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Abstract: The data generated by social media such as Twitter are classified as big data and the
usability of those data can provide a wide range of resources to various study areas including disaster
management, tourism, political science, and health. However, apart from the acquisition of the data,
the reliability and accuracy when it comes to using it concern scientists in terms of whether or not
the use of social media data (SMD) can lead to incorrect and unreliable inferences. There have been
many studies on the analyses of SMD in order to investigate their reliability, accuracy, or credibility,
but that have not dealt with the filtering techniques applied to with the data before creating the
results or after their acquisition. This study provides a methodology for detecting the accuracy and
reliability of the filtering techniques for SMD and then a spatial similarity index that analyzes spatial
intersections, proximity, and size, and compares them. Finally, we offer a comparison that shows the
best combination of filtering techniques and similarity indices to create event maps of SMD by using
the Getis-Ord Gi* technique. The steps of this study can be summarized as follows: an investigation
of domain-based text filtering techniques for dealing with sentiment lexicons, machine learning-based
sentiment analyses on reliability, and developing intermediate codes specific to domain-based studies;
then, by using various similarity indices, the determination of the spatial reliability and accuracy of
maps of the filtered social media data. The study offers the best combination of filtering, mapping,
and spatial accuracy investigation methods for social media data, especially in the case of emergencies,
where urgent spatial information is required. As a result, a new similarity index based on the spatial
intersection, spatial size, and proximity relationships is introduced to determine the spatial accuracy
of the fine-filtered SMD. The motivation for this research is to develop the ability to create an incidence
map shortly after a disaster event such as a bombing. However, the proposed methodology can also
be used for various domains such as concerts, elections, natural disasters, marketing, etc.

Keywords: volunteered geographic information; spatial assessment; spatial similarity index;
sentiment analysis

1. Introduction

This study focuses on finding an assessing methodology to quantify the impacts of filtering
techniques on the spatial reliability of the social media data (SMD) to acquire the most suitable, reliable,
and accurate SMD based on the subject for using it in various approaches. Contextual errors at
the filtering stage of dealing with SMD result in focusing on irrelevant events, irrelevant reactions,
and irrelevant locations with regard to the event. These errors result in the creation of unreliable
or inaccurate maps relating to the event—what we will refer to as the domain in this study. Many
studies have examined the reliability of SMD, mostly those that are found on Twitter [1–3]. The Twitter
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platform is selected as the SMD resource for this study due to its geotagging options and wide usage
throughout the world [4].

Social media has diverse topic content sourced by human sensors [5–7]. However, it does not
provide a direct motivation to contribute to data production apart from the existence of a number of
volunteer-based data gathering platforms [8–10]. This makes social media analysis different from the
analysis of structured data. Therefore, there is a need to filter such data to retrieve the relevant data for
a selected domain.

For coarse-grained hot topic analysis, for example, if there has been a terror event in a city,
non-relevant outliers might easily be filtered out from streaming data by using density-based clustering
approaches [11,12]. Conversely, fine-grained filtering can robustly discretize noisy content for
fine-grained analysis [13]. For instance, incidence mapping during and following a terror event and
the fine removal of discrepancies by fine-grained filtering help to produce more reliable maps to detect
the location and the impact of the event. This, in turn, can support coordinated and accurate responses
and the management of the emergency in question.

The terms accuracy, reliability, and credibility are generally used to evaluate the quality of SMD.
The relationship between spatial information extraction and the truth in social media analyses is
defined as its accuracy by [14–18]. These studies used the concept of accuracy for the estimation of
the living, working, or traveling locations of the users based on their social media feeds by using
the distance between the geotagged and actual locations. The distance used in these studies is the
Euclidean distance, that is, the distance between two points either on a flat plane or the 3D space length
that connects two points directly using Pythagoras’ theorem [19]. The concept of reliability mostly
focuses on the internal accuracy of the data itself, or the method that is used to process the data as
mentioned by Lawrence [20]. This involves the investigation of the relationship between two different
sentiment analyses’ statistical scores. Credibility is a term for the accountability of the source of the
news in the new and traditional media. For social media credibility, this involves a consideration of
the profile of the user, friendship networks, and the acts of the users such as tweets, retweets, likes,
and comments, as suggested by Castillo Ocaranza et al. [21]. Abbasi and Liu [22] considered the
credibility of social media by remarking on the activities of coordinated users that act together as
a pack.

To date, there have been several studies on the credibility [21,22], accuracy [14–18], and
reliability [20,23,24] of SMD, but those are somewhat limited because they have only focused on the
results of the analyses, not on the filtering algorithms. However, most of the time, SMD are filtered
based on the words and hashtags based on the event before they are analyzed [25–28]. Considering the
negative nature of the disaster domain content, sentiment analysis can be seen as an approach that
can be used to access related content from a wider perspective than that from the results of hashtag
and bag of words filtering. Thus, focusing only on the SMD analysis results in ignoring the filtering
techniques, thus misdirecting the assessments. Depending on the degrees of accuracy and reliability,
which were referred to as aspects of the quality [29] of the SMD filtering algorithm, the quality of the
analyses changes.

There are two prominent approaches in the literature with regard to sentiment analysis [23,24,30].
The first method utilizes a subjectivity lexicon, involving a glossary with sentiment scores or labels for
each word or phrase. It involves scanning documents or phrases to determine the constituent total
word score in terms of polarity. The second is a more statistical approach that exploits learning-based
algorithms. However, it does not work well in the case of fine-grained phrases such as those found in
social media content [31]. In addition, statistical approaches might not work well on agglutinating and
morphologically-rich languages such as Turkish, Korean, or Japanese [32]. There have been several
attempts to perform and test polarity analyses in the Turkish language, some of which are based
on translating English subjective lexicons into Turkish [33,34], while others rely on classifiers across
conceptual topics [32] or rely on the linguistic context in Turkish [35]. The use of sentiment analysis
can vary according to the domain (e.g., specific topics such as disasters, opinion columns, or music)
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that it is used for. While the domain-independent lexicons provide fast and scalable approaches for
general purposes, domain-based lexicons are valid across specific topics and cultures [31]. In terms
of the language used, the richness of the subjective lexicon is as important as the techniques and
methodology selected. There are plenty of different lexicons for English with rich word content that
quantify polarity by scoring [30], by assigning several emotions to each term [36,37], by labelling
terms as positive/neutral/negative [38,39], and by scoring each term’s polarity strength from minus to
plus [30]. On the other hand, most other languages, including Turkish, lack comprehensive subjective
lexicons. However, to the best of our knowledge, there are a couple of lexicons for the Turkish language.
Dehkhargani et al. [31] generated a SentiTurkNet (STN) lexicon equivalent to the English translation of
SentiWordNet [38], while Ozturk and Ayvaz [40] produced a Turkish lexicon consisting of over 5000
terms, determined as being terms found in frequent daily use, which are labelled as positive, negative,
or neutral. This lexicon is entitled The Lexicon of Ozturk and Ayvaz (LOA) in this study. Previous
studies of Turkish content involve domain-independent sentiment analysis, and the lexicon is mostly
implemented over long texts. Hence, the performance of previous studies is unknown in terms of how
they deal with short texts from social media with regard to a domain.

The novelty of this study is the development of a methodology for filtering the SMD based on
relevance and spatial accuracy, by comparing the current techniques for filtering. Another outcome of
this study is that we have developed a spatial similarity index to validate the spatial accuracy of the
methodology along with the filtering techniques. The SMD of this study is acquired from two terror
events that occurred in Istanbul. Consequently, the textual data of the tweets are in Turkish. Another
distinction of this study is creating a methodology for a language that is not English. Most of the
studies for the filtering and sentiment analyses of the tweets relate to the English language [30,41,42].
It has been discovered that using these techniques without proper adjustments based on the event or
language provides a very low rate of success for agglutinative languages like Turkish, due to the use of
suffixes at the end of words and the large amounts of homonyms [21,31,33]. As Castillo Ocaranza,
Mendoza, and Poblete Labra [21] indicate in their study, the filtering and ensuring the credibility of
tweets in Spanish requires manual labeling, due to the possibility of non-relevant classifications.

Those type of situation with regard to filtering and language affect the accuracy and reliability of
the resulting maps (event, hazard, or risk maps). Previous studies have mostly focused on where the
event occurred geographically and how big it was, without considering the reliability of the fine-filtering
techniques used or the impacts of filtering reliability on incidence mapping [1–3]. However, the quality
considered in this study is based on how correctly the SMD are filtered and how correctly these filtered
data are reflected in the creation of maps, both spatially and sentimentally.

In this study, the domain selected is that of terror attacks. The events chosen were two such
attacks in Istanbul in 2016, and the of all the tweets acquired in relation to these attacks were in Turkish.
To investigate the effects of the filtering accuracy on the maps in geographical terms, the results of
every filtering technique were mapped using a generic method. The determination of the accuracy
of the filtered tweets involves the use of manually-labeled tweets as ground truth, such as by Gupta,
Lamba, and Kumaraguru [2] and Castillo Ocaranza, Mendoza, and Poblete Labra [21] used in their
research. Then, the maps associated with each filtering technique were analyzed in terms of the ground
truth map.

At this stage of the study, various similarity indexing methods were used, and a new similarity
index was introduced as the Giz Index. The Giz Index is designed to check the similarities of the values,
sizes, and proximity of spatial objects, which were filtered and mapped using a technique involving the
success percentages with respect to a ground truth map. The novelty of the newly developed similarity
index is its ability to provide spatial intersection, proximity, and size together. For this reason, it can
also be used for many studies to detect the spatial accuracy of the generated, estimated, simulated,
or predicted maps with respect to the truth. Finally, the results from every similarity index method,
including the newly developed Giz index, were compared with the ground truth map. The comparison
showed the best combination of filtering technique and similarity indices to create event maps with
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regard to SMD. This study provides a methodology that can be used to accurately and reliably filter
SMD and offers a method for investigating the effects of filtering techniques on map accuracy.

