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Abstract: Though Volunteered Geographic Information (VGI) has the advantage of providing free
open spatial data, it is prone to vandalism, which may heavily decrease the quality of these data.
Therefore, detecting vandalism in VGI may constitute a first way of assessing the data in order to
improve their quality. This article explores the ability of supervised machine learning approaches
to detect vandalism in OpenStreetMap (OSM) in an automated way. For this purpose, our work
includes the construction of a corpus of vandalism data, given that no OSM vandalism corpus is
available so far. Then, we investigate the ability of random forest methods to detect vandalism on the
created corpus. Experimental results show that random forest classifiers perform well in detecting
vandalism in the same geographical regions that were used for training the model and has more
issues with vandalism detection in “unfamiliar regions”.

Keywords: vandalism; OpenStreetMap; volunteered geographic information; supervised machine
learning; random forest; quality

1. Introduction

At the moment, disinformation has become a real threat in the digital world, also on
crowdsourcing platforms. In this respect, Volunteered Geographic Information (VGI) has not been
spared as it is also prone to vandalism. The most famous examples of such vandalism include New
York City being renamed Jewtropolis in OpenStreetMap (OSM) by a contributor qualified as an
“anti-Semite” in the press [1], but self-declared as an “ethical hacker” (https://www.reddit.com/r/
openstreetmap/comments/9brqx4/this_is_medwedianpresident1_talking_what_i_did/), or Google
workers from India caught reversing one-way streets in OpenStreetMap (OSM) [2]. Vandalism acts on
OSM were estimated to be 0.2% of changesets in 2018 [3].

In VGI, carto-vandalism designates all mapping contributions that are intentionally perpetrated
in order to deface the collaborative spatial database without good reason [4–6]. Yet, in order to
be reusable and trustworthy, crowdsourced spatial data should ensure a certain level of quality.
Therefore, with the aim of providing a minimal level of quality of VGI, one possible solution could be
to automatically detect vandalism. Vandalism detection tools have been developed to spot vandalism
on Wikidata platforms in an automated way [7,8]. However, in the case of VGI, very few tools were
devised to address this issue precisely; actually, current research is not able to automatically detect
carto-vandalism [5,9].

Consequently, this paper investigates the following question: To what extent can vandalism in
VGI be automatically detected using supervised machine learning methods?
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One of the main challenges of supervised machine learning is domain adaptation, also known as
transfer learning [10,11]. This issue refers to the ability of the learning algorithm to classify the data
regardless, in our case, of the geographical region considered. This is what [12] calls homogeneous
transfer learning.

Therefore, we intend to answer the following questions:

• How do we acquire or generate a corpus covering different cases of vandalism in different regions
of the map?

• Which features can we use from OSM in order to build the learning dataset?
• Is a classifier, trained on a part of a specific geographic region, able to detect OSM vandalism

automatically over the other parts of this specific region?
• Can the same classifier detect OSM vandalism in any region of the world?
• If we consider a learning dataset, considering several regions, is the model built on it better to

detect OSM vandalism in any region of the map?

We contribute to this research by first designing a corpus of vandalism on OpenStreetMap (OSM)
data, then by experimenting with a supervised learning method, the random forests [13], to detect
vandalism in OSM. The experimental results’ analysis leads us to evaluate the strengths and weaknesses
of the approach in order to detect various kinds of vandalism in different regions of interest.

The article is structured as follows. Section 2 reviews related work on VGI vandalism. Section 3
describes the construction of our vandalism corpus. Section 4 introduces the general methodology of
the conducted experiments. Section 5 presents our random forests classifier and the results obtained
with this classifier. Section 6 discusses the ability of these techniques to detect vandalism in OSM.
Section 7 concludes the article and gives some insight into future work.

2. Related Work

In order to better understand the mechanisms of vandalism in VGI and OSM, a few studies
focused on the past cases of vandalism in OSM. For instance, there were many cases of vandalism
caused by players of the Pokemon GO game, and most of them were identified and reverted by
experienced OSM users [9]. In this study, the vandalized features were collected using the comments
made by the experienced users when reverting the changes. The study shows that most vandals
are young users, as vandalism occurred a few hours after their registration to OSM. In the case of
Pokemon GO vandalism, only 16.5% of vandalized features stayed in the dataset for more than a week.
These two results are interesting if we want to detect vandalism automatically.

There were also two studies of the list of users banned from OSM [5,6]. Even if bans are rarely
due to vandalism actions, but more to due misconduct towards the community of OSM contributors,
this list gives an idea of the diversity of vandalism cases in OSM.

