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Abstract: The present paper provides a review of two research topics that are central to geospatial
semantics: information modeling and elicitation. The first topic deals with the development
of ontologies at different levels of generality and formality, tailored to various needs and uses.
The second topic involves a set of processes that aim to draw out latent knowledge from unstructured or
semi-structured content: semantic-based extraction, enrichment, search, and analysis. These processes
focus on eliciting a structured representation of information in various forms such as: semantic
metadata, links to ontology concepts, a collection of topics, etc. The paper reviews the progress made
over the last five years in these two very active areas of research. It discusses the problems and the
challenges faced, highlights the types of semantic information formalized and extracted, as well as
the methodologies and tools used, and identifies directions for future research.
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1. Introduction

Geospatial semantics has been at the center of research over the last 20 years. The semantic
problems occurring during the exchange, reuse, and integration of heterogeneous spatial data and
the need to achieve semantic interoperability were among the first research challenges faced by the
Geographic Information Science (GIScience) community [1]. In this endeavor, data about location and
thematic attributes were not considered rich enough to fully represent the complexity of geographic
entities and to support their integration and interpretation in different contexts. Hence, the discussion
shifted from geospatial data to geospatial concepts and from data specifications to the nature and
conceptualization of geographic entities and phenomena. Research on ontologies allowed for formal
representations of geospatial concepts and enriched the discussion on the nature and conceptualization
of geographic space.

Over these years, several reviews of geospatial semantics have highlighted different research
directions based on the challenges of that specific period. In an early review of geospatial semantics,
Kuhn [1] identified two aspects pertaining to this research field: Understanding Geographic Information
Systems (GIS) contents and capturing this understanding in formal theories. He also highlighted that
reasoning is even more important than formalization of meaning. He identified several challenges
related to geospatial semantics and semantic interoperability: data discovery and evaluation, and service
discovery, evaluation, and composition.

The interpretation of data across heterogeneous data sources and scientific domains became even
more challenging in the context of the Semantic Web. The Semantic Web has further complicated the
modeling, interpretation, reuse, and integration of knowledge, since “web knowledge has no primitives,
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no core, no fundamental categories, no fixed structure, and is heavily context-dependent” [2] (p.4).
Two main strands of research on geospatial semantics are prominent in this context: semantic modeling
and semantic-based search, integration, and interoperability [3].

From a cognitive and linguistic perspective, notions, such as experiential realism, geographic
information atoms, semantic reference systems, semantic datums, similarity measurement,
and conceptual spaces, prevail in geospatial semantics research [4]. Under this perspective, the problem
of semantics of geographic information is formulated on the basis of constraints on the use and
interpretation of geographic terms [5].

Although, space has emerged as a fundamental integrative framework to support interdisciplinary
research, spatial notions evoke different interpretations, across different domains and common-sense
conceptualizations. Kuhn [6] proposed a set of 10 high-level concepts essential for understanding
spatial information in a transdisciplinary context: location, neighborhood, field, object, network, event,
granularity, accuracy, meaning, and value. These concepts may constitute the core for supporting a
broader use of spatial information in science and society; however, formalizing and mapping their
varying uses across disciplines is still a research challenge.

In a more recent review of geospatial semantics, Hu delineates six major, highly-interconnected
research areas for which the meaning of geographic information constitutes a common core: semantic
interoperability, digital gazetteers, geographic information retrieval, geospatial Semantic Web, place
semantics, and cognitive geospatial concepts [7].

The present paper delves into two research challenges that are central to geospatial semantics:
information modeling and elicitation. The first challenge deals with the development of ontologies at
different levels to support various knowledge-based processes. At an upper level, research focuses on a
richer semantic characterization of space, time, spatial and temporal concepts, and relations. These are
central notions across upper-level ontologies. They act as unifying framework across domains and are
fundamental for ontology development, reuse, and integration. At the domain level, interdisciplinary
geospatial concepts (In the context of the paper, both for the semantic information formalization and
elicitation processes, the term “concept” is used to denote a conceptual grouping of entities or instances
based on a set of distinguishing properties, roles, or functions. The terms “instances” or “entities”
are used to denote the “things” represented by a concept (e.g., the concept “city” compared to the
instance Paris). present many challenges for semantic formalization. Ontological research has also
moved beyond the strict formalization of geospatial concepts under specific domains, to the shared
interpretation of their meaning across different contexts [3] and the development of lightweight and
micro-ontologies tailored to specific needs [2,8,9].

The second challenge refers to the elicitation of semantic information from semi-structured and
unstructured resources: places, regions, events, trajectories, topics, geospatial concepts and relations.
Knowledge elicitation traditionally refers to a set of techniques that attempt to deduce the knowledge
of a domain expert in order to obtain a concrete representation of this knowledge [10]. In this paper;
however, the term is used more broadly to embrace a set of processes that aim to draw out latent
knowledge from unstructured or semi-structured content: semantic-based extraction, enrichment,
search, and analysis. These processes focus on eliciting a structured representation of information in
various forms, such as: semantic metadata, links to ontology concepts, a collection of topics, a semantic
network, etc.

The paper reviews the progress made over the last five years in these two very active areas of
research. It discusses the various problems targeted and the challenges faced, highlights the types
of semantic information formalized and extracted, as well as the methodologies and tools used,
and identifies directions for future research.

2. Semantic Information Formalization

The formalization of semantics is a prevalent research issue for various processes, such as semantic
mapping and integration, semantic search, and knowledge discovery. Although geographic space
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may be viewed as a common ground to interconnect different conceptualizations, its inherent semantic
complexity and vagueness, as well as the different domains and perspectives involved, cause semantic
heterogeneities that need to be identified and resolved. Ontological approaches have been recognized
as critical to model geospatial semantics, resolve semantic heterogeneities, integrate different semantic
descriptions, and ground conceptualizations [11].

A co-citation and cluster analysis of subjects, journals, and authors based on 1533 articles published
between 2001 and 2016, has shown that ontologies are prominent in GIScience research across several
disciplines (computer science, engineering, geography, geosciences, etc.) [12]. Ontologies have
been employed for solving various research problems such as GEographic Object-Based Image
Analysis (GEOBIA) [13–15], information extraction and retrieval [16,17], information integration [18,19],
linked data [20–22] and geoprocessing workflows [23], geospatial data provenance on the web [24],
interpretation of natural language descriptions [25], automatic feature recognition from point clouds [26],
and sketch map interpretation [27].

Traditionally, ontologies are classified according to two criteria: their level of formality and
their level of generality. According to formality, ontologies range from informal to semiformal
and formal, although the distinction is not meant to be a rigid one [28]. According to generality,
four types of ontologies are distinguished: top-level, domain, task, and application ontologies [29].
Top-level, upper-level, or foundational ontologies define general, fundamental concepts, such as entity,
property, relation, process, action, space, and time. These are domain-independent concepts and;
therefore, are used as a framework for unfolding and associating more specialized domain knowledge.
Domain ontologies define the concepts pertinent to a domain, such as oceanography, topography,
meteorology, natural disasters, etc., whereas task ontologies define the concepts relating to a task, such
as analysis, planning, monitoring, and forecasting. Both domain and task ontologies may specialize
the concepts defined by a top-level ontology. Application ontologies on the other hand, define
concepts relative to a particular domain and task, and may specialize both corresponding ontologies.
For example, an application ontology on urban planning formalizes both domain knowledge on
the urban environment and task knowledge on planning. An application ontology on earthquake
emergency response specializes both domain knowledge on natural disasters and task knowledge on
monitoring, warning, response, and recovery. Figure 1 shows examples of ontologies developed at
different levels of generality.

2.1. Upper-Level Ontologies

Geographic ontologies may be considered as domain ontologies. However, top-level ontologies
are also relevant to geospatial knowledge. They define central notions for the geospatial domain
such as space, time, spatial regions, boundaries, and processes and investigate ontological issues
regarding the hypostasis and dimensionality of geographic entities and their dependence on spatial
regions and boundaries [30–32]. Prominent upper-level ontologies that have influenced geospatial
ontology development and research are: Basic Formal Ontology (BFO) [33,34], Descriptive Ontology for
Linguistic and Cognitive Engineering (DOLCE) [35], General Formal Ontology (GFO) [36], Generalized
Upper Model (GUM) [37], and Suggested Upper Merged Ontology (SUMO) [38]. WordNet [39],
although not designed as an ontology but as a lexical database and semantic network, has also been
used in the geospatial domain for ontology-based information extraction and retrieval, and semantic
similarity computation.