2. Materials and Methods

The methodology of this study began with an exploratory analysis of rough filtered Twitter data
to create an approach for fine filtering domain-based data. In this way, noisy outliers not related to the
domain could be discretized. To build up the approach for filtering out discrepancies using sentiment
analysis and machine learning techniques, the basic workflow of data science [43], which is import→
tidy→ understand (visualize→ model→ transform)→ communicate, was followed, as shown in
Figure 1. Similarly, data processing is interpreted by considering the taxonomy of data science (obtain
→ scrub→ explore→model→ interpret) as suggested by Mason and Wiggins [44].
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Figure 1. Data workflow.

Figure 1 presents the parts of the methodology, with the data import and retain part in white; the
data tidying part as grey; the data exploration part in blue; the data processing part in green; and the
data interpretation part in yellow, pink, and turquoise. Each part of the methodology is schematically
extended with the use of figures (Figures 2–7) and explained in the following subsections. With respect
to this, Section 2.1. provides a technique for geo-referencing data acquired from the Twitter stream by
using Twitter API. This part is compiled with the use of Java as described in Gulnerman et al. [45] as Geo
Tweets Downloader (GTD). In Section 2.2, the data tidying details are given in the order of pre-filtering,
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cleaning, and labelling to generate ground truth data. In Section 2.3, data exploration techniques
such as word clouds, comparison clouds, and dendrograms that are used for this study are explained.
This exploration contributes to the development of the text pre-processing function that is part of
the data tidying part. In Section 2.4, the methodology of adapting the most common text classifying
techniques to a terror domain-based filtering is introduced. In this part, two different sentiment
lexicons for the Turkish language and three different machine-learning techniques are presented
for automatically filtering relevant content. In Section 2.5, the spatial interpretation methodology
is introduced for precisely quantifying how textual filtering influences the spatial accuracy of the
maps produced. This interpretation involves the following steps: 1—the production of a hotspot
map for manually labelled relevant data (the ground truth map), 2—the production of hotspot maps
for each filtering technique in terms of relevant outcomes (a predicted map), and 3—quantifying the
similarity between the ground truth and predicted maps (spatial accuracy measure). In this similarity
quantification process, current similarity indices (2.5.2) and a new similarity coefficient entitled the Giz
Index (2.5.3.) are utilized for quantitatively interpreting the spatial accuracy of the maps produced.
Features such as spatial proximity and spatial cluster size are taken into account by the Giz Index but
not by the current indices. This is explained and compared with the test data in Section 2.5.3 to prove
that the proposed index performs better for the spatial interpretation.
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These help to explore relevant, partially relevant, and non-relevant data contents. The working 
details of the packages used in this data exploration process are given in the following subsections. 
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word association differences in terms of relevancy were explored. With respect to this, word 
stemming was not applied in the text cleaning function, and the deficit in terms of the use of unigram 
pre-filtering was revealed.  

2.3.1. Commonality Cloud 
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argument. For this study, the top 100 terms were plotted to show which terms have dominance within 
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and Lewenhagen [78] propose the use of four different quantitative similarity measures for 
determining the similarities or differences between hotspot maps. These are the Jaccard Index (1) [79], 
the Sorensen-Dice Index (2) [80,81], the Kulczynski Index (3) [82], and the Ochai Index (4) [72], each 
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Figure 5. TheThe yellow line for hot spot mapping and the pink line for similarity calculation with
current similarity indices.

2.1. Data Importing and Retaining

Geo Tweets Downloader (GTD) [45,46], a Java-based desktop program that allows filtering by the
use of a spatial bounding box and omits non-geotagged tweets, was adopted to collect and spatially
filter Turkish data. GTD utilizes Twitter APIs [47,48] that provide public status tweets in real-time.
It also helps configuration with regard to the use of PostgreSQL in order to store retained geotagged
data. By means of GTD, public status data are collected continuously up to the limits of the API usage.
Since the tweets collected are of public status and geotagged, the number of tweets that were posted
during the period under consideration was lower than normal. However, the aim and technique
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used do not need to capture all of the tweets posted to test the approach, which involves highly
related filtering.
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 Instance - I Instance - II Instance - III Instance - IV Instance - V Instance - VI 
 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2 

JI 0 0 0 0 0 0 0,14 0,14 0,39 0,14 0,08 0,14 
SI 0 0 0 0 0 0 0,25 0,25 0,56 0,25 0,15 0,25 
KI 0 0 0 0 0 0 0,25 0,25 0,56 0,25 0,18 0,25 
OI 0 0 0 0 0 0 0,25 0,25 0,56 0,25 0,17 0,25 
GI 0,36 0,36 0,14 0,36 0,36 0,41 0,68 0,68 0,94 0,68 0,49 0,68 

 

Figure 7. Giz Index (GI) similarity test over six instances.

2.2. Data Tidying

Social media analysis with regard to an event starts with accessing the related data chunk. This is
mostly obtained by querying the hashtags used, or probable keywords that are related to the domain.
This tends to bring a mixture of data that is basically dominated by related content. However, it still
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includes noise in the form of non-relevant data. The first part of the data tidying process involves
filtering the retained data using probable keywords for the disaster domain under consideration.
Following this, the tweets generated by newsfeeds are discretized to avoid spam or non-individual
posts. In the next part of data tidying, each tweet content is labeled as relevant, partially relevant,
or non-relevant, in order to explore content commonalities and differences in the subsequent exploration
part. Manual labeling is determined as follows:

• Content related directly to a disaster event is marked as relevant;
• Content related to a disaster in a general manner, such as criticism of a political party or memory

of an old disaster event, is marked as partially relevant;
• Content related to a very different context to a disaster event such as “I am like a bomb today” or

“I am bored to death” is marked as non-relevant.

The grey line in Figure 1 is extended in Figure 2 to show the steps of the data flow for data tidying.
Each step in Figure 2 represents:

1. The acquired data table being produced;
2. Pre-filtering using domain-based keywords (rough filtering);
3. Newsfeed account removal from the data using media related keywords;
4. Manual labeling as relevant, partially relevant, or non-relevant to the domain;
5. Labels being appended to the data table.

This process provides pre-filtered and labeled data for the data exploration part. In this data
tidying process, there is also a text-cleaning step, which is re-designed as a result of the outcomes of
the data exploration. The tr_text_clean [49] function is combined with the following steps:

1. The fixing of encoding problems due to different Turkish language characters;
2. The removal of emoticons, punctuation, whitespaces, numbers, Turkish and English stop words,

long and short strings, and URLs.

This initial step eases the tokenization of each word as part of the next processes with regard
to text mining. Cleaning steps were determined recursively according to the outcome of the data
exploration part to find the best pre-processing steps for the language in this study. With respect to this,
the text cleaning part was re-designed with the removal of language encoding problems and with a
decision to keep the suffixes. This is because the suffixes vary in terms of pairing word to the relevancy
class that is discovered in the bi-gram word clouds in the data exploration part. While this tidying
step was utilized to regulate the text content for further processing, data still might have included
numerous irregularities such as spelling errors, jargon, and slang that could decrease the performance
of further processing.

2.3. Data Exploration

Explorative data mining methods were used to identify similarities and differences between
relevant, partially relevant, and non-relevant chunks of manually labeled tweets. Commonality and
comparison clouds, a pyramid plot, and word networks were visualized to gain insight into the data
for further processing.

The blue line in Figure 1 is extended in Figure 3 to show the data flow steps for data exploration
purposes. Each step in Figure 3 represents:

1. Data division in terms of label type and the conversion of the data type from data frame to corpus;
2. Divided data assignment as corpus in terms of label type;
3. Text cleaning for each corpus using the tr_text_clean function;
4. Uni-gram Document Term Matrix (DTM) creation for each corpus (each term has a word);
5. Assignment of three DTMs for relevant, partially relevant, and non-relevant data;
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6. Top 100 most frequent words determination in three DTMs;
7. Commonality cloud plot with varying word size in terms of word frequency;
8. Fifty most frequent distinct terms identification in relevant and partially relevant,

and non-relevant DTMs;
9. The creation of a comparison cloud plot with the determined distinct terms in DTMs;
10. The creation of a word network based on hierarchical clustering;
11. The creation of a word dendrograms plot to reveal the term associations;
12. The calculation of the frequency percentage of commonly used terms in terms of relevant and

partially relevant, and non-relevant DTMs;
13. The creation of pyramid plots with common terms in DTMs, ordered by the frequency

percentage difference;
14. Bi-gram Document Term Matrix (DTM) creation for each corpus (each term has two words);
15. The assignment of three bi-gram DTMs for relevant, partially relevant, and non-relevant data;
16. Determination of the 100 most frequent bi-gram terms in relevant and partially relevant DTMs;
17. The creation of a commonality cloud plot with a varying plot size of bi-grams in terms of

frequencies in DTMs;
18. The determination of the 100 most frequent bi-grams in non-relevant DTMs;
19. The creation of a commonality cloud plot with a varying plot size of bi-grams in terms of

frequencies in DTMs.

These help to explore relevant, partially relevant, and non-relevant data contents. The working
details of the packages used in this data exploration process are given in the following subsections.
During this exploration, the importance of suffixes for discrimination in terms of relevance and the
word association differences in terms of relevancy were explored. With respect to this, word stemming
was not applied in the text cleaning function, and the deficit in terms of the use of unigram pre-filtering
was revealed.