Then, as a significant part of the vandalized features in OSM can remain unchanged for a long
time, researchers investigated the automatic detection of this vandalism. Recent research has explored
the potential of unsupervised techniques to detect vandalism in OpenStreetMap, in particular by
using clustering-based outlier detection algorithms [5]. However, the output of this approach relies
heavily on the characteristics of the dataset. For instance, many buildings in France are mapped by
parts. Consequently, OSM datasets from French regions contain small and weirdly shaped buildings
(Figure 1). Consequently, vandalizing these datasets by mapping small fictional buildings will probably
go unnoticed according to an outlier detection algorithm, as the vandalized data are not seen as outliers
with respect to the rest of the dataset. This highlights the main drawback of detecting vandalism using
outlier detection algorithms, in the sense that vandalized data that do not fall in the anomaly set cannot
be detected. Therefore, the results of this method are not satisfying enough to enable a fully automatic
detection of vandalism in OSM data.
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Figure 1. A French building mapped on OSM in eight pieces.

In [14], a supervised learning system, named OSMPatrol, was proposed to detect errors in OSM
thanks to a rule-based method. However, this tool not only detects vandalism—i.e., intentional
errors—but also unintentional mistakes. Therefore, exploring the potential of supervised learning
methods to detect vandalism in OSM still remains a research agenda. Nevertheless, supervised
learning approaches require having a corpus of labelled data available. In this regard, while the corpus
of vandalism data exists for knowledge bases such as Wikidata [15,16], to the best of our knowledge,
there is no such dataset in VGI.

As for choosing the learning algorithm, the work in [8] stated that random forest is the most
appropriate method to detect vandalism in Wikidata. Therefore, it seemed coherent to run experiments
using random forest, to determine if this method performs as well for vandalism detection in OSM
as for vandalism in Wikidata. On another note, recent work has initiated the use of deep learning to
assess the quality of VGI data itself [17] and even to enhance them [10]. As detecting vandalism in VGI
is a kind of quality assessment, the applications of machine learning to OSM quality assessment are
interesting to study.

3. A Corpus of Vandalism in OpenStreetMap

To train a machine learning model to detect vandalised contributions in OSM, a corpus
of vandalised contributions is necessary. We propose a model for such a corpus in the first
subsection, and then, we describe in the following subsections how we instantiated this corpus
with synthetic vandalism.

3.1. Model of the Corpus

What we learned from the studies on past vandalism in OSM is that it is very complex to
characterise a single map feature as vandalism, without the context of the map and the history
of editions in the area. More generally, it is acknowledged that with the geographic context of a
VGI contribution, its spatial relations with other geographical features are often necessary to assess
the quality of the contribution [18,19]. As a consequence, we propose to model our corpus of vandalism
as a set of OSM spatiotemporal snapshots that contain one or more vandalised features and many
more non-vandalised features (Figure 2). A spatiotemporal snapshot is an extract of OSM with
a limited spatial extent and a snapshot date: the extract is composed of all the map features that lie
within the envelope of the snapshot, and we use the last version of these features that is anterior to
the snapshot date.

Then, inside each snapshot, a contribution is either vandalised or not. We store many different
characteristics of the contribution in the snapshot (geometry, tags, previous versions, information on
the contributor, edit session metadata) in order to further compute many descriptors for machine
learning models. For instance, the geometry of the feature enables geometry validity measures,
while the “number of weeks” of the contributor helps to compute the age of the contributor in OSM [9].
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Figure 2. UMLdiagram of the proposed corpus. The corpus is composed of OSM snapshots containing
some vandalised contribution, but mostly normal contributions.

3.2. Pipeline of the Corpus Building

So far, detecting vandalism in volunteered geographic information using supervised machine
learning has been impossible because there has been no corpus of vandalism data. Therefore, the first
step consists of designing such a corpus of data.

Besides, a good quality vandalism corpus is crucial to enable the model to properly learn what
vandalism is and, therefore, to make it able to detect it.

As mapping data may vary from one geographical region to another and as our research question
does not focus on detecting vandalism in a specific region, we have to consider different study areas.
Let Ω be the set of study areas, i.e., the set of the different geographic regions in which we will try to
detect the possible vandalism.

Let OSMx, x ∈ Ω, be the OSM dataset extracted from the corresponding area. The corpus
will contain OSM data that are labelled as vandalism and non-vandalism. As vandalism does not
commonly happen in OSM, we assume that the OSM datasets for all areas do not contain a priori
vandalized contributions.