Top-level ontologies are core components of formal ontology, the discipline that integrates aspects
of philosophy, formal logic, and artificial intelligence [40]. Formal ontology is defined as the theory of
a priori distinctions among the entities of the world (physical objects, events, processes, quantities,
etc.) and among the meta-categories used to model the world (concepts, properties, qualities, states,
etc.) [41]. An important ontological distinction upon which several top-level ontologies are built is that
between continuants and occurrents. Continuants (also called endurants) are objects that are wholly
present through time, whereas occurrents (also called perdurants) are objects that are temporally
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restricted and have temporal parts, such as processes or events. Space, spatial regions, and spatial
relations, as well as time and temporal phenomena are fundamental notions in upper-level ontologies,
as are mereology, the theory of parthood relations [42], and topology, the theory of spatial continuity
and compactness [43].

In the last five years, the discipline of formal ontology has focused on further formalization of
these notions. Baumann et al. [44] introduced GFO-Space, a first-order formalization of an ontology
of space for General Formal Ontology (GFO). The principles underlying the ontology originate from
Brentano’s ideas on space and continuum and focus on phenomenal space (i.e., space determined
by material objects and relations between them), as appearing to the mind of a subject. GFO-Space
accounts for mereotopological relations, boundaries and dimensionality of entities. The axiomatization
of their theory is based on four primitives: The category “space region” (i.e., the basic entities of
phenomenal space), and the relations: “spatial part of”, “spatial boundary of”, and “coincidence”.
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Figure 1. Indicative ontologies at different levels of generality.

Mereogeometry is the theory of space and spatial relations which formalizes geometric notions
within a region-based mereological framework. On the other hand, mereotopological relations, such
as contact, parthood, and overlap, are also fundamental for the qualitative representation of spatial
information. Schmidtke [45] outlines a mereogeometric framework for the formalization of geometric
relations of incidence, congruence, and parallelism over extended regions. Hahmann [46] extends the
axiomatization of CODI (Containment and Dimension), a first-order logic ontology of multidimensional
mereotopology, with the mereological operations intersection and difference that apply to pairs of
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regions regardless of their dimensions. CODI provides a first-order formalization of the notions of
spatial containment and relative spatial dimension and defines a set of six intuitive mereotopological
relations: Containment and its refinement parthood as well as contact and its refinements partial
overlap, incidence, and superficial contact.

Time and temporal phenomena are also prominent notions within upper-level ontologies.
Key issues relating to how time and temporal phenomena are treated relate to: (a) Dimensionality (i.e.,
the treatment of instants and intervals), (b) frame-dependence (i.e., definition of time with respect to a
reference frame), and (c) indexicality (i.e., reference to and distinction of the past, the present, and the
future) [47].

In order to reconcile the data-modeling and process-modeling requirements of GIScience,
Galton [48] laid the foundation for a formal theory of events and processes integrating two distinct
ways of viewing time, referred as historical and experiential time. Historical time, presupposed by
data-modeling functions, such as storage, retrieval, manipulation, and presentation, is considered
as static and “frozen” and places emphasis on completed events. Experiential time on the other
hand, presupposed by process-modeling functions, such as explanation, prediction, and simulation,
is considered as active and “fluid” and places emphasis on ongoing processes. Temporal scale
or granularity is considered important to delineate the relationship between processes and events.
The theory distinguishes different types of processes, specified by activity conditions, and different
types of events, specified by occurrence conditions. It also presents a formalization of operations for
deriving events from processes, processes from events, and events from events.

Understanding the models and theories subsumed by upper-level ontologies is critical for
making the ontological commitments explicit, specifying relations to other upper-level ontologies
and extending upper-level ontologies to create new domain-specific ones. Hanzal et al. [49] present
a comparative survey of how foundational and Semantic Web ontologies (Event Ontology (http:
//purl.org/NET/c4dm/event.owl#), Simple Event Model Ontology [50], Linking Open Descriptions of
Events (http://linkedevents.org/ontology/), etc.) formalize the notion of event. Based on modeling
considerations followed by these ontologies, they provide an empirical classification of events in four
categories: actions, happenings, planned “social” events, and structural components of temporal
entities. Categorization relies on the distinction between object and relationship as formalized by the
modeling language PURO [51]. Muñoz and Grüninger [52] apply the process of ontology verification
on core temporal concepts of the Suggested Upper Merged Ontology (SUMO) to rule out unintended
models and characterize missing intended ones. The verification process also supports ontology
mappings to other time ontologies, PSL-Core ontology [53] and Descriptive Ontology for Linguistic
and Cognitive Engineering (DOLCE) upper ontology [35].

2.2. Domain, Task, and Application Ontologies

Besides upper-level ontologies, a variety of other ontologies have been developed in the geospatial
domain at different levels of formality and generality (Figure 1). Domain ontologies have been
developed at different levels of detail, covering whole domains, such as earth and environmental
sciences [54], oceanography [20], land cover and land use [55], etc., as well as specific domain concepts,
such as city, locality, and forest.

Research in the last five years addresses or revisits issues related to the formalization of
interdisciplinary or vague geospatial concepts, grounding their meaning on upper-level ontologies.
Furthermore, the formalization of geospatial concepts with a cognitive and linguistic basis such as
places, landforms, or landscapes aims to bridge the gap between the qualitative human perception and
the necessity to have rigorous, unambiguous definitions in view of their implementation.

Alvarez and Bennett [56] propose a framework for the formal definition of the highly vague
and interdisciplinary concept “forest”. The framework encapsulates different aspects of forest
definitions pertaining to their classification (i.e., determining whether an object is an instance of a
class), individuation (i.e., establishing how many distinct individual objects of a given type exist),
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and demarcation (i.e., determining the boundary of an object), such as location, morphological, metrical,
topological, and mereological restrictions, qualitative characteristics, scale, etc. The framework, which
is implemented in a prototype prolog-based GIS, is based on supervaluation semantics to express the
variety of possible meanings of the forest concept, from different perspectives. The fundamental idea
of supervaluation semantics is that a vague language can be interpreted in many different precise ways,
each of which can be modelled in terms of precise truth conditions for each predicate of the language,
which is referred to as a precisification.

Ballatore [57] takes a preliminary step towards the formalization of an ontology of place by
surveying the representation of this vague, polysemous, and culturally-dependent notion across
a range of lightweight and formal ontologies. He also discusses issues (cultural and linguistic
dependence of place, temporal dimension, social role, scale, and themes) and outlines conceptual tools
for a multi-faceted formal ontology of place.

Calafiore et al. [58] focus on cities, which are viewed as systems of various types of urban artefacts
interacting with human activities by playing multiple roles, probably at the same time. They perform
an ontological analysis of urban artefacts and their social uses. In this context, a distinction is made
between the intended and actual uses of urban artefacts and places are treated as social concepts.
The ontological analysis is grounded on DOLCE foundational ontology due to its cognitive orientation.
The general taxonomy in DOLCE is enriched with the notions of urban artefact, urban artefact types
and roles, social practices, institutional places and social places and uses of artefacts are modeled in
terms of roles theory.

In the context of historical geographic information systems, Garbacz et al. [59] identify diachronic
criteria of identity for localities in order to model the type of changes they may undergo over time.
In this context, localities are considered as endurants, which possess qualities relating to their name,
location, type, and mereology, and participate in events or processes (considered as perdurants).
Event-based criteria of identity are used to define qualitative transformations of localities with respect
to one of these qualities.

Gharebaghi and Mostafavi [60] propose an ontology of the urban environment for modeling
the interaction between humans and their social and physical environments and supporting the
accessibility of people with disabilities. The ontology is based on the nature-development perspective.
In this approach, concepts belong either to natural environment (such as forest and tree) or to developed
environment (such as sidewalk and building) and have physical and social properties which are related
to each other.

Stephen and Hahmann [61] developed an ontological framework for the formalization of surface
and subsurface spatio-temporal processes that describe hydrologic flow (Figure 2). The framework
extends static hydrogeological concepts from the Hydro Foundational Ontology (HyFO) [61] and also
builds on the distinction between endurants and perdurants and the participation relation PC(x, y,
t) between them, as defined by DOLCE upper-level ontology. The participation relation PC(x, y, t)
expresses that an endurant x participates in a perdurant y at time t. Flow processes are distinguished
based on how and what kinds of endurants can participate and are formalized using semantic roles
such as theme participant, source participant, goal participant, and locative participant. The taxonomy
and related concepts are axiomatized in first-order logic.