2.3.1. Commonality Cloud

This function is deployed as part of the “wordcloud” package [50] in R, runs over a term’s
frequency, and plots the most frequent “n” number of terms (words) as determined in the function
argument. For this study, the top 100 terms were plotted to show which terms have dominance within
the dataset.

2.3.2. Comparison Cloud

As with the commonality cloud, this function is also deployed as part of the “wordcloud”
package [50]. For a comparison cloud, two chunks of data are required in order to be able to compare
the most frequently used terms. In this work, it was used to see which common words were most
frequent in both labelled datasets. This function provides insights for sentiment analysis that depends
on constituent word scoring without any weights.

2.3.3. Pyramid Plot

This function is deployed within the “plotrix” package [51] and is used to show frequency
differences in both chunks. Frequency difference is normalized with the division of the maximum term
frequency in datasets, and ordered in terms of the differences. In this study, the use of a pyramid plot
visualized 50 words in the datasets that have the highest rates of difference from each other. This plot
was utilized to express the weights of terms that could be used for the intended classifier.
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2.3.4. Word Dendrogram

The “dist” and “hclust” function from the “stats” package [52] was utilized to create a word network
as a hierarchical cluster, and the “dendextend” [53] package was adopted to visualize and highlight
terms in a dendrogram. The Euclidean method was used in the arguments of the “dist” function
to determine the distance between terms before the hierarchical cluster process. The dendrograms
of relevant, partially relevant, and non-relevant sets of data were expressed to determine word
association differences.

2.4. Data Processing

Considering the insight gained from the data exploration part of the methodology, the processing
part was carried out using the different filtering techniques based on sentiment lexicons and machine
learning. In the first three techniques, the current generic subjective lexicons for the Turkish
language [31,40] were exploited to classify a roughly-filtered dataset as being relevant, partially
relevant, or non-relevant. The fourth and fifth techniques used the manually labelled data to allow
building a machine learning classifier for fine-grained filters.

A domain-based perspective was built by exploiting previous similar cases. The use of subjectivity
lexicons to filter out non-relevant content and for proposing a way of dealing with terror domain-based
data with regard to the Turkish language was a brand-new approach in terms of SMD analysis.
Subjectivity lexicons were used to avoid any misunderstandings with regard to Turkish words. For
example, the word “bomb” can be used to describe the detonation of an explosive instrument or as
the name of a popular dessert in Turkey. This is why valuable information from the posts was not
ignored; only relevant classifications were targeted by using the subjectivity lexicons to pick out the
relevant homonymous words in the Turkish language. However, it clarifies the benefits of the use of
word suffixes (i.e., without stemming a word) in Turkish.

From this first perspective, all relevant content was supposed to include negative sentiments, while
the non-relevant contents were considered to be positive. The first generic lexicon comprehensively
developed for Turkish is STN [31], which has nearly 15,000 terms (uni /bi-gram). STN provides the
term’s sentiment scores (from 0 to 1) for each sentiment label (positive, negative, and objective), and the
winning sentiment label for each term. In this study, the first technique scanned the constituent words
of tweets regarding the sentiment labels for each term, and the content of each tweet was classified in
terms of the highest count of the sentiment labels.

As far as the second technique was concerned, the scores of each sentiment label as derived from
STN were taken into consideration, and the scanned terms for each tweet were summed to find out the
most weighted sentiment relating to that content. The highest scored label classified the tweet content
as being relevant for the highest negative, partially relevant for the highest objective, and non-relevant
for the highest positive.

The third technique used another lexicon for the Turkish language (LOA) created by Ozturk and
Ayvaz [40], which depends on over 5000 commonly-used daily words scored from -5 to +5 by three
people. The average of these three was accepted as the polarity score for each term. For the third
technique, tweets were scanned to match the terms in the LOA, and the scores of the matched words
were summed to classify the contents, with a minus score identified as being relevant, a zero score as
being partially relevant, and a positive score as being non-relevant.

There are few studies on comparisons between the text filtering of SMD [54–57] because most
of the machine learning techniques are not considered for SMD. As can be seen from those studies,
the most common and efficient techniques that can be used with regard to text filtering are Naive
Bayes, Neural Network, and Support Vector Machine [58–61]. That is why these three techniques were
considered in this study to filter domain-based SMD.

For the fourth technique, a machine-learning perspective was used to create a classifier. The Naïve
Bayes (NB) classifier [62] was utilized, based on the probabilistic determination method. According
to this method, a classifier considers the likelihood probability of each class over a trained dataset.
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It then calculates the conditional probability of each term seen in the trained dataset regarding each
class. The classifier performs this analysis over the test data by multiplying the probability for each
term scanned for each tweet, as well as multiplying the likelihood probability of each class. Finally,
the classifier compares the probabilities of each class and picks the highest one to label. The method
considers the rate of incidence for the commonly-used words in each class. This is advantageous in
terms of classification performance with regard to roughly filtered data.

In the fifth technique, the Neural Network (NN) classifiers were trained. The ‘nnet’ package [63]
was utilized to model the classifiers. In terms of the NN principles, for training a dataset, a document
term matrix (DTM) is accepted as input signals with class labels. Three classifiers are trained using a
multi-class dataset. The weights of hidden layers are not initiated up front, and training is performed
with 500 iterations. Considering text classification with DTM is not a linearly-separable problem,
and it does need hidden layers when classifying with an NN classifier. Therefore, the hidden layer
parameter in the classifier is specified as 1, 2, and 3 to experimentally determine the best hidden layer
number. Increasing the hidden layer number provides high classification accuracy, but also creates a
time cost. However, the main aim of the study was not finding the best fit for a NN, but assessing
ways to determine the outcomes of faster filtering techniques when mapping. With respect to this,
the NN classifier that showed a reliable statistical performance with two hidden layers was accepted in
this NN processing part.

In the data processing part, sentiment lexicons and machine learning techniques were mainly
used to filter domain-based data. The sentiment lexicons used were the ones for use with the
Turkish language. The machine learning techniques used were the ones commonly used for text
classification [58–61]. In addition to the NB and NN, Support Vector Machine (SVM) is another popular
technique used for text classification. As the sixth technique, an SVM classifier was trained. The ’e1071’
package [64] which is one of the Misc Functions of the Department of Statistics, TU Wien, was utilized
to implement the classifier. The package allows the training of an SVM classifier by vectorizing each
term count in each document with the training labels. Since SVM provides successful results for
linearly-separable problems, different kernels such as polynomial, radial, and sigmoid were used for
the SVM classifiers. Although the SVM classifiers achieved a high degree of accuracy due to the use
of unbalanced datasets in this study, they achieved zero sensitive results for two of the three classes.
Therefore, it was decided that SVM was not suitable for further assessment in this study.

The green line in Figure 1 is extended in Figure 4 to show the data flow steps for data processing.
Each step in Figure 4 represents:

1. Data division into event day data and training data;
2. The conversion of the data type from data frame to corpus for event day data;
3. Data assignment as corpus for event data;
4. Text cleaning for event corpus using the tr_text_clean function;
5. Uni-gram Document Term Matrix (DTM) creation for the cleaned corpus;
6. sentiTurkNet polarity lexicon data frame creation;
7. The creation of inner joining terms in event data DTM and terms in sentiTurkNet;
8. The aggregation of negative values, objective values, and positive values for terms in

each document;
9. Polarity decisions for each document depending on the biggest values of each aggregation;
10. The appending of polarity labels to event data;
11. The assignment of event data with the polarity labels as STN_byScore data;
12. The counting of the negative (−1), objective (0), and positive (1) labels of terms in each document;
13. Polarity decision making for each document, depending on the biggest counts;
14. The appending of polarity labels to event data;
15. The assignment of event data with the polarity labels as STN_byLabel data;
16. LOA polarity lexicon data frame creation;
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17. The inner joining of terms in event data DTM and terms in LOA;
18. The aggregation of polarity scores of terms in each document;
19. The determination of polarity labels based on the sign (−, +) of polarity score aggregation;
20. The appending of polarity labels to event data;
21. The assignment of event data with the polarity labels as LOA data;
22. The conversion of the data type from data frame to corpus for the training data;
23. Data assignment as corpus for the training data;
24. Text cleaning for the training corpus with the tr_text_clean function;
25. Uni-gram Document Term Matrix (DTM) creation for the cleaned training corpus;
26. The modeling of a naïve Bayes classifier with the training DTM;
27. The prediction of event DTM relevance with the naïve Bayes classifier;
28. The appending of a prediction label to event data;
29. The assignment of event data with the prediction labels as NB_pred data;
30. The modelling a neural network classifier with the training DTM;
31. The prediction of event DTM relevance with the neural network classifier;
32. The appending of prediction labels to event data;
33. The assignment of event data with the prediction labels as NNET data.

This provides us with classified event data as a result of the five different techniques. The classified
data, in terms of different techniques, is further processed with the methodology given in Section 2.5
for quantifying the impact of filtering on spatial accuracy.

If the language is different to the language of this study, the users should alter several steps shown
within the methodology. In the data tidying step, data should be fixed due to encoding problems
caused by different Turkish language characters. This tidying operation is specific to the Turkish
language and should be changed for other languages that have different encodings. In addition to
that, the stop word removal of the text cleaning part should be changed into the defined language if
the language is different from Turkish. Another alteration in the tidying part might be the addition
of the “stemming” process. This study omitted the “stemming” since the suffixes contribute to the
discrimination of the relevance as discovered in the data exploration part. However, the “stemming”
operation could contribute to the discovery of highly related content in other languages. In the data
processing part, the sentiment lexicons are the ones for Turkish Language, and these also need to be
changed if the filtering process will be carried out with the sentiment lexicons of a different language.

