples. Assume that the distance between the
sample that is the least similar to the query sample and the query sample is margin. The positive
samples with a distance from the query image in the range of [0, threshold] are defined as easy positive
samples with high similarity to the query, while positive samples with a distance in the range of
[threshold, margin] are hard positive samples. The huge impact of hard positive samples in training will
weaken the influence of negative samples on gradient changes, which will not only affect the accuracy
of the network but also slow down the learning speed. Therefore, in this work, the number of hard
positive samples is used to limit the impact of positive samples on loss and to avoid an imbalance in the
loss of positive and negative samples during training. The threshold is set as τ−α, that is, the feature
distance threshold of the positive sample and the query image and we record the number of samples
in Pc

i with a distance greater than τ−α from the query as ni. Given the selected positive sample Xc
j

(Xc
j ∈ P

(
Xc

i

)
), its weight w+

ij can be calculated as:

w+
ij =

1∣∣∣∣P(
Xc

i

)∣∣∣∣ ∗
1−

∣∣∣Pc
i

∣∣∣− ni∣∣∣Pc
i

∣∣∣
2

. (1)

For negative sample pairs, we propose a loss weight based on the negative sample order similarity
retention. The selection of negative samples is not continuous but is determined by two factors—sample
class and similarity with the query. From the perspective of class, the degree of difference between
the general characteristics of different negative sample classes and that of the class where the query
sample is located is different, so the learning level should also be different. At this time, the fixed
margin τ cannot work well. Suppose there are three classes, C, N1, N2, where C is the class of the
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query image and N1, N2 are different negative sample classes. If the difference between the N1 and C is
intuitively smaller than that between N2 and C, then the distance between N1 and C should be smaller
than that between N2 and C. However, when the margin value is fixed as set before, if the setting is
larger, the model may not be able to distinguish between N1 and C well. On the contrary, if the margin
is set smaller, N2 and C may not be distinguished well. At the same time, the similarity between the
negative samples and the query image is also different, so the impact on the training itself and the
required computational cost are also different. We assign different weights to each negative sample
class to maintain their relative similarity to the query sample, while ensuring that the characteristics of
each class are retained. Specifically, given a selected negative sample Xk

j (Xk
j ∈ N

(
Xc

i

)
), its weight w−ij

can be calculated as:

w−ij = 1−


∣∣∣∣N(

Xc
i

)∣∣∣∣− rj∣∣∣∣N(
Xc

i

)∣∣∣∣


2

, (2)

where rj is the sort position of the negative sample Xk
j in the negative sample list N

(
Xc

i

)
.

3.3. Similarity Retention Loss

For each query Xc
i , we aim to make it father from the negative sample Nc

i than it is from the
positive samples Pc

i , with a minimum difference of α. Therefore, we pull samples from the same class
into the margin τ− α. We train the dataset on a two-branch network with the Siamese architecture.
Each branch is a clone of another branch, which means that they have the same hyper-parameters.

In order to bring together all positive samples in Pc
i , we minimize:

Lp
(
Xc

i ; f
)
=

∑
Xc

j ∈P(X
c
i )

w+
ij

([
f
(
Xc

i

)
− f

(
Xc

j

)
− (τ−α)

]
+

)2
, j ∈

[
1, 2, . . . ,

∣∣∣∣P(
Xc

i

)∣∣∣∣]. (3)

Similarly, to push negative samples in Nc
i away from the boundary τ, we minimise:

LN
(
Xc

i ; f
)
=

∑
Xk

j ∈N(Xc
i )

([
w−ij ∗τ− f

(
Xc

i

)
− f

(
Xk

j

)]
+

)2
, j ∈

[
1, 2, . . . ,

∣∣∣∣N(
Xc

i

)∣∣∣∣], (4)

where f is a discriminative function we learned, so that the similarity between the query and the positive
samples in the feature space is higher than the similarity between the query and the negative samples.