Several domain ontologies were also developed for landforms. Landforms are fuzzy objects whose
perception and classification mainly depends on the context and on human cognition. Hence, it has been
acknowledged since long that a universal ontology of landforms does not exist. Since landforms are
mainly characterized by their shape, several ontologies for specific fields or languages were proposed.
These ontologies structure landforms into general concepts that are further specialized with a more
precise shape. Yan et al. [62] present an ontology of undersea features following the nomenclature from
the International Hydrographic Organization. They first define broad categories such as depression and
eminence that are then refined into features such as trench and reef based on some shape descriptors
such as “elongated” or “deep”. The ontology is applied to feature classification from bathymetric
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data. Grenoble et al. [63] propose an ontology including both land and sea terms in the Kalaallisut
language, categorizing features according to their shape and their function. More generally, Sinha et
al. [64] present a broader landform reference ontology where landforms are also organized according
to their shape and according to their dependence on the planetary body (Figure 3). The ontology is
applied to mapping linguistic categories to landform categories.
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Figure 2. The taxonomy of hydrological flow concepts [61] by Stephen and Hahmann licensed under
CC-BY 3.0. Hydrological flow is distinguished at the higher-level based on whether water moves
within a single locative participant (intraflow) or between two distinct locative participants (interflow).
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(by Sinha et al. licensed under CC-BY 3.0). DOL indicates categories from the DOLCE ontology.

One limitation of these approaches is that the shape of a landform is always defined within
a context and terms such as “large” or “narrow” always depend on this context and the use of a
generic landform ontology for classifying landforms from data is still a challenge. Hence, Guilbert
et al. [65] propose to use salient elements of the terrain forming the backbone (or skeleton) of the
landforms assuming that these elements can be translated into geometrical shapes (point or line) that
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can be identified from a digital terrain model. The landform is then delineated by a region built
around its skeleton. The model proposes to handle fuzziness by defining a core region surrounded
by a larger region where its boundary is located (Figure 4). Guilbert and Moulin [66] describe a
framework for applying this approach to landform description, illustrating it on specific landforms.
However, the framework remains mainly a conceptual approach that needs to be implemented for
generic purpose.

ISPRS Int. J. Geo-Inf. 2019, 8, x FOR PEER REVIEW 8 of 31 

 

framework for applying this approach to landform description, illustrating it on specific landforms. 

However, the framework remains mainly a conceptual approach that needs to be implemented for 

generic purpose. 

 

Figure 4. Landform description based on their saliences. 

Domain ontologies also brought a lot of interest in remote sensing and Geographic 

Object-Based Image Analysis (GEOBIA). Most processing in remote sensing requires the 

classification of data (usually raster images) into significant segments based on geometrical, 

topological, and semantic attributes. While most methods are data-driven, the abundance of data in 

different formats and the need for generic approaches require more knowledge-driven approaches 

that would allow for the integration of expert knowledge in the process. For that purpose, domain 

ontologies are relevant since ontologies can store knowledge and help sharing this knowledge [67]. 

Ontologies can include both human concepts, based on cognition, and their translation into 

numerical concepts required for processing. By this way, a same concept can be mapped to different 

numerical definitions associated to different types of data. As mentioned by Arvor et al. (2019) [67], 

the use of ontologies does not improve classification results but provides a more reliable 

representation of expert knowledge. A geographical object is defined by its characteristics in a 

domain ontology. Each characteristic is then related to some characteristic values measured on the 

image (Figure 5). In the context of foreshore identification, Argyridis and Argialas [15] designed an 

ontology to formalize the implicit spectral, geometric, and spatial relationships described in the 

interpretation criteria, and employ them during identification. Rajbhandari et al. [14] also emphasize 

that ontologies allow for a better modularization of the methods: Common knowledge can be reused 

together with features more specific to an application. They also facilitate the automation of the 

classification since knowledge is transferred minimizing human intervention. They show in a case 

study that ontologies can be combined with machine learning approaches where the ontology stores 

generic knowledge and machine learning supplements the classification with specific rules. The 

application of some rules to the ontology often depends on the definition of some threshold values. 

These thresholds can be learned and applied for each specific case. The result of the classification can 

then be assessed by semantic similarity measures. 

Figure 4. Landform description based on their saliences.

Domain ontologies also brought a lot of interest in remote sensing and Geographic Object-Based
Image Analysis (GEOBIA). Most processing in remote sensing requires the classification of data (usually
raster images) into significant segments based on geometrical, topological, and semantic attributes.
While most methods are data-driven, the abundance of data in different formats and the need for
generic approaches require more knowledge-driven approaches that would allow for the integration of
expert knowledge in the process. For that purpose, domain ontologies are relevant since ontologies can
store knowledge and help sharing this knowledge [67]. Ontologies can include both human concepts,
based on cognition, and their translation into numerical concepts required for processing. By this way,
a same concept can be mapped to different numerical definitions associated to different types of data.
As mentioned by Arvor et al. (2019) [67], the use of ontologies does not improve classification results
but provides a more reliable representation of expert knowledge. A geographical object is defined by
its characteristics in a domain ontology. Each characteristic is then related to some characteristic values
measured on the image (Figure 5). In the context of foreshore identification, Argyridis and Argialas [15]
designed an ontology to formalize the implicit spectral, geometric, and spatial relationships described
in the interpretation criteria, and employ them during identification. Rajbhandari et al. [14] also
emphasize that ontologies allow for a better modularization of the methods: Common knowledge can
be reused together with features more specific to an application. They also facilitate the automation
of the classification since knowledge is transferred minimizing human intervention. They show in a
case study that ontologies can be combined with machine learning approaches where the ontology
stores generic knowledge and machine learning supplements the classification with specific rules.
The application of some rules to the ontology often depends on the definition of some threshold values.
These thresholds can be learned and applied for each specific case. The result of the classification can
then be assessed by semantic similarity measures.
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Figure 5. Example of the image representation of a concept for GEOBIA. The sensory gap is the gap
between the real world and its computational description including indicators computed from the
image (from [67], by Arvor et al. licensed under CC-BY-NC-ND).

In the last years, there has been a research shift towards the development of task and application
ontologies to define, share, and reuse more specific knowledge. These ontologies are especially relevant
for defining complicated geospatial tasks and operations or simulating geospatial workflows necessary
to solve complex geospatial problems. They usually require the combination of other ontologies.
For example, Zhuang et al. [68] developed an ontology-based approach using various ontologies
(task ontology, process ontology, GIS operation ontology, interface ontology, data type ontology, GIS
data ontology, and GIService-type ontology) to support a task-oriented knowledge base for modeling
meteorological early-warning (MEW) analysis (Figure 6). In the context of web-service approaches,
Hofer et al. [69] developed a knowledge base to support spatial analysis workflow development.
Yue et al. [23] present a linked data approach for discovering geospatial resources in the Web of Data
to build geoprocessing workflows. The approach leverages existing ontologies and vocabularies to
semantically describe different types of geospatial resources, such as sensors, observations, raster data,
and geospatial services.

Rospocher [70] outlines the methodology for creating the Personalized Environmental Service
Configuration and Delivery Orchestration (PESCaDO) Ontology for supporting personalized
environmental decision support. The methodology involves requirements specification, reuse
of existing models and ontologies, such as GeoSPARQL (http://www.ogc.org/standards/geosparql)
and PROVenance Interchange Ontology (PROV-O) (https://www.w3.org/TR/prov-o/), terminology
extraction, formalization, revision, and documentation. The upper-level of the PESCaDO ontology
includes three interrelated components: (a) The problem component describing the user request,
activity, and profile; (b) the data component describing meteorological, pollen, and air quality data;
and (c) the conclusion component for encoding warnings, recommendation, and suggestions provided
by the system.