The domain in this study is defined as the terror attacks and this should certainly contain negative
sentiment. As was also discovered in the data exploration part, irrelevant data contain positive
sentiments. That is why the use of sentiment lexicons can be successful for this terror domain.
That means that sentiment lexicon use should be avoided for determining the relevancy of domains
that can contain all types of sentiments. For instance, in marketing research, the domain may include
positive, neutral, or negative sentiments; therefore, the use of sentiment lexicons is not plausible for
filtering relevant data.

2.5. Interpretation of Spatial SMD

Accurate text mining for fine filtering is the first aspect associated with producing more reliable
maps for domain-based SMD analyses. However, on its own, it is not enough to determine the
spatial accuracy of the maps produced from the SMD. To determine how different filtering techniques
impact on spatial accuracy, this study proposes a spatial interpretation method. The interpretation
method involves two main steps—spatial clustering and spatial similarity calculation. In Section 2.5.1,
the details of the spatial clustering are given for incidence mapping the filtered data that is used for
this study. In Section 2.5.2, the current coefficients for the spatial similarity calculation are introduced.
In Section 2.5.3, the new spatial similarity coefficient entitled the Giz Index is proposed with quantitative
comparisons of the previously-introduced indices over designed test data. The similarity scores vary
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in terms of the chosen similarity coefficients. Therefore, it is important to determine which spatial
similarity index is used. In Section 2.5.3, a test designed for the comparisons of similarity indices is
used to reveal which index returns a plausible similarity value for incidence map comparisons.

2.5.1. Spatial Clustering

There are a number of spatial clustering algorithms [65] and methods used for spatial event
detection, whose results vary in terms of algorithm selection and methodologies [12]. Considering the
conflicts between different clustering techniques and pre-specified parameters (such as the number
of the clusters and required minimum number for each cluster), the Getis-Ord spatial clustering
algorithm [66,67] is chosen for each dataset to compare spatial variances due to the different filtering
methodologies applied previously. While performing Optimized Hotspot Analysis located in the
Spatial Statistics toolbox in ArcMap [68], the cell size is defined as 500 meters in terms of street-level
resolution [69], as it is intended to be fine-grained, and the aggregation method is determined as a
hexagon polygon to allow us to use the connectivity capacity of a clustering lattice shape [70]. This
first step provides Hotspot maps for different filtering methodologies, which serve as base maps for
the next step—spatial similarity calculation.

The hotspot mapping details of the filtered data are given by the yellow line part in Figure 5. Each
step in Figure 5 represents:

1. Filtering data in terms of day of the event;
2. Relevant data selection in terms of manually labeled data;
3. The production of a hotspot map for manually filtered relevant data;
4. The assignment of the manually filtered data hotspot map as the ground truth map (T);
5. Relevant data selections in terms of each automatically classified dataset;
6. The production of hotspot maps for each automatically filtered relevant dataset;
7. The assignments of the automatically filtered data hotspot maps as filtered maps (F1-5).

This provides ground truth and filtered data hotspot maps for the spatial similarity calculation
described in the next subsection.

2.5.2. Spatial Similarity Calculation

In various fields such as biology [71,72], ecology [73], and image retrieval [74], numerous
similarity indices have been proposed. Choi et al. [75] present an extensive survey of over 70 similarity
measures in terms of positive and negative matches and mismatches when it comes to comparisons.
Similarity measures are also in use and vary for the comparison between two maps in order to find
semantic similarities between land use, land cover classifications, temporal change, and hotspot
map overlaps [76–78]. In this study, the similarity between incidence maps is tested with the use
of similarity coefficients. Incidence mapping similarity is a special case for the similarity measures
since the incidences cover a small proportion of the pre-defined area (such as a city, a region, or a
district). Therefore, the negative matches within the observed area should be disregarded in order to
avoid a high degree of misleading similarity due to the high cover of negative matches. Arnesson and
Lewenhagen [78] propose the use of four different quantitative similarity measures for determining the
similarities or differences between hotspot maps. These are the Jaccard Index (1) [79], the Sorensen-Dice
Index (2) [80,81], the Kulczynski Index (3) [82], and the Ochai Index (4) [72], each of which are utilized
for similarity calculations. These measures return a similarity score of between 0 and 1 regarding
True-True (a), True-False (b), and False-True (c) hotspot counts in a comparison between truth and
prediction spots. These indices disregard negative matches (False-False (d)) [72,78] that are the first
requirement for incidence mapping similarity calculations. However, these indices are not specifically
designed for spatial purposes, given that they disregard the proximity between mismatching hotspots
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and the positive matches. In this respect, a new spatial similarity index is formulated for quantifying
incidence mapping reliability with regard to the ground truth data.

Jaccard Index (JI) =
a

a + b + c
, (1)

SorensenIndex (SI) =
2a

2a + b + c
, (2)

Kulczynski Index (KI) =
1
2

( a
a + b

+
a

a + c

)
, (3)

Ochai Index (OI) =
a√

(a + b)(a + c)
, (4)

Similarity index calculation details are given in the pink line in Figure 5. Each step in the pink line
represents:

1. Variable calculations for each comparison (similarity calculation):

• a = area(intersect(T, F1)) (the area of spatial intersection of the truth map and the filtered
map);

• b = area(extract(T,F1)) (the residual area of the truth map);
• c = area(extract(F1,T)) (the residual area of the filtered map);

2. The calculation of similarity between the truth map and filtered maps with the indices in
Equations (1)–(4).

This provides the four spatial reliability scores in terms of current similarity measures. However,
the applicability of the measures is uncertain with regard to the incidence mapping, since the measures
do not consider the proximity of the non-intersection areas, even if they are neighboring. That is why
the Giz Index is proposed as a spatial similarity index for incidence mapping studies. In the next
subsection, the Giz Index is formulated, and a comparison test between indices is provided over test
data. This comparison is provided to explain the eligibility of the Giz Index for incidence mapping
comparisons, while the others are not appropriate for every circumstance.

2.5.3. Giz Index

In a spatial context, omitting negative matches allows a more specified representation of hotspot
similarities between two maps. Otherwise, the results might be dominated by negative matches and
return over 99% similarity for almost all comparisons. However, the use of coefficients for spatial
purposes has some weaknesses, such as disregarding the size of separate clusters and the proximity
between non-intersecting clusters. The claim here depends on Tobler’s First Law of Geography,
“everything is related to everything else, but near things are more related than distant things”. Thus,
the distance and the size of each cluster needs to be considered in order to draw an accurate spatial
similarity index regarding proximate things that might influence each other. A new spatial similarity
index has been developed to represent to extent to which two maps are approximately similar to each
other. This is entitled the Giz Index. This index is referred to within the formulas and figures as GI.
This index considers each hotspot cluster in the first map as truth (c1..n) and in the second map as
prediction (k1..n).

The methodology of the index detects the area of each cluster (Ac1..n, k1..n), and considers whether
they are intersecting to form an area of intersection (AIc1-k1) or non-intersecting to form a residual area
of intersection (ANIc1-k1) and the distance between clusters (Dc1-k1). The Giz Index is formulated as in
Equation (5) for single cluster similarity.
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Giz Index =


AIc1−k1

Ac1
∗

√
Ac1√

Ac1+Dc1−k1
+

ANIc1−k1
Ac1

∗

√
Ac1√

Ac1+Dc1−k1
f or ANIc1−k1 < Ac1

AIc1−k1
Ac1

∗

√
Ac1√

Ac1+Dc1−k1
+ Ac1

ANIc1−k1
∗

√
Ac1√

Ac1+Dc1−k1
f or ANIc1−k1 > Ac1

, (5)

In the first part, the equation handles the similarity of intersecting areas (AI). AI similarity is
obtained by dividing intersecting areas (AIc1-k1) of the cluster (Ac1) and multiplying them by the
normalized distance between clusters (ground truth and prediction). This normalized distance is taken
as 1 for the intersecting areas part, and is always less than 1 for a non-intersecting area. At the same
time, as the distance increases between clusters (c1–k1), the normalized distance will decrease relative
to the square root of the cluster area. In the second part, non-intersecting part similarity is calculated
with the very same formula as in the first part. There is a condition based on the sizes of the Ac1 and
ANIc1-k1, where the area ratio in the second part of the formula is reversed. For instance, if the area of
the first cluster (c1) is 4 units, and the non-intersecting part is 10 units, the ratio is reversed to become
4/10 instead of 10/4.

The Giz Index calculation details are given by the turquoise line in Figure 6. Each step in Figure 6
represents:

1. The variables’ calculation for each comparison (similarity calculation) for the Giz Index:

• c1..x = dissolve(T) (determination of clusters for the truth map by merging adjacent hexagons);
• Ac..x = area(c1..x) (defining the area of each cluster in the truth map);
• k1..x = dissolve(Fx) (determination of clusters for the filtered map by merging adjacent

hexagons);
• Ak..x = area(k1..x) (defining area of each cluster in the filtered map);
• Dcx-kx = (distance(centroid(c1..x),(centroid(k1..x))) (defining distance between each truth map

cluster and each filtered map cluster); this step is important in order to define which cluster in
the filtered map is compared to which truth map cluster, and the closest distance determines
the candidate cluster in the truth map;

• AIcx-kx = intersect(cx, kx) (defining the area of the intersecting clusters);
• ANIcx-kx = extract(kx, cx) (defining the area of non-intersecting cluster parts);

2. The calculation of similarity between truth maps and filtered maps using the Giz Index according
to Equation (5).

This provides similarity measures weighting the degree of similarity depending on the proximity
between truth map clusters and filtered map clusters.