In SRL, we treat the two minimized objectives equally and optimize them jointly:

LSRL

(
Xc

i ; f
)
=

1
2
(Lp

(
Xc

i ; f
)
+ LN

(
Xc

i ; f
)
). (5)

In order to reduce the amount of calculation and calculation time, we randomly select I (I<Nc)

pictures from each class c as the query image set Q =
{{

Xc
q

}I

q=1

}C

c=1
and other images act as the library

(the selected query picture is also the library of other query pictures). The SRL of the network is
represented as:

LSRL(X; f) =
1

I ∗C

∑
∀c,∀q

LSRL

(
Xc

q; f
)
. (6)

3.4. Learning Fine-Tuning Network Based on SRL

We implement our SRL based on a two-branch network with the Siamese architecture. Each branch
is a clone of another branch, which means that they have the same hyper-parameters. The learning of
the deep embedding function based on SRL is illustrated in Algorithm 1. Network training and testing
process is shown in Figure 1.
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Algorithm 1 Similarity Retention Loss on Fine-tuning Network

1:
Parameters Setting: The distance constraint τ on negative examples, the margin between positive and
negative examples α, the number of classes C, the number of images per class Nc(c ∈ C), the total number
of images N =

∑C
i Ni, the number of query of per class I.

2:
Input: the discriminative function f, the learning rate lr,

X =
{(

xi, yi

)}N

i=1
=

{{(
Xc

i

)}Nc

i=1

}C

c=1
,the query list Q =

{{
Xc

q

}I

q=1

}C

c=1
3: Output: Updated f.
4: Step 1: Forward all images into f to obtain the images’ embedding feature vector.
5: Step 2: Online iterative ranking and loss computation.
6: for each query Xc

q do
7: Rank other images according to the similarity with the Xc

q

8: Mine positive samples P
(
Xc

q

)
.

9: Mine negative samples N
(
Xc

q

)
.

10: Weigh positive samples using Equation (1).
11: Weigh negative samples using Equation (2).
12: Compute Lp

(
Xc

q; f
)

using Equation (3).

13: Compute LN
(
Xc

q; f
)

using Equation (4).

14: Compute LSRL
(
Xc

q; f
)

using Equation (5).
15: end for
16: Compute LSRL(X; f) using Equation (6).
17: Step 3: Gradient computation and back propagation to update the parameters of f.
18: ∇ f = ∂LSRL(X; f)/∂ f
19: f = f− lr∗∇ f

4. Experiments

4.1. Datasets

This paper uses two published RSIR datasets, PatternNet [11] and UCMD [32], to evaluate our
proposed Similarity Retention Loss (SRL) for deep metric learning. The PatternNet [11] is a large-scale
remote sensing dataset with high-resolution collected for RSIR. It includes 38 classes, each of which has
800 images of 256 × 256 pixel size. This dataset is images of US cities collected through Google Map API
or Google Earth imagery. PatternNet contains images with different resolutions. The maximum spatial
resolution is about 0.062m and the minimum spatial resolution is about 4.693m. The representative
image of each class of the PatternNet dataset are shown in Figure 3, visually. The UCMD [32] is
a land-cover or land-use dataset used as the RSIR benchmark dataset. It contains 21 classes with
100 images of 256 × 256 pixels per class. These images are segmented from large aerial images
downloaded by the USGS (United States Geological Survey), with a spatial resolution of approximately
0.3m. UCMD is a highly challenging dataset with some high overlapping categories such as the sparse,
medium and dense residential. A representative image of each class of the UCMD dataset are shown
in Figure 4, visually.
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Figure 4. Illustration of the UCMD (UC Merced Land Use Dataset). The UCMD database covers
21 land-cover classes and one image of each class randomly selected from the UCMD are shown.

4.2. Performance Evaluation Metrics

In this experiment, we measure the similarity with the Euclidean distance and use the mean
Average Precision (mAP), precision of the top-k (P@k) and recall of the top-k (R@k) to evaluate image
retrieval performance.