Application ontologies have also been developed for managing natural disaster information [71,72].
In this context, ontologies are designed not only as a knowledge base but rather as a tool for assisting
decision making in emergency response. Zhong et al. [72] implemented an application ontology where
further information is inferred from semantic and spatial data. Linyao et al. [71] propose a tool for
retrieving and managing disaster-related data. The objective is to automatically link some sources
by measuring spatial and temporal similarities. Both approaches provide a system where data are
collected or disseminated through web services.

http://www.ogc.org/standards/geosparql
https://www.w3.org/TR/prov-o/
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Ontologies at different levels of generality are also built to formalize and support reasoning
over cartographic knowledge. Earlier works mostly focused on the formalization of the cartographic
generalization process [73] classifying cartographic features, spatial relations, and relational constraints
to be observed by the generalization process. Gould and Mackaness [74] also include generalization
algorithms in their ontology in order to have a knowledge base that could be used in an automated
system. Yan et al. [75] propose an ontology for the generalization of isobaths on charts. In their
ontology, they not only store cartographic elements such as soundings and isobaths, but also include
features formed by groups of isobaths and soundings representing submarine features as perceived by
the readers. They also integrate generalization constraints and operators that can apply to these larger
features. The ontology was implemented in a triplestore and used to select and perform operations in a
multi-agent system. However, these works were mostly considering the development of a knowledge
base to support map generalization. More recently, Varanka and Usery [76] consider the map itself as
a knowledge base and propose an ontology that would not only include data and design concepts
but also semantic and logical knowledge that are also embedded in the map. They also present an
architecture based on a triplestore where map elements can be retrieved with SPARQL and GeoSPARQL
queries. Huang and Harrie [77] propose a broader model including visualization knowledge and
new concepts describing scale and portrayal. They propose a system architecture with a web server
retrieving geospatial and portrayal data from a knowledge base and producing a map with the required
style for a client application. Hahmann and Usery [78] present a first-order logic formalization of
contour semantics to support qualitative and quantitative reasoning about contours. The formalization
comprises four fundamental concepts: Contour regions, contour lines, contour values, and contour
sets, as well as their subclasses and relations between them. The ontology is developed in first-order
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logic to support the detailed ontological analysis of contour semantics in general but is also translated
into an OWL ontology for storing and querying information of particular contour maps.

From this review, we can see that, while geospatial ontologies were firstly designed as a tool
to formalize expert knowledge, the last few years saw a growing focus towards the integration of
domain and task ontologies as computational ontologies into larger systems for data retrieval and
analysis. Latest works on geovisualization and disaster management make use of ontologies to develop
interoperable systems and assist users with tailor-made solutions.

2.3. Ontology Design Patterns and Lightweight Ontologies

Ontologies presented above are referred as heavyweight ontologies. They are completely
developed ontologies describing a whole domain or a domain concept. Recent developments are also
concerned with the design of more modular ontologies applicable to different problems. This issue is
addressed by two kinds of ontologies: lightweight ontologies and ontology design patterns (ODP).

The distinction between heavyweight and lightweight ontologies is based on the expressivity
provided by ontologies: lightweight ontologies have restricted expressivity as they provide the simplest
formalization of the simplest model of a domain, adequate for the task at hand; they typically consist of a
hierarchy of concepts and a set of relations holding between those concepts [79]. Lightweight ontologies
are also proposed as an alternative to foundational and domain ontologies in order to capture the
semantics of a domain. Although they lack the expressivity of heavyweight ontologies, they are
especially useful for supporting connectivity and interoperability across communities and platforms in
the context of the Semantic Web and linked data [80] and may be applied in key applications such as
document classification, semantic search, and data integration [81].

A lightweight ontology can be used to extend or integrate other ontologies. Hasan et al. [82]
defined a lightweight ontology for earthquake engineering that was integrated to WordNet. Hong and
Kuo [18] propose the development of lightweight ontologies to semantically integrate concepts from
two domains (topography and land use). Natural language definitions of concepts are transformed
into structured representations which are then compared and associated on the basis of four types
of semantic relationships (exact, subset, superset, overlap, and null). A bridge ontology is used to
formally represent the semantic relationships between the concepts of the lightweight ontologies.

Kuai et al. [83] propose a lightweight ontology for mapping concepts from topographic maps
in English and Chinese. They define a hierarchy of concepts from natural language definitions.
Concepts from both languages are then related based on their similarity. Kordjamshidi and Moens [84]
propose a lightweight spatial ontology for locating objects in space based on a spatial annotation
scheme. The ontology consists of spatial concepts (trajectory, landmark) and spatial relations (region,
direction, and distance). Its aim is to define mappings between cognitive-linguistic spatial concepts in
natural language and qualitative spatial representation models. A global supervised machine-learning
model for ontology population is used to implement the mappings between natural language and the
lightweight spatial ontology.

More recently, Couclelis [2] proposed a conceptual model for the development of micro-ontologies
for specific user needs and purposes encompassing three interrelated views of information: (1)
Measurements and formal operations on these, (2) semantics for defining the meaning of information,
and (3) context for the interpretation and use of information. The model encompasses a process called
“semantic contraction” which generates a sequence of representational layers varying in semantic
richness to support the varying perspectives and interpretations of information and the resulting
representational and informational requirements of different users.

The specification of ontology design patterns is pursued as an alternative to ontology design
and more profound ontology integration approaches when semantic heterogeneities and conflicting
requirements do not allow for the development of a common, integrated ontology. Ontology design
patterns or content ontology design patterns are small, modular ontologies that may be used as building
blocks in the ontology design process [85]. They facilitate ontology reuse, evaluation, alignment,
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and mapping across domains. For example, Calafiore et al. [86] defined two ODP modeling the built
environment and social behavior. Both ODP are then integrated together to mine social behavior
patterns in urban areas from crowdsourced data.

The GeoLink project [19] has developed a framework for integrating seven data repositories
mainly in the domain of ocean science using semantic technologies such as linked data and ontology
design patterns (ODP). The GeoLink oceanography ontology [20] is a collection of ODPs used to model
notions such as person, organization, dataset, cruise, feature, geofeature, place, etc. A pattern may also
be aligned to another pattern or to an external ontology.

Because they are modular, ODP have also been used in topography and landform description.
Indeed, the definition of a landform varies with the application domain and the perception of the user
or the expert. Hence, instead of building a complete landform ontology, several authors propose to
apply ODP for the description of the topography in different contexts. Sinha et al. [87] defined an ODP
for surface water features that can be used to describe different water bodies with their shape and
flow. Guilbert and Moulin [66] propose a landform ODP based on landform saliences together with a
conceptual framework. They apply their approach on the modeling of landforms based on existing
models. Such ODP allow for more flexibility for the description of water features and landforms.
However, their usability has not been demonstrated yet by designing and integrating new ontologies
based on these ODP.

Finally, Janowicz et al. [88] propose the Sensor, Observation, Sample, and Actuator (SOSA)
lightweight ontology that provides specifications for modeling interactions with sensors and samplers.
It is now a W3C recommendation and OGC standard. SOSA is based on an ODP that designs the core
structure from which different perspectives are derived. The ODP provides a pattern for designing
lightweight ontologies that can be integrated into larger ontologies.

2.4. Bottom-Up Ontological Approaches

Geographic ontologies are traditionally defined top-down by authoritative organizations or
groups of experts using semantic modeling approaches. However, the amount of information
available today has shifted the focus to bottom-up approaches for enriching existing geographic
ontologies. Different approaches can be found including semantic information extraction and text
mining techniques.

Bennett and Cialone [89] describe a methodology, called corpus-guided sense cluster analysis,
for ontology development which combines two different modes of investigation: (a) Logic-based,
formal semantic analysis of concepts and relations of expert knowledge; and (b) corpus-based statistical
analysis of the actual use of terminology in natural language texts highlighting the range and frequency
of senses associated with a lexical term. Although the methodology is general, it focuses on the
construction of spatial ontologies: spatial entities like surfaces and cavities and spatial relations like
“surrounding”, “enclosing”, and “containing” are used for the explication of the proposed approach.
Instead of adhering to a single precise definition, the methodology is based on the notion of sense
cluster where the referent of a conceptual term is modelled by a probability distribution over a set of
precise definitions.

Hu and Janowicz [21] proposed a workflow to mine bottom-up geographic knowledge from
the Linked Open Data (LOD) (https://lod-cloud.net/) cloud in order to enrich existing geographic
ontologies developed top-down by groups of experts with diverse perspectives provided by general
users. Geographic knowledge is expressed through instances and property-value pairs attributed to
relevant target categories.