The Giz Index is tested and compared with the current indices with regard to the test data that are
displayed in Figure 7. The test data include six instances, and each instance has two predictions (p1,
p2) and one truth cluster. The test data are developed to reveal the response details of the similarity
indices in terms of the different sizes of prediction clusters and the distances between the prediction
cluster and the truth cluster.

The similarity between the prediction clusters (p1, p2) and the truth cluster for each instance is
calculated using the current indices and the proposed Giz Index. The similarity results vary between
0 and 1 and are presented in Table 1. In the first three instances, there are no intersecting clusters.
Therefore, the results of the current indices return a 0 value; the prediction is either proximate to or far
from the truth cluster. Additionally, these indices disregard the non-intersecting cluster size in these
zero intersection circumstances. On the other hand, the Giz Index returns varying similarity values in
terms of the proximity and size of the non-intersecting clusters— in these instances I, II, and III. When
the differences in size and distance are higher, the Giz Index (GI) is closer to 0; otherwise, it is closer to
1. The scores of the current similarity indices respond to the size of the intersecting area in instances
IV, V, and VI. When the intersection is proportionally higher, the current scores become higher, as in
the GI. However, the residual area of the cluster has zero addition to the similarity increase even if



ISPRS Int. J. Geo-Inf. 2020, 9, 245 16 of 34

they are placed in neighboring parts of the truth cluster. In respect to the results, it is obvious that
the current similarity indices totally disregard non-intersecting parts when there is no intersecting
cluster. Therefore, the current indices might cause misinterpretations in incidence mapping studies,
since the near incidences to the real incidence areas have value when it comes to determining the exact
incidence area. In other words, the occurrence of close incidences on a map can be interpreted as signs
indicating the main event. Therefore, the proximity of non-intersecting clusters and size should be
considered for the correct interpretation of the maps.

Table 1. Similarity scores of test data over six instances in terms of similarity indices.

Instance - I Instance - II Instance - III Instance - IV Instance - V Instance - VI

p1 p2 p1 p2 p1 p2 p1 p2 p1 p2 p1 p2

JI 0 0 0 0 0 0 0.14 0.14 0.39 0.14 0.08 0.14
SI 0 0 0 0 0 0 0.25 0.25 0.56 0.25 0.15 0.25
KI 0 0 0 0 0 0 0.25 0.25 0.56 0.25 0.18 0.25
OI 0 0 0 0 0 0 0.25 0.25 0.56 0.25 0.17 0.25
GI 0.36 0.36 0.14 0.36 0.36 0.41 0.68 0.68 0.94 0.68 0.49 0.68

The Giz Index supports exploratory inferences when the quantitative measure is between 0 and 1,
by considering both the size of spatial clusters and their proximity. The size and location accuracy are
important for the several subjects that form the domains, and the Giz Index can provide a quick and
automatic spatial interpretation of the analyzed data. This index can also be used for a quick look at
the validation processes with regard to social media data if there are any other secondary data sources
that can be accepted as the truth. The Giz Index can also be used for various domains such as concerts,
elections, and marketing, in addition to disasters, as mentioned in this study. The spatial similarity
introduced in this research can be used for the spatial comparison of simulation maps and estimation
maps, and the resulting maps associated with different studies using different methodologies can be
used for similar purposes.

3. Case Study

3.1. Importing and Retaining Data

In this study, 8 months of data from May to December 2016 were selected regarding 10 terrorist
attacks that occurred in Turkey. During that period, geo-referenced tweets were captured and inserted
in the PostgreSQL database using GTD.

3.2. Data Tidying

Pre-filtering was done roughly using keywords such as “attack” (saldırı in Turkish), “bomb”
(bomba in Turkish), and “explosion” (patlama in Turkish) to provide targeted chunks of data with
a mix of relevant and non-relevant content. While filtering, all combinations of case-sensitive and
Turkish character encodings were considered in order to retrieve all possible related content such as
“saldırı”, “SALDIRI”, “Saldiri”, etc.

Following this, 285 tweets from six newsfeed accounts were detected and removed from the
pre-filtered data due to possible content being mixed with diverse and non-relevant news. After removal,
a total of 4395 tweets were classified manually using three labels: 1—relevant (RL), pertaining to
newly-occurred terror attacks; 2—partially relevant (PR), related content including terror in general
such as political party criticism or memories of an old terror event; and 3—non-relevant (IR), contents
totally unrelated to a terror attack, such as “I love bomb dessert” or “Go team go, attack and beat
them”. As labelled, 934 of the tweets were non-relevant, 799 were partially relevant, and 2662 tweets
were directly relevant to a terror event. Maps of each set of IR, PR, and RL tweets were created and
classified by month (Figure 8).
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One of the inferences while labelling is that social media users react to newly-occurring terror
attacks by protesting about terrorists, the security services, the government, and political parties.
However, many of the tweets include condolences to the families of the victims regarding second-hand
information obtained from somewhere else such as traditional/news media. Very few of the users were
sharing information about witnessing the incidents. Consequently, these inferences predominantly
indicate a repetition of similar content. Thus, it can be said that mining for first-hand information
is just like looking for a needle in a haystack. This first-hand information is of great importance for
incidence mapping during or shortly after a disaster, as implied in the motivation for this study.

Prior to explorative data analysis, the text of the tweets was cleaned to avoid later problems
when it came to processing a better bag of words. Therefore, emoticons, punctuation, stop words
in Turkish [83] and English, numbers, and URLs were removed from the tweets, and all encoding
and letter case problems were fixed. In addition, city and county names with regard to Turkey that
may create a bias in terms of this work, and were not needed while classifying content, were removed
from the texts. Stemming, which is one of the further text cleaning steps, was ignored in this study.
In this way, the aim was to preserve rich meaning differences with suffixes in Turkish. By using
the tr_text_clean function, text cleaning of this work was undertaken on the one hand by including
several functions from the TM package [84] and the ggrepel package [85] and, on the other, self-defined
sub-functions. Details of the tr_text_clean cleaning function can be found in [49] in terms of its use in
similar works.

3.3. Data Exploration

Data exploration for Turkish terror domain-based data was handled descriptively using
commonality and comparison clouds, a pyramid plot and a word dendrogram in order to show
differences between terms (words) with regard to data relevant to the domain.

Commonality for uni/ bi-grams and comparison clouds are visualized (Figure 9) after the several
cleaning functions are applied to all three chunks of data. The commonality cloud plotted for uni-gram
(a) represents the most frequent terms over all the labelled chunks, in which the relevant chunk
dominates the frequency due to the relatively high number of tweets compared with other chunks.
This means that hot topics dealt with during the disaster could be easily estimated by the use of
the commonality cloud over the roughly-filtered data. The comparison cloud (b) displays the most
frequent terms in both chunks, in terms of relevant/ partially relevant tweets and non-relevant tweets.
The comparison cloud provides a more detailed explorative look by plotting frequent terms regarding
non-relevant and relevant (partially or totally) chunks of data (b). Terms in this study are in Turkish
and translated into English, with the words in parenthesis being the actual Turkish words encountered
in this study. The first inference is that chunks include common terms such as ‘bomb’ (bomba),
‘explosion’ (patlama) and ‘attack’ (saldırı); dissimilar frequent terms include words such as ‘dessert’
(tatlı), ‘energetic’ (enerji), ‘mercy’ (rahmet)). The second inference is that some of the most common
words in the comparison cloud have taken different suffixes. For instance, ‘attack’ in the relevant chunk
has noun suffixes, while in the non-relevant chunk it is mostly used as a verb in the imperative mood.
Therefore, these were assessed as different terms by omitting stemming in the pre-processing period.



ISPRS Int. J. Geo-Inf. 2020, 9, 245 18 of 34

Version March 28, 2020 submitted to ISPRS Int. J. Geo-Inf. 2020 17 of 34 

(a) (b) (c) (d)

Figure 9. Keyword filtered tweets (a) commonality cloud; (b) comparison cloud; (c) bi-gram word 
cloud for relevant tweets; (d) bi-gram word cloud for non-relevant tweets. 

In addition to the unigram word cloud, bi-gram word clouds are plotted for both chunks, 
whether the use of any bi-gram could be pervasive in either one or both (Figure9 (c), (d)). For instance, 
`God's mercy' (allahtan rahmet) is the most frequent bi-gram in the relevant (partially or totally) 
chunk, while ̀ coming like a bomb' (bomba geliyoruz) is the most frequent bi-gram in the non-relevant 
chunk. From the perspective of the subjective lexicons, we might consider that `God' can be labelled 
as positive. However, in conjunction with ̀ mercy' it turns into a condolence phrase that has a negative 
sentiment. In the same vein, `bomb' can be perceived as being negative or positive, while on the other 
hand ̀ coming like' expresses a positive sentiment, with ̀ attack' indicating negative sentiments. Those 

Figure 9. Keyword filtered tweets (a) commonality cloud; (b) comparison cloud; (c) bi-gram word
cloud for relevant tweets; (d) bi-gram word cloud for non-relevant tweets.

In addition to the unigram word cloud, bi-gram word clouds are plotted for both chunks, whether
the use of any bi-gram could be pervasive in either one or both (Figure 9c,d). For instance, ‘God’s
mercy’ (allahtan rahmet) is the most frequent bi-gram in the relevant (partially or totally) chunk,
while ‘coming like a bomb’ (bomba geliyoruz) is the most frequent bi-gram in the non-relevant chunk.
From the perspective of the subjective lexicons, we might consider that ‘God’ can be labelled as positive.
However, in conjunction with ‘mercy’ it turns into a condolence phrase that has a negative sentiment.
In the same vein, ‘bomb’ can be perceived as being negative or positive, while on the other hand
‘coming like’ expresses a positive sentiment, with ‘attack’ indicating negative sentiments. Those words
are not ‘negators’ that directly invert a polarized meaning like the ‘not’ effect over adjectives, as in ‘good’
and ‘not good’. It shows the importance of word association in order to identify the correct sentiment.