Therefore, we manually add fake OSM vandalized data to the corpus. For each x ∈ Ω, let Vx

be the set of vandalized data that are artificially made on x. We denote dx, the database in which
OSMx and Vx are stored.

The general pipeline to build the corpus consists of four steps: the choice of the study areas,
the import, the addition of vandalism cases we created, and the inclusion into a database. In the OSM
context, each study area will correspond to a specific snapshot. This pipeline is illustrated in Figure 3
for the case where Ω contains four different regions (A, B, C, D).

Figure 3. Building a vandalism corpus in OSM on four different areas.
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3.3. Selected Snapshots

To better capture the diversity of vandalism in OSM in a few snapshots, we decided to create
snapshots with fake vandalism, i.e., extract snapshots of OSM without any vandalism in the current
versions of the contributions, and then to vandalise the data ourselves, mimicking the vandals
identified in the literature.

Four snapshots are included in the corpus for the experiments presented in this paper. The spatial
extents of these four snapshots are (A) Aubervilliers, (B) Stuhr, (C) Lannilis, and (D) Heilsbronn,
which are located in France (A and C areas) or Germany (B and D areas). Figure 4 depicts the aerial view
of each area. These four snapshots were selected because they cover urban and rural landscapes, in two
different countries where buildings were captured differently. We also made sure that all four snapshots
mainly contained high-quality data in terms of spatial accuracy and completeness. Finally, with visual
inspection, we checked that there was no vandalized building in these four snapshots.

First, OSMx, x ∈ {A, B, C, D}, are instantiated by downloading OSM data from these regions as
historical files from Geofabrik, a free download server. Then, these files are imported into different
PostGIS databases dx, x ∈ {A, B, C, D}, thanks to a custom Python script based on the Osmium library.
The snapshot date for all four snapshots is 14 February 2018.

(a) Aubervilliers, France. (b) Heilsbronn, Germany

(c) Lannilis, France (d) Stuhr, Germany
Figure 4. Aerial view of the study areas (Bing aerial).

3.4. Vandalizing the Dataset

As most OSM contributors rely on a Bing aerial imagery layer to trace OSM elements, we wanted
to mimic this operating mode to produce artificial vandalism. To do this, we used QGIS to display
a Bing aerial map base and the OSM vector data layer so that we could see what objects were already
mapped in OSM.

The production of artificial vandalism (i.e., instantiating Vx, x ∈ {A, B, C, D}) consisted of creating
new buildings with the isVandalismfield from Figure 2 set to true or by modifying existing buildings of
the OSM building layer (only buildings were vandalised in these snapshots).
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According to the typology of carto-vandalism proposed by [4], we mainly perpetrated play,
fantasy, artistic, and industrial carto-vandalism in each study area. In the constructed dataset,
play vandalism is represented by large buildings, which may overlap existing OSM buildings.

Fantasy vandalism is represented by fictional buildings that are mapped in blank spaces.
These features look like real buildings, except they do not exist in reality. Artistic vandalism
corresponds to weirdly shaped buildings. These buildings follow the same principles as the famous
graffiti vandalism case [14].

Industrial vandalism corresponds to existing commercial or industrial buildings whose tag “name”
value is changed into special character values like “...” or smileys like “:)”. It mimics how rivals or
angry customers have vandalized commercial or industrial OSM features in the past.

The study of past vandalism cases showed the contribution patterns, and the behaviour of
the contributor in the OSM platform was key to identify these cases [5,6,9], so we included some
contributor information in our corpus and decided to add fake users as contributors of the fake
vandalism. The contributors can be characterised by their age in the project [9,20], their number of
past contributions [14,21], or by their interactions with other OSM users [22,23]. These measures can
be computed for existing contributors, but for fake contributors, the ones based on the analysis of the
interactions with the other users are very complex to simulate. Therefore, rather than generating fake
graphs of past interactions for the fake users, we created fake profiles of measures, e.g., the ratio of past
contributions that were deleted by other users. These profiles derive from an analysis of the measures
for real OSM users [23]. As past studies on vandalism show that vandals rarely limit themselves to
one vandalized feature [9], most of our fake vandals were associated with several of our vandalized
features. Some fake contributors only contributed vandalism, so they should be easier to automatically
identify, and others were given a number of contributions higher than the number of vandalized
contributions they were associated with; the contributions associated with these last fake contributors
should be harder to automatically identify as vandalism.