Zhu et al. [90] propose a bottom-up, data-driven approach for identifying similarities and
differences in the semantics of geographic feature types to supplement existing top-down alignment
methods. Three major gazetteers are used to demonstrate the proposed approach: DBpedia places [91],
GeoNames [92], and Getty Thesaurus of Geographic Names [93]. The semantics of gazetteers are
examined not on the basis of feature type terms or definitions but on the basis of instances belonging

https://lod-cloud.net/
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to them. Three kinds of spatial statistical features are extracted from instances: spatial point patterns,
spatial autocorrelations, and spatial interactions with other geographic features.

Kokla et al. [94] used a top-down and a bottom-up approach for enriching and populating a
geospatial ontology in order to enable semantic information extraction. The top-down approach is
applied in order to incorporate knowledge from existing ontologies. The bottom-up approach is
applied in order to enrich and populate the geospatial ontology with semantic information (concepts,
relations, and instances) extracted from domain-specific web content.

2.5. Modeling vs. Encoding

While ontologies are supposed to be designed for formalizing knowledge in view of using it in
some implementation, Kuhn [95] pointed, in the Semantic Web context, that ontology tasks should
be separated into: modeling and encoding. Through this review, one can see that ontologies were
indeed developed with a focus on either of these tasks (Table 1). On one hand, ontologies were
built to formalize expert knowledge in a specific area to provide unambiguous concepts and rules.
For example, landform ontologies such as [63,64] propose concepts to structure landforms in lattices
while [76] provides a formalization of existing rules for contour maps in first order logic. In such
approaches, ontologies are used to constrain the interpretation of the different concepts.

On the other hand, domain ontologies were built to provide implementation standards [88]
and facilitate data processing [67], or even, for bottom-up approaches, were directly built from data.
They provide design patterns that allow for better transfer of knowledge from concepts to data
dependent models and for data operability with the use of standard patterns. Hence, one major novelty
in these last few years was the application of ontologies in other areas such as remote sensing and
image processing where traditionally, semantics was given limited consideration. Ontologies are used
to associate some concept with their data representation. For example, vegetation is associated with a
vegetation index and a topographic eminence is associated to an elevation difference.

Table 1. Ontologies classified according to their main focus towards modeling or encoding.

Modeling Encoding

Hydrology: Stephen and Hahmann 2017 [61] Hydrology: Kuai et al. 2016 [83]

Forest: Álvarez and Bennett 2017 [56] Oceanography: Krisnadhi et al. 2015 [20]

Landforms: Grenoble et al. 2019 [63], Sinha et al.
2018 [64], Guilbert et al. 2016 [65], Guilbert and

Moulin 2017 [66]

Natural disasters: Linyao et al. 2015 [71], Zhong et al.
2017 [72]

Urban environment and place: Ballatore 2016 [57],
Calafiore et al. 2017 [58], Garbacz et al. 2018 [59],

Calafiore et al. 2018 [86]

Social and Physical environment: Gharebaghi and
Mostafavi 2016 [60]

Cartography: Hahmann and Usery 2015 [78]
Cartography: Yan et al. 2015 [62], Touya et al. 2014 [73],

Gould and Mackaness 2016 [74], Yan et al. 2017 [75],
Varanka and Usery 2018 [76]

GEOBIA: Rajbhandari et al. 2017 [14], Arvor et al.
2019 [67]

Sensors: Janowicz et al. 2019 [88]

Semantic integration: Hong and Kuo 2015 [18]

Ontology enrichment: Hu and Janowicz [21]

Within this five-year period, the first few years mainly saw works related to modeling without
much concern on the implementation while these last two years saw an interest in providing workable
solutions. Hence a “qualitative-quantitative divide” [96] still exists but some works such as [71,77]
show promising implementations. Recent research on GEOBIA shows that ontologies are no longer
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the monopoly of a specialized community but are also of interest for researchers looking for solutions
to cope with the inherent vagueness to common problems such as vegetation mapping or landform
classification. However, as mentioned in [56], vagueness can be of two kinds: conceptual vagueness
and threshold (or sorite) vagueness. Ontologies provide a way to handle the first one while, in [14] the
second is handled with machine learning approaches.

While machine learning can achieve good prediction in setting threshold values for different
attributes, their computation is fully based on data. It; thus, requires training for each type of data
(according to data resolution, source . . . ) and does not provide any elicitation of this vagueness
at a conceptual level. Indeed, defining threshold values for distinguishing what should be big or
small for example depends on the context in which the analysis is done. Domain ontologies on the
modeling side can be designed to provide this contextual information. Hence, we believe that a
better integration between “modeling” and “encoding” ontologies would help to define thresholds
according to properties obtained from the concepts, leading to some semantic thresholds rather than
data-driven thresholds.

3. Semantic Information Elicitation

In the last years, research has focused on eliciting meaning from the considerable amount of
semi-structured content, such as html pages and metadata records and unstructured content, such as
scientific reports, news articles, travel blogs, and historical archives. These sources provide a wealth of
information on geospatial concepts, places, events, activities, etc. The term elicitation in the context of
this paper is used to encompass a set of related processes that focus on making this knowledge explicit
and discoverable: semantic information extraction, enrichment, and search.

Information extraction supports the automatic processing of unstructured or semi-structured
resources and the identification of relevant entities, concepts, and relations. In addition to the extraction
of these semantic elements, topic modeling techniques unveil latent abstract topics and semantic
associations from large text collections.

Ontology-based information extraction (OBIE) [97,98] is an emerging subfield of information
extraction, in which the information extraction process is guided by an ontology as a means to formally
describe domain knowledge and assist the extraction of pre-defined concepts, properties, and instances.
OBIE includes: (a) Approaches that use an ontology as a guide to acquire knowledge from unstructured
and semi-structured text; and (b) approaches that seek to build the ontology by processing texts, also
known as ontology learning and population approaches [98].

Eliciting places, events, concepts, relations, topics, etc. from texts in natural language and
connecting these to their meaning through ontologies and knowledge bases supports semantic
enrichment (or annotation or tagging), i.e., linking the content to other relevant resources based on an
understanding of what each term is about. It is also significant for semantic search based not only on
keywords used to formulate a query, but also on the meaning of terms behind the query.

Furthermore, it is used for computing semantic similarity and applying semantic analysis,
classification, and spatialization techniques to explore numerous cognitive and semantic aspects, such
as the relations among places, the historical evolution of cities, the progression of physical phenomena
and social events, and people’s perception of landscapes and regions.

Data-driven geospatial semantics refers to a bottom-up approach for eliciting geospatial knowledge
from natural language texts that contain either explicit or implicit locations of places [99]. It is distinct
from top-down or expert-driven approaches that extract geospatial knowledge from experts in a specific
field. In terms of methodology and scientific tools used, data-driven approaches are also contrasted
with conventional human-participants studies that elicit cognitive aspects, such as the meaning of
geographic categories [100–102] or the representation of cognitive regions [103]. However, the increased
availability of data and their analysis using statistical and data mining techniques does not necessarily
ensure meaningful knowledge discovery, a task that presents many challenges and requires the support
of synthetic and semantic tools [104].
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3.1. Geospatial Semantic Information Extraction and Enrichment

Semantic information extraction aims at eliciting salient, specific types of information from
unstructured or semi-structured data sources [105]. Entities, concepts, and/or semantic relations
that are implicit in a given source are made explicit to support semantic annotation, content-based
exploration, semantic search, and data-driven geographic analysis. Figure 7 shows spatial entities (in
blue), spatial concepts (in green), and relations (underlined) that may be extracted from a small passage.
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Figure 7. An example of spatial entities, concepts, and relations extracted from the sentences on the left.

Named entities in this context refer to specific real-world objects or instances, such as persons,
locations, and organizations, denoted by proper nouns. For example, in Figure 2, Maldives and Tuvalu
are named spatial entities. Named entity recognition (NER) [105] is used to identify named entity
mentions in text and classify them in pre-defined categories. Gazetteer lists that provide words or
phrases representing individual instances of a specific category (e.g., location, time, and organization)
are widely used in NER tasks. Named entity disambiguation (NED) [105] is used to determine the
identity of a named entity mention and link it to a unique entity in a knowledge base. NED is crucial
when the same entity mention may refer to different instances, e.g., the entity mention “Washington”
may refer to different real-world entities such as George Washington, the State of Washington,
or Washington D.C.