A word dendrogram for each chunk is visualized to compare the changing word association
between chunks. There are a couple of inferences from the dendrograms. The first one is that there are
few branches for the same words with different suffixes in the same dendrogram, and also in different
ones (such as; terör, terörü, teröre and terörsüz etc. colored as red in Figure 10). These suffixes provide
a clue about the other parts of the sentence. For example, ‘terror’ (teröre) could be completed with
‘damn’ (lanet) to create ‘damn terror’. Similarly, while the word ‘terörsüz’ means ‘without terror’, it
could be completed with terms such as ‘wishing for a day without terror’ (colored as blue in Figure 10).
In addition, the word for ‘explosion’ (patlama) in a relevant dataset, is not directly associated with
any word, while in the non-relevant chunk it is associated with ‘good morning’ (günaydın), ‘energy’
(enerji) and sampled as ‘Good morning! I have had an energy explosion today’ (colored as orange in
Figure 10). Furthermore, the leaves of dendrograms display commonly-associated words such as ‘wish’
‘speedy’ ‘recovery’ ‘to the wounded’ (‘diliyorum’, ‘acil’, ‘şifalar’, ‘yaralılara’) in a relevant dendrogram,
‘counter’ (‘mücadele’ in Turkish), ‘terrorism’ (‘terörle’), ‘branch’ (‘şube’), ‘directory’ (‘müdürlüğü’) in
partially relevant tweets, and ‘ready’ (‘hazır’), ‘to explode’ (‘patlamaya’) in non-relevant sets (colored
as green in Figure 10). Therefore, keeping suffixes is important, as well as assessing word associations
in the same document to determine the exact sentiment.

The use of a pyramid plot also offers another chance to explore the (dis)similarity in terms of
frequency between RL-PR and IR. The terms (“terör” in RL-PR, “bomba” in IR) that have the maximum
frequencies in both chunks are assumed to be 100 units, and the frequency values of the other terms
are normalized using a rate ratio, according to Equation (6). Normalization is applied to the RL/ PR
and IR chunks separately in order to avoid the dominance of different chunk sizes.

nt f vi =
t fi ∗ 100
max(t f )

(6)
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The pyramid plot used in this study plots 50 common terms that have the highest frequency
difference between the RL/PR and IR chunks, ordered by the normalized term frequency value
difference (ntfv) (Figure 11a) and ordered by the ntfv of the RL/PR chunk (Figure 11b). This plot is
important in that it shows that although there are common words, each has a different frequency rate in
the various chunks. For instance, keywords such as “terör”, “bomba”, and “patlama”, used for rough
filtering, are unsurprisingly placed at the bottom of the plot as the highest ntfv for the RL/ PR chunk,
while they have 2.6, 100, and 9.6 ntfv, respectively, for the IR chunk. In addition, the plot provides the
feasibility of looking more closely at the ntfv with regard to the same words with different suffixes,
as in “terör”, “terrorist”, “terörü”, “bomba”, “bombalar”, “bombas”, and “bombayı”.
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3.4. Processing Data

The explored data were processed using two lexicon libraries (STN and LOA) with three different
processes (score, score label, and polarity labels) in order to determine the best fine-grained filtering
process and its performance. In general, the terror domain filtering capabilities of current Turkish
subjectivity lexicons were revealed before the implementation of the techniques with regard to two
cases from the terror domain. As a result, all self-labelled data were processed with the current
subjectivity lexicons in the form of STN and LOA. This resulted in the prediction of each tweet’s
sentiments by separately utilizing terms with scores in STN, polarity labels in STN, and scores in
LOA. To determine the content of each tweet—whether negative, positive, or objective—each tweet’s
constituent terms’ label counts and score sums were calculated. The relevant metric for this score was
chosen in terms of its overall accuracy according to Equation (7), which is the ratio of the correctly
classified cases vs. the total data count.

Overall Accuracy =
True Positives + True Negatives

Total Data
(7)
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These three processes respectively indicate that 36%, 40%, and 49% of the results are accurate for
filtering. However, the first two STN processes resulted in 37% being non-applicable (NA), and the last
process (LOA) resulted in 5% being non-applicable (NA) (Table 2a–c). Thus, a 37% NA result can be
interpreted as being inadequate in terms of the STN for the terror domain, while the LOA has a wider
capability to cover terms with just 5% NA results. This might indicate that the LOA has more words
that intersect with the domain terms. On the other hand, the overall accuracy for both lexicons is not
sufficiently adapted to that domain to allow fine-grained filtering.

Table 2. The confusion matrices of sentiment analysis for fine-grained filtering by (a) SentiTurkNet
(STN) by score, (b) STN by polarity label, and (c) the Lexicon of Ozturk and Ayvaz (LOA) by score.

(a) STN by score
Truth

R IR PR

Prediction

R 585 88 87
IR 294 130 131
PR 734 440 263
NA 1049 276 318

Overall Accuracy 36%

(b) STN by polarity label
Truth

R IR PR

Prediction

R 991 549 382
IR 617 106 97
PR 5 3 2
NA 1049 276 318

Overall Accuracy 40%

(c) LOA by score
Truth

R IR PR

Prediction

R 1564 435 465
IR 402 169 143
PR 316 160 129
NA 0 170 62

Overall Accuracy 49%

R (positive), IR (negative), PR (objective).

The explored dataset included tweets pertaining to several terror attacks that had occurred in
Turkey. Two cases were picked for a comparison of filtering techniques and mapping reliability. In the
first case, the test data were roughly-filtered data generated after the terror attack that occurred near the
Besiktas Vodafone Arena (BVA) in the Besiktas district of Istanbul. The second case data were roughly
filtered after the Ataturk airport terror attack (ATA). These two terror attacks caused many casualties
and fatalities and created a threat to thousands of people in the urban area. Many people expressed
their sorrow, offered condolences, and expressed their hatred of the attacks. Therefore, sentiment
analysis was seen as a way of undertaking fine-grained filtering. Both datasets were processed with
regard to the three lexicons and two machine learning-based techniques. The first three techniques
were applied regarding each case of datasets. However, these processes returned some unlabeled
outputs (NA), which were disregarded for the calculation in terms of accuracy. The confusion matrices
of the first set of techniques are displayed in Table 3a–c for the BVA and Table 4a–c for the ATA.
With regard to the fourth process, a Naïve Bayes classifier was trained and tested for the same events.
The rest of the roughly-filtered and labelled data were used as a training dataset to build a Naïve
Bayes classifier. As a result of this process, the classifier labelled all data with 87% accuracy (Table 3d).
This approach was tested with the second dataset generated after the ATA. The ATA event resulted
in 84% accuracy (Table 3d) using the same approach. The fifth process was a neural network (NN)
classifier, which was trained using the manually labelled data. The model classified BVA and ATA data
with 61% and 70% accuracy (Table 4d,e), respectively. A hidden layer parameter was assigned as 1, 2,
and 3 in order to find the best model for NN. In the NN processing part, an NN structure consisting of
two hidden layers was adopted due to its reliable statistical performance.
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Table 3. The confusion matrices of fine-grained filtering processes over the Besiktas Vodafone Arena
(BVA) data.

(a) STN by score
Truth

R IR PR

Prediction

R 203 4 3
IR 84 0 6
PR 172 2 5

NA 44% 358 3 7
Overall Statistics

Overall Accuracy 43%

Class R IR PR

Sensitivity 0.44 0.00 0.36
Specificity 0.65 0.81 0.63

PosPredValue 0.97 0.00 0.03
F1 0.61 NaN 0.05
F2 0.50 NaN 0.11

G-Mean 0.43 0.00 0.44

(b) STN by polarity label
Truth

R IR PR

Prediction

R 168 4 2
IR 69 0 5
PR 222 2 7

NA 44% 358 3 7
Overall Statistics

Overall Accuracy 37%

Class R IR PR

Sensitivity 0.37 0.00 0.50
Specificity 0.70 0.84 0.52

PosPredValue 0.97 0.00 0.03
F1 0.53 NaN 0.06
F2 0.42 NaN 0.12

G-Mean 0.44 0.00 0.46

(c) LOA by score
Truth

R IR PR

Prediction

R 429 6 17
IR 110 0 1
PR 96 0 2

NA 22% 182 3 1
Overall Statistics

Overall Accuracy 65%

Class R IR PR

Sensitivity 0.68 0.00 0.10
Specificity 0.12 0.83 0.85

PosPredValue 0.95 0.00 0.02
F1 0.79 NaN 0.03
F2 0.72 NaN 0.06

G-Mean 0.23 0.00 0.29

(d) Naïve Bayes
Truth

R IR PR

Prediction
R 721 2 12
IR 57 7 4
PR 39 0 5

Overall Statistics

Overall Accuracy 87%

Class R IR PR

Sensitivity 0.88 0.78 0.24
Specificity 0.53 0.93 0.95

PosPredValue 0.98 0.10 0.11
F1 0.93 0.18 0.15
F2 0.90 0.34 0.20

G-Mean 0.64 0.85 0.48

(e) Neural Network
Truth

R IR PR

Prediction
R 506 3 13
IR 106 3 1
PR 205 3 7

Overall Statistics

Overall Accuracy 61%

Class R IR PR

Sensitivity 0.62 0.33 0.33
Specificity 0.47 0.87 0.75

PosPredValue 0.97 0.03 0.03
F1 0.76 0.05 0.06
F2 0.67 0.10 0.12

G-Mean 0.49 0.53 0.49

R (positive), IR (negative), PR (objective).
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Table 4. The confusion matrices of fine-grained filtering processes over the Ataturk airport terror attack
(ATA) data.