Figure 5 depicts some examples of fake vandalized buildings. Table 1 sums up the count of OSM
buildings and vandalized ones. For each study area, the introduced vandalized elements always
represent a small portion against the amount of buildings |OSMx|, x ∈ {A, B, C, D} (less than 1%).
This is a way of being realistic in making artificial vandalized buildings, as vandalism does not
commonly happen everywhere on OSM data while providing enough examples to train a machine
learning model.

Figure 5. Cont.
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Figure 5. Fake vandalism examples.

Table 1. Count of vandalized buildings and OSM buildings in each study area.

Area x OSM Buildings |OSMx| Vandalized Buildings |Vx|
A (Aubervilliers) 10,250 71
B (Stuhr) 6274 44
C (Lannilis) 8066 32
D (Heilsbronn) 6254 31

4. Methodology for the Use of Machine Learning for Vandalism Detection

4.1. Main Principles

The main idea of this paper is to consider that vandalism can be detected using a classification
method, such as random forest, that obtained good results in the case of Wikipedia vandalism.

As we created a corpus containing vandalisms in four regions, we considered that we would
learn three models from two of them (dA and dB): a model in each region and a model for their
union. We tested these models on the four different areas in order to check: (i) if the model can detect
vandalism in its input region; (ii) the ability of the model to be transferable to any region of the map.
The third model—i.e., the model built on the union of the vandalized datasets dA and dB—allows us to
study the contribution of variety in the dataset to OSM vandalism detection.

The methodology we propose is divided into three steps. The first step is to prepare the different
datasets; then, the second step is the training of the classifiers; the third step is the evaluation of
the trained classifiers in different scenarios corresponding to our different questions.

4.2. Building a Learning Dataset

Data pre-processing is an important step in the experimental protocol because it consists of
converting the data into another representation that will be given as the input to the learning algorithm.
This new representation is the way the algorithm will see the data.

As the configuration of machine learning algorithms may vary from one another, the data
pre-processing step should also be adapted to the chosen algorithm. For instance, random forest
takes as input a set of features that characterize the data, while a convolutional neural network



ISPRS Int. J. Geo-Inf. 2020, 9, 504 8 of 18

performs better on a set of images. Therefore, the data preparation step has to be adapted to the chosen
machine learning. In our case, this is presented in Section 3.

Once the dataset that will be used for the machine learning is built, we denote px as the processed
dataset from dx (Figure 6).

Figure 6. Pre-processing the data to an adapted format for the learning algorithm.

4.3. Classifier Training

We consider Ω as a set of four different regions {A, B, C, D}. As we investigate the ability of
the model to detect vandalism in different places, three models are trained on different datasets:
the dA dataset, the dB dataset, and a dataset grouping the dA and dB datasets. Using those sets allows
the evaluation of the possibility to answer our different questions related to the ability of our approach
to detect vandalism in the area over which the data are learned and also to generalize the detection to
different areas.

The processed data are split into training and testing datasets as:

px = ptrain
x ∪ ptest

x

where ptrain
x is the training set from area x and ptest

x the testing set. The testing set should contain data
that the classifier did not encounter during the training phase; therefore:

ptrain
x ∩ ptest

x = ∅

Let Cx be a classifier trained on ptrain
x . We build three classifiers CA, CB, and CA+B, where CA+B is

a classifier that is trained on Areas A and B (Figure 7).

Figure 7. Training two classifiers on two different datasets and one classifier on both datasets.
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4.4. Scenarios’ Evaluation

Figure 8 illustrates how the different scenarios will be tested on the different datasets we used.
The scenarios are defined in accordance with our research questions.

Figure 8. Observing the performance of each classifier by predicting vandalism in each study area.

First, we want to investigate the ability of the classifiers to detect vandalism in the same area as
the one used during the training phase.

Second, in order to evaluate the domain adaption ability of the classifiers, we observe the results
of their predictions in different areas from the one used during training.

Finally, the comparison between the predictions of the classifiers leads to exploring if a classifier
is more “domain adaptable” when it is trained in different geographic regions.

In order to evaluate and compare the different scenarios and case studies, several metrics can be
considered.

4.5. Evaluation Metrics

The metrics used to assess the different classifiers are the true positive rate (also known as recall
or hit rate) and the true negative rate. These rates are computed at the end of a prediction in order
to quantify the performance of a classifier. The True Positive Rate (TPR) measures the portion of
good predictions among the objects that are truly vandalism. The True Negative Rate (TNR) measures
the portion of good predictions of True Positives (TPs)—among truly non-vandalism contributions.
A model that performs well in detecting OSM vandalism automatically is expected to have high TPR
and TNR during the test prediction phase.