Concept extraction techniques are used to identify words or phrases that denote semantic classes,
such as the concepts: “atoll”, “coastal area”, and “island” in Figure 2. Concept extraction involves
related processes such as term extraction, keyword/key phrase extraction, and topic modeling [105].
These processes are applied on a text collection, which usually describes one or several domains.
Term extraction provides insight into the core concepts of the domain(s) that the text collection is
about. Keyword / key phrase extraction focuses on extracting domain concepts that describe a given
text. Topic modeling aims at analyzing co-occurrences of related keywords that describe higher-level
semantic topics of the text collection.

Concept extraction usually relies on pre-processing steps such as tokenization to split text into
words, phrases, symbols, or other meaningful elements called tokens, sentence splitting to divide the
texts into sentences, part-of-speech (POS) tagging [106] to mark up each phrase as corresponding to
a particular part of speech, i.e., noun phrases, verb phrases, adjective phrases, adverb phrases, etc.,
and lemmatization to identify the base or dictionary form of a word (lemma). Then, some approaches
called window-based, consider a window around terms and examine contextual information within
this window to judge whether the term may indeed represent a specific concept. Other approaches
define a set of rules in the form of regular expressions and lexico-syntactic patterns for the identification
of predefined domain concepts.

Topic modeling techniques [107] such as latent Dirichlet allocation and latent semantic analysis
(or else latent semantic indexing) are text mining [108] techniques employed to identify terms that
frequently co-occur in given collections of documents. These term co-occurrences form clusters which
represent latent abstract topics, e.g., the words cyclone, hurricane, typhoon, blizzard, and thunderstorm
may co-occur under a meteorological disasters’ topic. These techniques are used to identify the relevant
context of a given corpus and aid the classification, search, and retrieval processes.
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Relation extraction techniques are used to identify semantic relations between concepts and entities
(i.e., hypernymy, synonymy, relatedness, etc.). For example, in Figure 7, Maldives and Tuvalu may be
defined as instances of the concept “low-lying countries”. Various techniques are used for the extraction
of predefined relations based on text processing, mapping to external resources such as ontologies,
thesauri, and computational lexicons or on a combination of both. In the first case, key methods
involve: (a) the identification of the head/modifier terms of a phrase (e.g. the head of the phrase
“low-lying countries” is “countries”, while low-lying is a modifier that specializes the head and creates
a hyponym, i.e., a subclass); and (b) formulation of lexico-syntactic patterns. For example, the Hearst
pattern) [109] “Low-lying countries such as Maldives and Tuvalu..” signifies that Maldives and Tuvalu
are instances of “low-lying countries”. In the second case, ontologies or other external sources such as
WordNet and DBpedia provide predefined relations between concepts (e.g., hypernyms/hyponyms,
synonyms, and related concepts). However, identifying the correct sense of a term, called word sense
disambiguation [110] is a very challenging issue greatly influencing the outcome of relation extraction.
The extraction of a broader range of relations between entities is even more demanding requiring
the combination of the previous mentioned techniques with techniques such as distant supervision,
extraction of syntactic dependencies between entities, and calculation of the frequencies of n-grams
occurring in the text window surrounding both entities [105]. For an extensive survey of information
extraction techniques in a Semantic Web context refer to [105]. For comprehensive reviews of OBIE
systems and the contribution of ontologies in information extraction refer to [97,98]. Figure 8 shows an
overview of semantic information processes and extracted elements.
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Figure 8. Overview of semantic information processes and extracted elements.

In the geospatial domain, place names (or toponyms) are the principal type of knowledge extracted
from natural language texts using a process called geoparsing [111]. Geoparsing involves both the
identification of place names in text and their disambiguation in order to be linked to unambiguous
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spatial references using geographic gazetteers. For an extensive survey of geoparsing challenges
and techniques refer to [112,113]. Besides place names, some applications, such as the analysis of
historical archives, also require the extraction of temporal expressions and person names that refer to
historical personalities. Regarding relations, emphasis has been placed on identifying spatial relations
between objects for interpreting indirect geographic references and for associating an entity or event to
a reference location. In natural language texts, spatial relations are usually specified qualitatively using
spatial expressions such as at, close to, to the left of, north of, etc. These expressions convey various
spatial relations, whose meaning is often vague and context dependent hindering their automatic
extraction and disambiguation [114,115].

Wallgrün et al. [116] built a corpus of natural language expressions extracted from web documents
for analyzing and modeling Spatial Relational Expressions (SREs). The corpus consists of geo-referenced
triplets which contain a located object, a spatial relation and a reference object. Mirrezaei et al [117]
developed TRIPLEX-ST, a system for the extraction of spatio-temporal information about entities and
their properties from textual resources. TRIPLEX-ST is based on a distantly supervised approach, which
uses linguistic annotations (e.g., dependency relations, named entities, and lexical constraints) together
with information available in existing KBs (e.g., DBpedia and YAGO knowledge bases), to extract
triples associated with temporal and spatial contexts and infer templates that capture spatiotemporal
information from unseen sentences. Each template includes dependency relations, POS tags, named
entities, WordNet synsets, subject and object types, and syntactic/semantic restrictions of verbs in
dependency paths.

Dittrich et al. [118] presented a classification schema for disambiguating spatial from non-spatial
uses of an extensive list of English prepositions such as above, below, next to, in (the) front of, north of,
etc. The classification schema involves rules for identifying and excluding abstract entities (abstract
locatum or abstract relatum) involved in locative expressions based on knowledge sources such as
WordNet and DBpedia and non-spatial uses of prepositions such as a temporal relation, the material of
an object, the agent of an action, or the topic of communication based on dependency trees provided by
a natural language processing (NLP) parser. Radke et al. [119] modify a machine-learning approach for
generic spatial role labelling [120] to automatically extract prepositions that are used specifically in a
geospatial sense and distinguish geospatial uses of prepositions from other spatial and non-spatial uses.
A geospatial relation is defined as one in which the preposition has a spatial sense and the reference
object to which the preposition applies is a named place or a geographic feature type. Place names are
identified using Geonames gazetteer, whereas geographic feature types are identified using a dictionary
of geographic feature types. The approach is evaluated on the basis of a corpus of 1876 instances of
preposition usage manually annotated as geospatial, spatial (but not geospatial), and non-spatial.

Derungs and Purves [115] extract spatial expressions of the nearness relation using an analysis of
n-grams—contiguous sequences of tokens retrieved from a large corpus of the form A near B where A
and B are both place names, referring to different spatial granularities. The analysis of n-grams allows
estimations of the probabilities of phrases expressing the nearness relation and the exploration of what
is considered to be near at different scales.

The combined extraction of spatial and temporal information from documents supports the
discovery of complex information such as events or trajectories from historical documents or travel
literature. Abraham et al. [121] developed an approach for extracting spatial, temporal, and attributive
information for analyzing the movement of rival troops during the anti-colonial resistance war of
1904 in Namibia from historical documents. Named entity recognition is used for the extraction of
place names, data expressions, and person names based on self-tailored gazetteers for tagging historical
place names and temporal expressions that are not included in traditional gazetteers. Pattern-based
rules are formulated to extract spatio-temporal relationships.

Wang and Stewart [16] extracted spatiotemporal and semantic information on natural hazards
from web news reports. The semantic information extraction process was based on a hazard ontology
manually constructed from authoritative sources on hazards, which was integrated with spatial,
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temporal, and semantic gazetteers that capture these three aspects of hazards. The extraction process
was implemented with GATE 8.0 (General Architecture for Text Engineering) [122] and involved several
steps: linguistic processing, named entity recognition to identify spatial and temporal information,
manual annotation to build the semantic gazetteer, mapping the terms from the semantic gazetteer to the
corresponding ontology classes, rule-based association of events to spatial and temporal information,
and geocoding the results for their subsequent visualization.

In order to explore the emotional structure of place classes such as city, forest, and road, Ballatore
and Adams [123] developed a vocabulary of place nouns of natural and built places based on
DBpedia [91], GeoNames [92], and WordNet [39]. A natural language processing (NLP) technique
was implemented to extract place emotions from a corpus of travel blog posts based on the emotion
vocabulary WordNet-Affect [124]. These are used for constructing emotion vectors based on term
co-occurrences within a context window around place terms.

Egorova et al. [125] developed linguistic rules based on morpho-syntactic patterns for the
automated extraction and classification of three types of fictive motion (actual motion of the observer,
description of a vista somewhere along the way or encyclopedic knowledge) based on an annotated
corpus of alpine narratives.