4.3. Training Setup

For UCMD, we adopt the data segmentation strategy that produces the best performance in
Reference [10], that is, randomly select 50% samples of each category for training and the remaining 50%
for testing. For PatternNet, we use 80%/20% training and testing data segmentation strategy from [11].
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Figure 5 presents the two CNNs used by our network (shown in Figure 1), which are used as the
basic networks for feature extraction, namely VGG16 [49] and ResNet50 [50]. We use MatConvNet [51]
to fine-tune the network. For the CNNs, only the convolutional layers are used to extract features.
We remove the last pooling layer of the CNN networks and use the other convolutional layers
as our basic CNN structure and then connect the SPoC pooling and L2 regularization to the new
network structure. In this experiment, the network is implemented based on the PyTorch framework.
Initialize the parameters of each network using the corresponding network weights pre-trained on the
ImageNet. We train the network with the Adam optimizer, with weight decay 5 × 10−4, momentum
0.9, proved by the increase of embedded dimension and the training tuple of batch size 5.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 10 of 23 

 

 

Figure 4. Illustration of the UCMD (UC Merced Land Use Dataset). The UCMD database covers 21 
land-cover classes and one image of each class randomly selected from the UCMD are shown. 

4.2. Performance Evaluation Metrics 

In this experiment, we measure the similarity with the Euclidean distance and use the mean 
Average Precision (mAP), precision of the top-k (P@k) and recall of the top-k (R@k) to evaluate image 
retrieval performance.  

4.3. Training Setup.  

For UCMD, we adopt the data segmentation strategy that produces the best performance in 
Reference [10], that is, randomly select 50% samples of each category for training and the remaining 
50% for testing. For PatternNet, we use 80% / 20% training and testing data segmentation strategy 
from [11]. 

Figure 5 presents the two CNNs used by our network (shown in Figure 1), which are used as the 
basic networks for feature extraction, namely VGG16 [49] and ResNet50 [50] . We use MatConvNet 
[51] to fine-tune the network. For the CNNs, only the convolutional layers are used to extract features. 
We remove the last pooling layer of the CNN networks and use the other convolutional layers as our 
basic CNN structure and then connect the SPoC pooling and L2 regularization to the new network 
structure. In this experiment, the network is implemented based on the PyTorch framework. Initialize 
the parameters of each network using the corresponding network weights pre-trained on the 
ImageNet. We train the network with the Adam optimizer, with weight decay 5×10−4, momentum 
0.9, proved by the increase of embedded dimension and the training tuple of batch size 5.  

  

(a) (b) 

Figure 5. Convolutional Neural Network (CNN) network structure: (a) VGG16; (b) ResNet50. Figure 5. Convolutional Neural Network (CNN) network structure: (a) VGG16; (b) ResNet50.

4.4. Result and Analysis

4.4.1. Pooling Methods

In this section we compare the most advanced pooling methods—max pooling (MAC) [52], average
pooling (SPoC) [35] and Generalized Mean pooling (GeM) [33]. We use the SRL loss for network training
on the datasets with the learning rate 5e-8. Instead of fine-tuning the pooling layer of the last layer of
the convolutional neural network, the above three pooling methods are used. It can be concluded from
Figure 6 that SPoC is superior to MAC and GeM on all datasets. In general, there are two main aspects to
the error of feature extraction. The first is an increase in the variance of the estimates due to the finite size
of the neighborhood. The second reason is that the error of the convolutional layer parameters leads to
the offset of the estimated mean. The SPoC pooling can retain more image background information by
calculating the average value of the image area, so as to reduce the occurrence of the first type of error.
This feature satisfies the large geographic area of the remote sensing images dataset, has rich background
information and contains different numbers of different semantic pairs, which makes the effect of SPoC
better than other pooling methods in remote sensing image retrieval.
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4.4.2. Impact of the Negative Margin

As shown in the Section 3.2, for each query sample, SRL ensures the consistency of the structural
similarity order of the negative samples by adjusting the size of the negative sample space structure.
Since the constraint parameter τ determines the size of the negative space, we performed experiments
on the dataset to analyze the impact of the parameter τ.