(a) STN by score
Truth

R IR PR

Prediction

R 86 6 1
IR 31 3 4
PR 47 6 10

NA 44% 98 4 14
Overall Statistics

Overall Accuracy 43%

Class R IR PR

Sensitivity 0.52 0.20 0.27
Specificity 0.77 0.77 0.70

PosPredValue 0.93 0.07 0.07
F1 0.67 0.10 0.11
F2 0.57 0.14 0.17

G-Mean 0.51 0.37 0.41

(b) STN by polarity label
Truth

R IR PR

Prediction

R 68 4 0
IR 29 2 9
PR 67 9 6

NA 44% 98 4 14
Overall Statistics

Overall Accuracy 37%

Class R IR PR

Sensitivity 0.42 0.13 0.40
Specificity 0.87 0.79 0.58

PosPredValue 0.94 0.05 0.07
F1 0.58 0.07 0.12
F2 0.47 0.10 0.21

G-Mean 0.53 0.30 0.44

(c) LOA by score
Truth

R IR PR

Prediction

R 162 14 22
IR 36 1 6
PR 27 3 0

NA 22% 37 1 1
Overall Statistics

Overall Accuracy 65%

Class R IR PR

Sensitivity 0.72 0.17 0.00
Specificity 0.22 0.83 0.89

PosPredValue 0.82 0.07 0.00
F1 0.77 0.10 NaN
F2 0.74 0.13 NaN

G-Mean 0.24 0.36 0.00

(d) Naïve Bayes
Truth

R IR PR

Prediction
R 233 3 10
IR 18 15 6
PR 11 1 13

Overall Statistics

Overall Accuracy 87%

Class R IR PR

Sensitivity 0.89 0.79 0.45
Specificity 0.73 0.92 0.96

PosPredValue 0.95 0.39 0.52
F1 0.92 0.52 0.48
F2 0.90 0.65 0.46

G-Mean 0.78 0.85 0.65

(e) Neural Network
Truth

R IR PR

Prediction
R 191 3 9
IR 30 14 8
PR 41 2 12

Overall Statistics

Overall Accuracy 61%

Class R IR PR

Sensitivity 0.73 0.74 0.41
Specificity 0.75 0.87 0.85

PosPredValue 0.94 0.27 0.22
F1 0.82 0.39 0.29
F2 0.76 0.55 0.35

G-Mean 0.71 0.79 0.59

R (positive), IR (negative), PR (objective).
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A confusion matrix was plotted for the evaluation of each filtering technique with overall accuracy,
sensitivity (recall), specificity, PosPredValue (precision), F1, F2, and G-Mean (geometric mean) scores.
These scores represent details of the filtering performance. While accuracy indicates the general
performance of the filtering process, it is not adequate on its own in some circumstances, e.g., a
misleading high accuracy score can be seen for the unbalanced data classes due to zero sensitivity
on all classes other than the major class [86]. Data that were used in this study are unbalanced for
the relevant (R) class, since the pre-filtering was applied for the day of the terror attacks. Although
the classifiers were modelled to classify multi-classes, it is more important that the major class (R)
is classified. In this circumstance, sensitivity, F1, and G-Mean metrics were proposed by the studies
dealing with such data and classifiers [86–88].

There are several inferences depending on the results listed in Tables 3 and 4. The first one is that
the Naïve Bayes classifier performance over two datasets is clearly better than that of the other four
techniques in terms of the overall accuracy and sensitivity, F1, and G-Mean for the relevant (R) class.
The performance ranking across both datasets is the same in terms of overall accuracy, which is NB,
NN, LOA, STN by score, and STN by polarity label from the highest to the lowest. The rank is slightly
different—which is NB, LOA, NN, STN by score, and STN by polarity label for BVA—but is again
similar for ATA in terms of the F1 score. It is NB, NN, STN by polarity label, STN by score, and LOA
for both BVA and ATA in terms of the G-Mean score. In terms of all scores, the performance rankings
are very similar for both datasets. This means that the filtering techniques are precise and independent
of the data.

3.5. Spatial Interpretation over Fine-Filtered SMD

As noted above, this study explored the fine-grained content filtering used to produce more
reliable maps for specific domains. Each textually filtered dataset was overviewed with the use of
confusion matrices, and this part of the study considered the textual accuracy of the tweets that can be
used for a disaster domain. However, the spatial accuracy of the tweets needs to be determined in
order to provide full reliability in terms of the sentiments and the location of the tweets. To determine
the spatial accuracy, this study compared the manually-labelled and automatically-filtered data in
the spatial context. There are diverse spatial clustering algorithms [65] and methods for spatial event
detection. The results vary in terms of the algorithm selection and the methodologies used [12]. Given
the conflicts revealed using different clustering techniques and pre-specified parameters (such as the
number of the clusters and required minimum number for each cluster), a Getis-Ord spatial clustering
algorithm [66,67] was chosen for each dataset to compare spatial variances due to the different filtering
methodologies applied previously.

While performing Optimized Hotspot Analysis using ArcMap [68], the cell size was defined as
500 m. This represented the street-level resolution [69] necessary to allow a fine-grained analysis. To
use the connectivity capacity of a clustering lattice shape [70], hexagon polygons were selected in the
aggregation method. The borderline of the city of Istanbul—where both terror events occurred—was
taken as the analysis boundary. The outcomes of the analysis gave an explorative method for
identifying the differences or similarities between the filtering methods and manually-labelled data
(Figure 12a1,b1). Manually-labelled data hotspots for BVA (a1) and ATA (b1) are taken as ground truth
without concerning the credibility of the data posted in social media. Explorative comparisons of
hotspots could be assessed in terms of the similarity of cluster locations, cluster sizes, cluster numbers,
and distances between clusters.

For the ATA event, LOA (a4) looked more similar to the truth map than all the others, while it
was the second most accurate one in terms of filtering after the use of Naïve Bayes. Interestingly,
when the cluster size was used, the clusters of Naïve Bayes filtering were several times larger than
the ground truth. Even though, in terms of cluster location, Naïve Bayes filtering gives an accurate
result—since it includes the base clusters inside—in terms of cluster size, the level of accuracy does not
meet expectations, whereas Naïve Bayes filtering comes first in terms of filtering accuracy.
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For the BVA event, both STN filtering hotspots were seen to be scattered to several distant locations,
and STN by score (b2), LOA (b4), and Naïve Bayes (b5) filtering display a rather more similar clustering
pattern with manually-labelled hotspots (b1). However, clusters generated by the data filtered with
STN by polarity label (b3) present moderate convergence to the base clusters (b1).

The similarity rates of hotspots are listed for each event, based on their similarity indices (Table 5).
In respect of this, the results vary in terms of the chosen indices and, at some points, the results of
other indices converge to the Giz Index. There are several inferences that can be made from this.
The first one is that the Jaccard Index (JI) performs well when the intersection converges to the size
of the hotspots in either the ground truth or the filtered maps (Figure 12a4,b6). Secondly, since the
Sorenson Index (SI) formulates the intersection as double weighted, it converges to the Giz Index when
the intersection area is significantly high (Figure 12a5,a6,b3,b4,b5). Kulczynski designates the same
importance to the intersection part ratio to either ground truth or filtered map, and converges to the
Giz Index, with the intersection ratio being similar in both maps (Figure 12b2,b4,b5). Therefore, it does
not converge with the Giz Index score when the intersection area is disproportionately distributed in
the truth and filtered maps as shown in Figure 12a2,a5. Additionally, the Ochai Index considers the
intersection ratio exponentially to total hotspot areas in both the ground truth and the filtered maps
(Figure 12a6,b2,b4,b5). This exponential weight creates a bias in terms of the size of the intersection
without bothering about the distance between the non-intersected areas. The Giz Index calculates the
similarity score in terms of all the required aspects (cluster size, spatial proximity, spatial intersection
area, and non-intersected area) for the comparison of incidence maps.
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Table 5. Map similarity rates for (a) BVA and (b) ATA.

(a) BVA JI SI KI OI GI (b) ATA JI SI KI OI GI

STNScrPred 0.74 0.60 0.71 0.65 0.50 STNScrPred 0.51 0.68 0.74 0.74 0.78
STNPlrPred 0.12 0.19 0.56 0.35 0.25 STNPlrPred 0.53 0.69 0.78 0.76 0.68

LOAPred 0.90 0.64 0.96 0.96 0.85 LOAPred 0.58 0.74 0.83 0.82 0.78
NBPred 0.17 0.25 0.57 0.38 0.28 NBPred 0.55 0.71 0.81 0.80 0.76
NNPred 0.32 0.48 0.41 0.54 0.51 NNPred 0.33 0.50 0.40 0.56 0.31

The similarity threshold is identified as 0.7 for the use of filtering and mapping techniques.
With regard to this, STN by score (STNScrPred) has a threshold of more than 0.70 similarity according
to the JI and KI, while for the LOA (LoaPred) it has a threshold of more than 0.90 according to JI, KI,
OI, and GI for the BVA event (Table 5a). For the ATA event, with the exception of NN, all hotspot map
displays have a reasonable similarity according to diverse indices (Table 5b).

However, the Giz Index is accepted as the most appropriate similarity index for this study
as it embodies spatial similarity, unlike the Jaccard, Sorensen-Dice, Kulczynski, and Ochai Indices.
The results of the Giz Index for both events support explorative inferences, with quantitative measures
between 0 and 1, by considering both the size of spatial clusters and their proximity. This is because size
and location accuracy are important for studies including spatial analyses, such as disaster management
involving such an analysis. The index can provide quick and automatic spatial interpretation of the
analyzed data. When it comes to the Giz Index, which allows us to evaluate the data spatially, it offers
sufficient similarity for both the BVA events with LOA, and the ATA event with the LOA, STN by score,
and Naïve Bayes techniques.