Deriving spatial concepts and entities from texts also relates to the research on geospatial semantic
analysis and spatialization of text corpora. Derungs and Purves [126] analyzed a large corpus describing
Swiss alpine landscapes in order to explore the description of landscapes. The approach extracts
toponyms using the Swissnames (https://shop.swisstopo.admin.ch/en/products/landscape/names3D)
gazetteer which are linked to nouns referring to natural features using linguistic processing and
manual annotation based on predefined rules. In another study of people’s perceptions of landscapes
and their prominent characteristics, Wartmann et al. [127] collected landscape descriptions of five
landscape types across three different sources (participant free lists obtained through interviews,
hiking blogs, and Flickr tags). The sources were manually annotated based on a coding scheme
including toponyms, biophysical, cultural, and perceptual landscape elements, activities, sense of place,
and people. The comparison of sources based on coded terms using cosine similarity showed that
descriptions from the same source were significantly more similar irrespectively of the landscape type.

Cooper et al. [128] proposed Geographical Text Analysis (GTA) for the spatialization and analysis
of digital texts. The information extraction process identifies place names, as well as thematic
tags representing topics (e.g., education, warfare, and farming using the UCREL Semantic Analysis
System (USAS)). Bruggmann and Fabrikant [129,130] extracted place names (toponyms) and temporal
information from an online dictionary about Swiss history in order to visualize temporal relations
between Swiss toponyms using spatialization techniques. Place names are extracted using the
Swissnames gazetteer and temporal information (such as dates and periods of time) is extracted using
HeidelTime temporal tagger. Salvini and Fabrikant [131] used semantic information analysis and
spatialization techniques of Wikipedia content for the construction and the empirical investigation of a
multi-relational world city network. User-generated tags, which categorize the content of the articles
and their organization using hypernymic and hyponymic relationships, are used to compute similarity
relationships between shared articles and group them into thematically relevant clusters using the
topic modeling technique.

Semantic enrichment (also known as semantic tagging or semantic annotation) is a related process
aiming at adding semantic metadata to help machines make sense of the content and reveal latent
relations and other semantic information. It is used for information organization and retrieval, semantic
search and knowledge discovery, and ontology development and population. Semantic enrichment
has been used to add semantic metadata to different types of content, including: unstructured
documents [132], maps [133], images [134,135]), metadata [136], and videos [137]. Semantic metadata
describe the meaning of content in terms of abstract concepts and entities, such as people, things,
and places.

https://shop.swisstopo.admin.ch/en/products/landscape/names3D
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Lemmens et al. [22] discuss ways to semantically enrich unstructured VGI content with concepts
from both informal structures (folksonomies) and formal structures (ontologies) in order to support
information retrieval. Tardy et al. [135] present a method for the semantic enrichment of photo tags with
place characteristics such as feature type, function, use, shape, material, appearance, etc., paying special
emphasis on places in urban areas with a small number of photos. The method uses a combination of
geometric and linguistic techniques to classify the tags and then select those that would most likely
semantically enrich feature descriptions. In order to improve the classification of events in tweets,
Romero and Becker [138] use semantic enrichment to identify entities and relevant vocabulary from
tweets and related web pages and associate these features with concepts extracted from the LoD cloud.
A pruning technique is then applied in order to discard too generic or too specific semantic features
and select those with the most discriminative power for event classification.

Besides unstructured and semi-structured content such as texts, tweets, and photo tags, other
types of spatiotemporal data, such as trajectories and movement data can also be semantically enriched.
In this context, trajectories and movement data are not considered as mere sequences of geographic
coordinates but as patterns with meaning that needs to be made explicit in order to support a more
profound interpretation of the movement performed [139]. The Baquara2 framework is developed
to semantically enrich and analyze movement data based on a multilevel hierarchical ontological
model [140]. The semantic enrichment process annotates movement segments with references to
concepts and instances from ontologies and linked open data collections (e.g., DBpedia, LinkedGeoData
(http://linkedgeodata.org)), which describe the place, event, goal, or environmental conditions of the
movement segment.

3.2. Semantic Search and Knowledge Discovery

Semantic-based search is a prevalent research topic in the context of the Semantic Web aiming to
overcome the limitations of keyword-based search. In traditional keyword-based approaches, resources
that are semantically related to a user’s query but described differently from the query keyword are
considered irrelevant and are excluded from the search results. Semantic-based search seeks to identify
relevant sources by not only matching the keywords used but also based on the meaning behind a
user’s query. This could potentially result in identifying relevant sources that do not necessarily contain
the keyword used in the query. For example, a semantic search for resources related to “geological
phenomena in the Mediterranean” would ideally return resources including “earthquakes in Ionian
Islands”, “volcanic eruption of Mount Vesuvius” and “soil erosion in Spain” although these resources
may not explicitly mention the terms “geological phenomena” or “Mediterranean”.

The semantic description of both source data and users’ queries is critical for achieving this
and associating a search request with the most relevant source. Semantic information extraction
is used to educe this semantic description from unstructured or semi-structured sources, whereas
semantic annotation is used for query expansion, retrieval, and ranking. Query expansion consists in
selecting and adding relevant terms to the user’s query for minimizing query-document mismatch and
improving retrieval performance [141]. An ontology’s conceptual hierarchy enables the generalization
/ specialization of semantic search based on concepts and entities and the relations between them,
especially hypernymy/hyponymy and synonymy relations.

Geographic information retrieval (GIR) [142,143] is another relevant field which deals with the
automated interpretation of place names and spatial relationships in queries and in documents and with
indexing, relevance ranking, and retrieval of the relevant content. GIR faces significant challenges such
as detecting geographical references and associated spatial natural language qualifiers, disambiguating
place names or other geographic information, and ranking resources with respect to spatial, temporal,
and thematic relevance. Although GIR is a distinct research field beyond the scope of this paper, some
aspects of semantic search are also relevant to GIR, such as the semantic description of source data and
users’ queries, query expansion, and semantic relatedness.

http://linkedgeodata.org
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Semantic search in the geospatial domain is based on different approaches: top-down ontological
approaches, bottom-up data mining approaches, or a combination of both. In the first case, ontologies
are used to interpret users’ queries and enrich them with other meaningful terms using ontology
concepts and their between relations [144,145]. Concept-based information retrieval represents both
documents and queries using semantic concepts instead of keywords and performs retrieval in concept
space [146]. Synonymous terms, as well as more general, more specific or semantically related concepts
are used for query expansion. In the second case, topic modeling techniques such as latent Dirichlet
allocation and latent semantic analysis are used to analyze large corpora and discover abstract topics
that co-occur in these collections of documents.

De Andrade et al. [147] propose a framework for improving geographic information retrieval
in spatial data infrastructures. The framework includes a tagging process for enriching metadata
with information about the space, theme, and time related to each feature type offered by a service.
Thematic tagging relates the themes of feature types to ontology concepts. To facilitate semantic
retrieval of remote sensing services, Nys et al. [148] created a self-learning knowledge graph that
structures the concepts used in related queries. Natural language processing techniques (part-of-speech
tagging and lemmatization) are used to reduce the complexity of both queries and service descriptions.
Queries are then expanded based on the UNESCO thesaurus and a subgraph of the nearest neighbors
of selected concepts is extracted including broader, narrower, and related concepts. The spatial aspect
of queries is also used for expansion using the location on a map and administrative subdivisions
provided by GeoNames.

Zaila and Montesi [149] developed GeoNW, a geographic ontology combining GeoNames,
WordNet, and Wikipedia to support toponym extraction and disambiguation. The ontology includes
physical or administrative places associated with synonyms derived from GeoNames and WordNet,
and nationality adjectives from Wikipedia. This information is subsequently used to identify related
terms of a geographic entity in a document. This approach is based on the assumption that the more
related a geographic entity is to other geographic terms in the document, the more likely it is that the
geographic term is associated to the document.

In order to enable semantic search and knowledge discovery for ArcGIS Online, Hu et al. [133]
designed a specific ontology based on the ArcGIS Online schema and used two semantic annotation
systems, DBpedia Spotlight [150] and OpenCalais [151], to extract entities and classes from map titles
and descriptions. Semantically similar terms were also taken into account for query expansion based
on the UMBC Semantic Similarity Service [152]. Jiang et al. [153] proposed an approach to discover
semantic relationships between domain-specific vocabularies in order to obtain the semantic context of
a user’s query. The approach integrates the results from four different methods: user search history
analysis, clickstream analysis, metadata analysis, and ontology concept similarity and is implemented
in oceanographic data discovery.