In order to adapt the threshold τ to the PatternNet dataset and improve the performance of
different networks, the experiment selects a value of 0.5–1.5 and trains the network with a learning rate
of 0.00001. Finally, the results of τ = 0.85, 1.05, 1.25, 1.45 were selected according to the experiment,
as shown in Figure 7. The chart shown in Figure 7a is trained under VGG16, while Figure 7b represents
the dataset obtained under ResNet50 training. The results show that the optimal parameter τ for
VGG16 network is 1.05, while it is 1.25 for ResNet50. As can be seen from the graph, the performance
of the network increases with the increase of the threshold τ but when τ increases to a certain threshold,
the value decreases. This is because when the threshold value is small, the distance between the query
and negative samples is not enough to distinguish them. As the threshold τ increases, negative samples
with high similarity will decrease, which will affect the training effect. The results show that when
the thresholds are 1.05 (VGG6) and 1.25 (ResNet50), the difference between the positive and negative
samples is the best and the model results are the best. In the next experiment, we chose the threshold τ

= 1.05 for the VGG16 network and 1.25 for the ResNet50.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 12 of 23 
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4.4.3. Impact of the Parameter α

The threshold τ is used to control the distance that the negative samples are pushed away, while
the threshold α is used to control the degree of aggregation of the positive samples, that is, the distance
between the positive and negative samples. By setting the threshold α, the distance between the
positive and negative samples can be pulled while maintaining the spatial structure among the positive
samples. As described in 4.4.2, in VGG16, we performed an experiment of threshold α under the
condition of τ = 1.05 and in ResNet50, we set τ = 1.25.
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In the experiment, the values of the threshold α are 0.2, 0.4, 0.6, 0.8 and 1.0, respectively.
The experimental results are shown in Figure 8. The results show that when we set α = 1.0, the best
result is obtained in VGG16 (a). And in ResNet50 (b), the best result is obtained at α = 0.6. That’s
because when the α is small, the distance between the positive and negative samples is not large
enough, so that the network after training cannot clearly distinguish them. Conversely, when α is too
large, the spatial structure inside the positive sample cannot be maintained. Therefore, the network
can achieve the best effect only when the value of α can distinguish the positive and negative samples
and maintain the positive sample space structure.ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 13 of 23 
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4.4.4. Ceteris Paribus Analysis

In this section, we study in more benefits of using the method Similarity Retention Loss over
other structural losses. For this purpose, we replace the proposed SRL in our approach with the
Triplet Loss [44], N-pair-mc Loss [23], Proxy-NCA Loss [42], Lifted Struct Loss [25] and Distribution
Structure Learning Loss (DSLL) [31]. We then re-train the network, keeping the network structure
(ResNet50) identical and separately re-tuning some hyper-parameters, such as the weight decay and
the learning rate. In the experiment, we use the mean Average Precision (mAP), precision of the top-k
(P@k) and recall of the top-k (R@k) to evaluate image retrieval performance. The UCMD dataset
used in the experiment contains 21 classes of 100 images per class. We randomly select 50% of each
class for training and the remaining 50% for testing (i.e., 50 images of each class). According to
the quantitative characteristic of UCMD dataset, we choose Recall at top 25, 40, 50, 100 as one of
the evaluation criteria for the test result. We randomly select 80% of each class of images from the
PatternNet dataset (containing 38 classes, 800 images per class) as the training set and the remaining
20% as the test set (i.e., 160 images of each class are used as the test set). So we select Recall at top 80,
100, 160, 200 as the evaluation criteria for the test result of the PatternNet dataset. We evaluate the
proposed algorithm on image retrieval tasks in comparison with the advanced metric learning loss
algorithms. Performance after training is presented in the Tables 1 and 2. As can be seen from the
table, the accuracy of our method is higher than others. When using the ResNet50 network framework,
compared with the DSLL, SRL provides a significant improvement of +1.26% in mAP and +1.12% in
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R@50 on UCMD dataset. Furthermore, the SRL signatures achieves a gain of +1.07% in mAP and
+0.98% in R@160 on PATTERNNET dataset, which surpassed recently published DSLL and achieves
mAP of 99.41%, P@10 of 100 and R@180 of 99.96%. In general, our approach is demonstrated to be the
most effective. This is because we use a new method of mining samples through spatial distribution
and the loss of similarity retention calculation for all selected samples.