3.6. Outcomes

As previously mentioned, the proposed methodology of this study can also be used for different
domains such as elections, natural disasters, and marketing. As an example, if the domain is an election,
the following procedures can be applied to map the reactions of social media. The first step is to
correctly filter the SMD. For this step, the user should select the keywords for the election event such as
politics, party, parliament, deputy, names of the parties, names of the candidates, election, referendum,
etc. Following this first step, the filtered SMD will include non-relevant or partially relevant tweets
due to the use of homonyms and metaphors. To filter out the non-relevant and partially relevant
tweets, depending on the number of available tweets, a training dataset should be spared and labeled
manually as being relevant, non-relevant, and partially relevant. This step can be automatically done
by using web platforms such as Kaggle and Mechanical Turk [89,90]. This manually or web-based
labeled dataset is used to train a Naïve Bayes Classifier, and this classifier is used to fine-grain filter
the SMD. After the automatic fine-grain filtering, the relevant resulting labeled data can be used to
create hotspot maps of social media reaction, changes in reaction maps, and the thematic and spatial
distributions of reactions by using the Getis-Ord* algorithm. This map can show most and least favorite
candidates, parties, promises, and the complaints of the electors in different spatial regions.

Temporal reaction maps can be compared by using the Giz Index to evaluate differences in terms
of the election campaign based on the candidates or parties. The reaction maps of the candidates or
parties before and after meeting times can also be compared by using the Giz Index to investigate the
reaction of the electors to the promises made by the candidates.

Another aspect of this study’s methodology relates to event-based mapping for the determination
of the size and distribution of the event, to find the most dangerous, riskiest, or safest routes for
evacuation that were used by the tweet owners or the most secure locations. An example of such a
case is the use of this methodology during and following an earthquake event to create an incidence
map. The first step is, again, to pre-determine the keywords before the event. Then, during and
following the earthquake event, the SMD are pre-filtered. To fine-grain filter the SMD following
the pre-filtering, a training dataset should be spared for training the classifier, either by manually
labeling relevant, non-relevant, and partially relevant data, or by using web platforms. Following
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the labeling, the training dataset is used to train Naïve Bayes Classifiers. After the supervised Naïve
Bayes classification, unsupervised topic modelling techniques such as latent semantic analysis (LSA),
probabilistic LSA (pLSA), or latent Dirichlet allocation (LDA) can be used to categorize the incident
reporting tweets [91,92]. If the SMD are open for manipulation based on bot account multiple tweets,
the data can be refined by location and the username, and the manipulation sources and effects can
consequently be minimized. Following this step, a Getis-Ord* algorithm can be used to create incidence
maps of most of the collapsed buildings that exist, most of the people who are waiting for a response,
or the most secure locations or routes for gathering or evacuation. The incidence maps can be compared
with the emergency calls, pre-earthquake risk maps, and response plans by using the Giz Index. In this
way, previously estimated damage and risks can be validated, and the current situation affecting the
information flow can be controlled by using the proposed methodology. This difference can be used to
optimize the response plans rapidly following an earthquake.

4. Conclusions

The social media data generated by billions of human sensors throughout the world and by
nearly half of the total population of Turkey are crucially significant as a data source, during and
after a disaster. This study not only determined the value of fine-grained filtering techniques in the
terror domain with regard to the Turkish language but also proposes a quantification method for
ensuring the spatial reliability of these filtered data. With regard to that, the study focused on two
main investigations; the use of common approaches for domain-based filtering SMD in the Turkish
Language, and the spatial reliability of the incidence maps that are produced with the domain-based
filtered SMD. The study was novel since it presented the non-English language filtering details with
the exploratory analyses and proposed performing the mapping reliability measurements with a new
similarity index (Giz Index), which is designed specifically for incidence mapping, in contrast to the
current similarity indexes.

The first outcome in the context of this study was the processing of Turkish tweets related to two
terror attacks with current subjectivity lexicons and learning based classifiers. In order to develop
the methodology for fine filtering, initially, exploratory analyses were done recursively to find the
best pre-processing steps that were applied for the Turkish language in this study. Therefore, the text
cleaning part was designed with the addition of language encoding fixations, keeping the suffixes due
to different use of pair phrases in bi-grams. In addition, exploratory analyses presented discrimination
in sentiments, even for the common words. Although this inference supports the use of the subjectivity
lexicons for filtering relevant content, this might also mean that direct use of the sentiment score for a
common word could misdirect the filtering process due to the common word having both negative
and positive meanings. Another inference from the exploratory analysis is the use rate of common
words in terms of relevancy classes. Since the use rate for common words was discovered to vary
between classes, it was considered the classifier should successful in classifying the relevancy if one
considers the likelihood probability. The filtering part results for both of the two cases supported this,
since Naïve Bayes had over 80% overall accuracy across both event datasets.

The filtering process of the study had three lexicon-based and three machine learning based
analyses on Turkish tweets related to two terror attacks. The first two lexicon-based analyses were
based on STN [31] with score based and label based analyses. The third one was based on the Lexicons
of Ozturk and Ayvaz [40], which was mentioned as LOA within the study. There were also three
machine learning based sentiment analyses run within the study, the first two of which were based
on the Naïve Bayes Classifier and Neural Network Classifier, with one hidden layer, two hidden
layers, and three hidden layers, separately. The last machine learning based analysis was the Support
Vector Machine with polynomial kernels, radial kernels, and sigmoid kernels separately. As a result of
this study, the highest success was achieved with the use of Naïve Bayes techniques, with over 80%
accuracy, while the LOA achieved the second-best success rate, with over 60% accuracy.
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Although Naïve Bayes provides the best results in terms of classification, it requires trained
datasets for each domain. Such trained data might not be easily collected as it depends on major
disaster events. For example, Istanbul, as one of the most crowded cities in the world, is expecting
a major earthquake. However, until a damaging earthquake occurs, it will not be possible to gather
training data, and this reality challenges training the classifier for all of the sub-domains of disaster.
Even general reactions might be common for all types of the disaster domains such as “God’s mercy”
or “wishing a speedy recovery to the wounded”. If the study case includes only a specific domain such
as terror within the range of disaster domains, there needs to be an event to gather and train the data.
Further studies are planned to involve other disaster domains such as fire, floods, and earthquakes, in
order to build classifiers based on the Turkish language.

The second outcome in the context of this study was quantifying the impacts of filtering techniques
on the spatial reliability of social media data. With regard to that, this study reviewed the current
spatial similarity indices and proposed a new one instead to compare the spatial distribution of filtered
data (prediction) versus manually-labelled data (truth). Following the assessment of the filtering
methodologies, the filtered results were evaluated by using the similarity indices and the ground
truth data. Well-known similarity indices were compared with the Giz index, which was developed
within the study. The comparison results of the similarity indices reviewed in this study show that the
indexing methods score (non-)intersection as binary (0–1) without considering spatial relationships.
However, spatial relationships such as the size and proximity of non-intersecting clusters should be
considered for correct spatial similarity determination. For this reason, the Giz Index was developed
by considering the size of intersecting and non-intersecting clusters along with the spatial proximity
between non-intersecting clusters and the ground truth clusters.

This study achieved 85% accuracy for the BVA event and over 70% for the ATA event, with regard
to text and spatial data mining, with the use of the chosen techniques relating to social media data.
Such finely-filtered spatially reliable data could serve as auxiliary data to allow stakeholders to rapidly
determine the situation following a disaster event, as a notification of an emergency situation, as a
request for help or for a public gathering, or a notification of hazardous locations.

The results of this research provide a new spatial similarity index, the Giz Index, and offer a
combination of existing and newly developed techniques and methods to filter the Twitter data for
a domain with high relevancy and produce an event map for that domain, then obtain the spatial
accuracy of the map with regard to ground truth data. When spatial relationships are not considered
within the SMD analyses, debate on the reliability of the SMD is increased. The biggest obstacle
with regard to using social media data in scientific analyses is the reliability of the SMD. There is an
insufficient number of reliability studies on the textual and spatial context of SMD. This is where this
study provides an index for spatial reliability and evaluates the textual contents of SMD by using
text-based filtering over tweets for a specific domain. In this way, a numerical evaluation of the SMD
can be generated by the use of the proposed methodologies.

This study has limitations and restrictions from a couple of aspects. Firstly, the study disregards
the spelling errors, jargon, and slang that might decrease the performance of matching the words with
the subjective lexicons. Lexicon-based analysis is dependent on the word variety used for the language;
if the lexicon enriched in some way, the results can be more successful with the same methodology.
Thirdly, a manually labelled train dataset is required for modelling the learning-based classifiers.
Manual labelling is not feasible for big chunks of data; however, this labelling problem can be solved
for further studies by using web platforms such as Kaggle and Mechanical Turk [89,90], with their
potential for providing labelled data. Fourthly, the similarity index that is designed for incidence
mapping comparison with the ground truth is tested over the outcomes of the most commonly used
clustering technique. In further studies, it should be widely investigated across other clustering
outcomes if the clustering significantly affects the results.

It is also important to note that there are few studies in this area with regard to non-English
languages. This study offers a methodology that allows us to work with agglutinative languages,
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especially Turkish, where the majority of the population is not tweeting in English. As a result,
this study provides a spatial similarity index with regard to the community, which deals with spatial
intersection, proximity, and size together. It is the first study to spatially analyze filtering techniques
with regard to SMD and offers a method that not only sticks to domain consistency and semantic
relevance but also takes into account the spatial reliability of the SMD in conjunction with them.
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