Li et al. [154] developed a semantic search tool integrated in GeoNetwork (https://geonetwork-
opensource.org/) to support search and retrieval of polar datasets. The semantic search tool is based on
latent semantic indexing (LSI) for full-text indexing, searching, and ranking relevant metadata records.
Semantic associations between dataset metadata terminologies are identified and stored in a semantic
matrix maintained within the catalogue. The tool also adopts a revised cosine similarity measure for
ranking relevant results.

Frankenplace [155] is an interactive thematic map search engine that supports exploratory search
tasks. An indexing approach using a discrete global grid and term boosting as well as topic modeling
are used to support information exploration at different scales (zooming in and out) both geographically
and thematically.

Huang [17] combines ontologies with latent semantic analysis (LSA) in order to categorize
geographic features from text documents. LSA is used to capture the semantic context of terms, while
ontologies are used to represent domain knowledge and support the extraction of terms from text,
as well as the identification of query terms that represent the predefined categories.

https://geonetwork-opensource.org/
https://geonetwork-opensource.org/
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Cross-linguistic information discovery is also an issue attracting attention especially in the context
of geoportals. The use of different languages both for the documentation of data sources and the
formulation of queries by different users further complicates the process of semantic search and
knowledge discovery. Multilingual thesauri and ontologies are used to enrich metadata with synonyms
and term translations, as well as query terms for improving metadata discovery [156]. Laurini [157]
uses geometric characteristics and toponyms derived from gazetteers to formulate inference rules
for matching multilingual ontological concepts. Since toponyms and concept types across different
languages are not always strictly equivalent, the matching is based on homology relations which are
reflexive and symmetric, instead of equivalence relations which are reflexive, symmetric, and transitive.

The notion of semantic similarity is central to information search and knowledge discovery.
Similar entities and concepts are used for linking data among different sources, answering
user queries, and disambiguating word senses and place names. Adams [158] proposed an
observation-to-generalization model that distinguishes between observed attributes of the environment
at a specific location and generalized attributes about places that are inferred from these observations.
Within this model, a place is defined by a six-tuple: a set of toponyms, a type, a set of spatial footprints,
a set of associated observations, a set of generalizations, and a set of relations to other places. The model
and a suite of operations based on the invariance of generalized place attributes are used to address
the problem of similar-place search.

Kim et al. [159] proposed an approach for extracting and disambiguating place names from
unstructured place descriptions. The approach uses natural language parsing to extract place names
and spatial relations between them from triplets consisting of an object to be located, a reference object
and their spatial relation [160,161]. Graph matching based on string, linguistic, and spatial similarities
between places is further used to find corresponding spatial objects.

Besides semantic similarity, the notion of semantic relatedness has also begun to attract the
attention of GIScience. Semantic relatedness deals with concepts that are not necessarily similar, but are
somehow related through various types of relations, such as the part-of relation between forests and
trees and the caused-by relation between tsunami and earthquake.

Semantic similarity/relatedness have been studied in the context of spatial data infrastructures
to identify similar geographic data sources on the basis of their metadata records [162].
The similarity/relatedness measures applied are usually based on external sources like thesauri
and computational lexicons such as WordNet and also take into account the semi-structured descriptive
information of metadata records such as title, keywords, spatial and temporal coverage.

Unstructured data may also be used to infer knowledge about places and other spatial entities and
semantically enrich more structured representations. Hu et al. [163] developed a computational
framework to detect semantic relatedness between cities mentioned in the same news articles.
The framework is based on the labeled latent Dirichlet allocation (LLDA) model to extract likelihood
scores for different topics (e.g., politics, culture, business, and sports) from news articles. The semantic
relatedness between two cities under a topic is quantified as the number of news articles containing
the co-occurrences of the two cities and also discussing the topic. The extracted semantic relatedness is
then aggregated according to the topic (e.g., culture) or to the time period using the number of news
articles published in that time period.

The evaluation of semantic similarity/ relatedness results is also a critical factor, which is
measured by the degree to which a computational measure approximates human-generated judgements.
Ballatore et al. [164] have developed the Geo Relatedness and Similarity Dataset (GeReSiD), an open
dataset for the evaluation of computational measures of geo-semantic relatedness and similarity.
Geo-semantic relatedness focuses on relations involving at least one term with a spatial dimension.
The dataset includes 97 geographic terms forming 50 term pairs and was developed based on
human judgments.
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4. Conclusions and Future Challenges

The paper provides a review of semantic-based approaches to information modeling and
elicitation spanning the last five years of research. In this context, information modeling refers
to the development of ontologies at different levels of generality and formality, tailored to various
needs and uses. Elicitation on the other hand includes a set of processes educing semantic information
from semi-structured and unstructured resources. Modeling and elicitation may be used synergistically
to enhance both: extracted information is used to improve and enrich an ontology, which in turn is
used to refine the information extraction results. In the last five years, information modeling and
elicitation focused on a variety of spatial concepts: Interdisciplinary and vague geospatial concepts
such as places and forests, dynamic concepts such as phenomena, events, and trajectories, and concepts
with a cognitive and linguistic basis such as social roles associated with cities, emotions evoked by
places, and characteristics of landscapes. Such concepts may be defined in a more traditional way in
top-down approaches fitted for a formalization of expert knowledge but also in bottom-up approaches
built more easily from user perceptions and sense of their spatial environment, as expressed in natural
language texts.

While remarkable progress has been made over these last five years, much is still to be done to
solve problems caused by different conceptualizations and interpretations of geospatial information
and facilitate knowledge exchange also across different domains and languages, as outlined below.

Although ontologies have provided a sound basis for the semantic formalization of domain
knowledge, many interdisciplinary geospatial concepts are formalized in different ways by different
domains. Multidomain knowledge integration is critical to solve complex scientific problems that
require geospatial resources pertaining to multiple domains (e.g., geography, environmental science,
Earth sciences, hydrology, forestry, spatial planning, and natural resource management). The arrival of
the Internet of Things has pushed for the development of new ontologies but also calls for a better
integration of these ontologies. Existing works have shown the direction with the development of
ontology design patterns, lightweight or micro-ontologies as an alternative to upper level and domain
ontologies. These alternative approaches, varying in semantic expressivity, focus on representing
different perspectives and interpretations of geospatial information.

The development of methods capable of expressing a wide range of cross-domain knowledge and
deeper semantic information elicitation processes for geospatial and other relevant concepts would
greatly enhance the ability of scientists and general users to search for and combine information.
Existing geospatial information extraction approaches focus mostly on locations, concepts, and topics,
and to a lesser extent on predefined properties and relations between concepts. The extraction of
properties and interrelations between entities, as well as the joint extraction and modeling of various
elements and their interrelations is a more complicated and challenging research topic which is also
critical for further populating both domain-specific ontologies and general-knowledge KBs such as
DBpedia [91], YAGO [165], and BabelNet [166].

The majority of information extraction approaches rely on language-specific tools that are
developed primarily for the English language followed by other common languages such as French,
Spanish, and Chinese. However, there is a growing need for extracting semantic information from
sources written in other languages, as well as for integrating cross-lingual information. Besides the
development of extraction tools tailored to other languages, this requires the use of multilingual KBs,
such as DBpedia or BabelNet, and the development of more robust tools for multi- or cross-lingual
information extraction, search, and retrieval. Moreover, since information extraction and search
approaches are typically complex, requiring different inputs, resulting in different outputs based
on different methods, their evaluation is critical for assessing not only their value, but also their
reproducibility for different resources and languages and portability to different domains.

Information elicitation can help bridge the gap between the user and the machine, also allowing the
user to express qualitative high-level concepts. The volume and variety of available resources, most of
them in semi-structured and unstructured format, raises additional challenges as to the interpretations
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and valid uses of this information. The inherent ambiguity, polysemy, and context-dependence of
natural language further complicates the semantic-based extraction, enrichment, retrieval, and analysis
of these resources, especially in a multilingual and multisource context. The need to overcome these
barriers in knowledge discovery is a future research challenge highly relevant to data linking in the
context of the Semantic Web and the advancement of geo-portals. In this context, besides more powerful
techniques for multilingual multi-context semantic-based extraction, enrichment, and search, users
would greatly benefit from novel approaches to interactive knowledge exploration and visualization.
These approaches could provide users contextual information for a deeper comprehension of query
entities, concepts, and semantic relations between them and thus enable them to formulate more
relevant and effective queries.
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