Table 1. The evaluation results of mAP and P@K on the PatternNet and UCMD database comparing
with the other structure loss.

Dataset Structural Loss mAP P@5 P@10 P@50 P@100 P@1000

UCMD

Triplet Loss 92.94 98.52 96.92 92.13 46.07 4.61
N-pair-mc Loss 91.11 94.94 91.15 90.33 45.17 4.52

Proxy-NCA Loss 95.71 97.56 96.69 94.89 47.45 4.74
Lifted Struct Loss 96.58 98.05 97.62 95.75 47.88 4.79

DSLL 97.52 98.09 98.03 96.68 48.34 4.83
SRL 98.78 99.63 99.56 99.33 48.96 4.90

PatternNet

Triplet Loss 94.96 99.04 97.63 96.62 95.16 15.69
N-pair-mc Loss 94.81 97.04 95.46 94.49 95.08 15.67

Proxy-NCA Loss 97.72 98.98 98.65 98.23 98.02 15.71
Lifted Struct Loss 98.09 98.90 98.82 98.78 98.46 15.76

DSLL 98.34 99.05 98.98 98.93 98.67 15.86
SRL 99.41 100 100 99.55 99.24 15.90

Table 2. The evaluation results of R@K on the PatternNet and UCMD database comparing with the
other structure loss methods.

Dataset Structural Loss R@25 R@40 R@50 R@100

UCMD

Triplet Loss 47.75 76.99 91.23 96.21
N-pair-mc Loss 45.39 75.57 90.19 95.65

Proxy-NCA Loss 48.56 77.47 96.92 99.14
Lifted Struct Loss 49.04 77.11 97.13 99.26

DSLL 49.63 78.06 97.31 99.28
Similarity Retention Loss 49.71 78.48 98.43 99.95

Dataset Structural Loss R@100 R@130 R@160 R@180

PatternNet

Triplet Loss 48.85 77.52 96.32 98.61
N-pair-mc Loss 48.80 77.38 95.97 98.36

Proxy-NCA Loss 48.97 78.60 97.31 99.17
Lifted Struct Loss 49.01 78.64 97.51 99.28

DSLL 49.16 79.03 98.30 99.33
Similarity Retention Loss 49.96 79.78 99.28 99.96

4.4.5. Overall Results and Per-Class Results

We present experiments on the PatternNet and UCMD datasets, with margin τ = 1.05 for
VGG16 and 1.25 for ResNet50. In this experiments we set margin α = 1.0 for VGG16 and 0.6 for
ResNet50. The final results of the PatternNet and UCMD datasets are shown in Table 3. It can be
seen that, compared to the state-of-the-art performance, the SRL-based features can achieve optimal
performance. When using the VGG16 network framework, compared with the MiLaN, SRL provides a
significant improvement of +7.38% in mAP on UCMD dataset. Furthermore, the SRL achieves a gain of
+24.92% in mAP and +3.67% in P@10 on PATTERNNET dataset, which surpassed recently published
GCN (Graph Convolutional Networks). When using the ResNet50 network framework, on the UCMD
dataset, the experimental results achieve +8.38% growth compared to MiLaN in mAP and achieve
mAP of 99.41%, P@10 of 100 and offer over 73.11%, 95.53% gain over the GCN on PATTERNNET
dataset. At the same time, we find that although the effect of the EDML (Enhancing Remote Sensing
Image Retrieval with Triplet Deep Metric Learning Network) [53] on the PatternNet dataset is slightly
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higher than our SRL, for example, the EDML achieves a gain of +1.40% and +0.14% in mAP on
PatternNet database, which trained respectively on the VGG16 network and ResNet50. But based on
comprehensive experimental results, our SRL is the best. First, from the results (Table 3), our method
can effectively improve the accuracy of the network on the UCMD dataset (the number of images in
the dataset is smaller). Specific example—the SRL method gains +2.91% and +2.15% on the mAP
obtained after training on the VGG16 network and the ResNet50 network, respectively, which exceeds
the result of EDML. This shows that our method is more friendly to the dataset with insufficient images,
which is very meaningful in image retrieval. Second, we find that the sample mining strategy adopted
by the EDML is to randomly pick positive samples from the same class as the anchor (except the
anchor) and negative samples from any other classes. This strategy has some disadvantages. (1) The
representativeness of the samples is difficult to guarantee; (2) The work of obtaining samples is heavy;
(3) It makes the training convergence time longer. In order to verify the advantages of the proposed
SRL algorithm model in terms of training speed, we reproduce the EDML and compare the training
time of the model with our model. We conduct experiments on Intel® i7-8700, 11 GB memory CPU,
Ubuntu 18.04LTS operating system and use VGG16 and ResNet50 as the basic network to calculate
the training time. The results show that the training time of 70 epochs of UCMD database using
EDML algorithm in VGG16 and ResNet50 network is 9.8 h and 27.8 h respectively, while the training
time of PatternNet dataset is 11.6 h and 30.9 h respectively. Training with SRL took 8.2 h (VGG16,
UCMD), 24.4 h (ResNet50, UCMD), 9.9 h (VGG16, PatternNet) and 27.6 h (ResNet50, PatternNet).
In general, our approach is demonstrated to be the most effective. To summarize, on both remote
sensing datasets like UCMD dataset and PatternNet dataset, our method achieves new state-of-the-art
or comparable performance.

Interestingly, the best performance on PatternNet is significantly better than the UCMD.
One possible reason is that data-driven is a major feature of deep metric learning and the learning
performance of representative features is affected by the amount of training data. PatternNet has
a larger amount of data than UCMD, so the network for the former is better trained than the latter.
The image retrieval visualized results of PatternNet and UCMD trained under the ResNet50 network
are shown in Figure 9.

Table 3. Evaluation results on the PatternNet and UCMD database comparing with the
state-of-the-art methods.

Dataset Feature mAP P@5 P@10 P@50 P@100 P@1000

PatternNet

Gabor Texture [11] 27.73 68.55 62.78 44.61 35.52 8.99
VLAD [11] 34.10 58.25 55.70 47.57 41.11 11.04
UFL [11] 25.35 52.09 48.82 38.11 31.92 9.79

VGGF Fc1 [11] 61.95 92.46 90.37 79.26 69.05 14.25
VGGF Fc2 [11] 63.37 91.52 89.64 79.99 70.47 14.52
VGGS Fc1 [11] 63.28 92.74 90.70 80.03 70.13 14.36
VGGS Fc2 [11] 63.74 91.92 90.09 80.31 70.73 14.55
ResNet50 [11] 68.23 94.13 92.41 83.71 74.93 14.64
LDCNN [11] 69.17 66.81 66.11 67.47 68.80 14.08
G-KNN [54] 12.35 - 13.24 - - -

RAN-KNN [54] 22.56 - 37.70 - - -
VGG-VD16 [54] 59.86 - 92.04 - - -
VGG-VD19 [54] 57.89 - 91.13 - - -
GoogLeNet [54] 63.11 - 93.31 - - -

GCN [54] 73.11 - 95.53 - - -
SGCN [54] 71.79 - 97.14 - - -

EDML (VGG16) [53] 99.43 99.53 99.50 99.47 99.46 15.90
EDML (ResNet50) [53] 99.55 99.58 99.57 99.57 99.54 15.90

SRL (VGG16) 98.03 99.86 99.20 98.41 98.26 15.90
SRL (ResNet50) 99.41 100 100 99.55 99.24 15.90
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Table 3. Cont.

Dataset Feature mAP P@5 P@10 P@50 P@100 P@1000

UCMD

KSLSH [55] 63.0 - - - - -
G-KNN [54] 7.5 - 10.12 - - -

RAN-KNN [54] 26.74 - 24.90 - - -
VGG-VD16 [54] 53.71 - 78.34 - - -
VGG-VD19 [54] 53.19 - 77.60 - - -
GoogLeNet [54] 53.13 - 80.96 - - -

GCN [54] 64.81 - 87.12 - - -
SGCN [54] 69.89 - 93.63 - - -
MiLaN [54] 90.4

EDML (VGG16) [53] 94.87 97.41 96.87 90.57 48.28 4.90
EDML (ResNet50) [53] 96.63 97.75 97.57 93.20 48.55 4.90

SRL (VGG16) 97.78 98.97 98.14 96.78 48.74 4.90
SRL (ResNet50) 98.78 99.63 99.56 99.33 48.96 4.90
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For per-class results, specific results of mAP evaluation which is performed with VGG16 and
ResNet50 in the PatternNet and UCMD datasets comparing with the pre-trained CNNs are shown
in Tables 4 and 5. It can be seen that the results of each class of training based on SRL are improved
compared to pre-training. The performances of mAP based on the different deep features of VGG16 (top)
and ResNet50 (bottom) are visually shown in Figures 10 and 11, respectively. Overall, for every class,
the SRL-based features are superior to the pre-trained features on both datasets. As presented in Table 4,
in general, for almost every class, SRL-based features outperform pre-trained features. Pre-trained
VGG16-based features have particular difficulty in retrieving images of building, intersection and
sparser residential, with an average mAP of 25.68%, much lower than that of its counterpart, with 87.4%
for the SRL-based features on the UCMD dataset. Meanwhile, on the PatternNet dataset, Pre-trained
VGG-based features have particular difficulty in dense residential, intersection and parking lot, with an
average mAP of 29.35%, reach up to 93.8% for SRL-based features. Pre-trained ResNet50-based features
perform poorly on classes like bridge, nursing home intersection and runway, with an average mAP
of 26%. This value for SRL-based feature is 98.38% on the UCMD dataset. While on the PatternNet
dataset, pre-trained features are not performance well in bridge, tennis court and ferry terminal, with
an average mAP of 28.27%, while 95.11% for SRL-based features, which further demonstrates the
superior performance of SRL-based features for CBRSIR. As can be seen from Figures 10 and 11 that
SRL-based features outperform much better than pre-trained features for all the classes. At the same
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time, the results on the PatternNet are better than UCMD in both networks and ResNet50 outperformed
VGG16 for both datasets.

Table 4. Evaluation of mAP which is performed with VGG16 and ResNet50 on per-class in the
PatternNet datasets comparing with the pre-trained CNNs.

VGG16 ResNet50

Pre-trained SRL-based Pre-trained SRL-based

Airplane 95.23 100 92.99 100
Baseball Field 97.01 99.91 96.82 100

Basketball Court 50.67 97.24 45.32 98.63
Beach 100 100 99.92 100
Bridge 24.34 98.97 13.50 99.43

Cemetery 93.74 100 93.87 100
Chaparral 99.94 100 100 100

Christmas Tree Farm 98.23 100 83.88 100
Closed Road 93.16 99.99 91.26 99.99

Coastal Mansion 99.65 97.21 98.02 99.90
Crosswalk 96.63 100 93.57 100

Dense Residential 52.99 82.00 46.84 99.70
Ferry Terminal 58.19 83.67 40.14 87.97
Football Field 97.61 99.99 89.17 100

Forest 99.84 100 100 100
Freeway 99.82 100 99.62 100

Golf Course 95.18 99.53 95.13 99.93
Harbor 89.84 96.23 92.12 96.76

Intersection 52.38 98.75 51.39 99.93
Mobile Home Park 86.20 99.55 81.47 100

Nursing Home 23.87 96.72 59.68 98.15
Oil Gas Field 99.99 100 99.99 100

Oil Well 100 100 100 100
Overpass 77.56 99.82 90.00 99.98

Parking Lot 99.96 99.99 98.30 100
Parking Space 52.53 100 47.60 100

Railway 83.15 99.63 78.05 100
River 99.75 100 99.82 100

Runway 29.86 99.46 36.26 99.98
Runway Marking 99.34 99.99 99.88 100

Shipping Yard 97.11 99.76 99.91 99.99
Solar Panel 99.01 99.43 99.57 100

Sparse Residential 64.32 91.98 47.74 99.75
Storage Tank 42.85 99.68 55.23 99.57

Swimming Pool 18.29 96.15 43.95 99.13
Tennis Court 59.74 91.65 31.18 97.92

Transformer Station 69.75 99.97 63.97 99.97
Wastewater Treatment Plant 91.73 98.49 90.99 99.92

Average 78.66 98.03 77.56 99.41
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Table 5. Evaluation of mAP which is performed with VGG16 and ResNet50 on per-class in the UCMD
datasets comparing with the pre-trained CNNs.

VGG16 ResNet50

Pre-trained SRL-based Pre-trained SRL-based

Agriculture 94.48 99.8 99.74 100
Airplane 66.49 100 99.73 99.98

Baseball Diamond 60.82 99.90 59.27 99.96
Beach 99.25 100 99.03 100

Buildings 33.53 74.21 37.12 99.07
Chaparral 99.80 100 100 100

Dense Residential 36.83 94.47 24.49 97.63
Forest 88.30 100 99.82 100

Freeway 55.65 99.16 87.55 99.57
Golf Course 42.08 99.60 83.02 99.77

Harbor 59.00 100 68.00 100
Intersection 31.76 98.37 31.26 98.81

Medium Residential 48.77 93.24 61.19 99.00
Mobile Home Park 58.78 100 72.27 99.94

Overpass 37.55 97.52 51.57 99.50
Parking Lot 79.00 100 32.30 82.80

River 67.59 98.96 60.50 99.17
Runway 57.05 100 89.27 99.98

Sparse Residential 11.76 89.64 55.88 99.18
Storage Tanks 77.72 99.17 88.40 99.49
Tennis Court 39.01 99.99 78.47 100

Average 59.32 97.78 70.35 98.77
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5. Conclusions

In this work, we propose a deep metric learning based on Similarity Retention Loss for image
retrieval and apply it to the CBRSIR, which is a key technology to effectively utilize the growing
quality of remote sensing images. The SRL combines the image features of remote sensing images (only
RGB composite images) and improves the algorithm from the following three aspects—the feature
aggregation method, sample mining strategy based on information pairs selection and the relative
weight calculation of different sample pairs, so as to achieve accurate image retrieval. First, we propose
to use the SPoC pooling method to aggregate the convolutional features extracted by the network
to adapt to remote sensing images with a large geographic area and rich background information.
Second, we propose the concept of similarity retention. By learning the sample distribution around
each sample, we separate the negative pairs from the query image into different distances. At the same
time, we learn an intra-class threshold for each class to avoid compressing the features of the positive
samples to a point and guarantee the structure of the positive samples. Third, we use the similarity
as the benchmark and set different thresholds and selection strategies to select positive and negative
samples. In this way, the algorithm can ensure that the sample selection is both representative and
not redundant.

We test the method on two publicly available datasets and achieve the best performance on
both datasets. It is sufficient to prove the effectiveness of the Similarity Retention Loss for deep
metric learning in image retrieval. More importantly, our method can also be applied to geographic
information research, such as urban road traffic intelligence, environmental testing, natural disaster
detection, vegetation mapping, urban planning and research on high-resolution remote sensing
image retrieval.
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