TPR =
TP

TP + FN

where the True Positives (TPs) are vandalized data that are detected by the classifier and false Negatives
(FNs) are undetected vandalized data, and

TNR =
TN

TN + FP

where True Negatives (TNs) are OSM data that are correctly classified as non-vandalism.

5. OSMWatchman: A Random Forest Classifier for Vandalism Detection

The random forest approach works on the object level, that is to say, the algorithm learns directly
on building objects described by a set of features.

5.1. Features for Vandalism Detection

The data preparation consists of developing the relevant features that properly differentiate OSM
vandalized buildings from regular ones. The work in [8] highlighted content and context features
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as important metrics that characterize vandalism well in knowledge bases. Content features focus
on the content of the contributed information itself, whereas context features provide metrics on the
contribution user, the contribution history, and connections to other contributions of the knowledge
base. In the following subsections, content and context features are proposed and described.

5.1.1. Content Features

In the case of OSM data, the content of the contribution can be seen at a geometric level and
a semantic level. At a geometric level, some features were already proposed in [5]. They mainly
characterize the size and the shape of OSM buildings. Based on these features, we consider
the following geometric features: perimeter, edge shortest length, edge median length, elongation,
convexity, compactness. These features are used because most of the artistic vandalism cases are
made of contributions with unusual geometries. For instance, the top left building in Figure 5 has
an extremely large perimeter and an extremely low compactness, while the top right building has
a very large perimeter and the edge shortest length.

At a semantic level, OSM mapping data have tags, which are key-value pairs that describe
the geographic elements. We denote n_tags = |T| as a feature that counts the number of tags
describing an OSM element, where T is the set of tags that describe an OSM element. Let tagkey be
the set of tag keys of the OSM element and tagvalue the set of the corresponding values. Most of the
OSM vandalized contributions where an object is created contain a very low number of tags [9], so this
feature should be helpful.

T = {(k, v)/k ∈ tagkey, v ∈ tagvalue}

To capture vandalism on OSM tags, we consider a feature that quantifies the maximum rate of
special characters in an OSM contribution. This feature is inspired by the character level features
proposed in [8]. Quantifying the rate of special characters is not enough to cover every kind of
vandalism that may happen on OSM tags, but it can at least help to spot one specific case of vandalism:
for instance, one of the banned users of OSM marked his misdeed with smileys as values for the tag
name [5]. This character feature is defined as:

max_special_char_ratio = max
v∈tagvalue

(
n_special_char

length(v)

)

where n_special_char is the number of special characters in v and the length function gives the total
size of v.

5.1.2. Context Features

As OSM data are geographic elements, they are spatially related to one another [18]. Besides,
as fictional and artistic vandalism consist of mapping elements over existing ones, it is important to
consider topological features that quantify the potential overlaps between different types of geographic
data that do not usually happen [19]. We denote building as the geometry of an OSM building object
and OSMnatural as the set of OSM objects that correspond to natural geographic elements where there
should not be any building (water, meadow, forest, etc.). We define two topological features:

n_is_within_lulc = |{nat ∈ OSMnatural/building ⊆ nat}|

n_inter_lulc = |{nat ∈ OSMnatural/building ∩ nat 6= ∅}|

As previously mentioned, context features also include quantifying the contributions’ history [8].
Regarding the history of the object, we consider a feature n_users that counts the number of unique
contributors who worked on the object throughout its different versions, because the way an object has
been edited has an impact on its quality [24]. timespan_to_previous quantifies the duration in seconds
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between the current version of the OSM contribution and its previous version. As past research showed
that vandalized contributions usually do not last very long [9], there is also a feature, contribution_age,
that measures the age of the contribution with the duration in seconds between the last version of the
OSM contribution and the date of the snapshot.

5.1.3. User Features

The OSM community considers that vandalism detection should focus on changeset features and
on user features (https://wiki.openstreetmap.org/wiki/Vandalism#Detection). In fact, VGI quality
is strongly related to the quality of the contributors [5,21,25]. Therefore, detecting vandalism can
also be seen as retrieving the contributions of users who are considered somehow as untrustworthy
or excluding from investigation the contributions of trustworthy contributions [8,26].

Quantifying the contributors’ trustworthiness is a research issue that has been addressed in
numerous ways in the literature, by estimating either their reputation [26–28], their collaborative
behaviour [29,30], or their expertise [20,31,32]. According to [14], vandalism is strongly related to
the contributor’s profile, but it can be perpetrated by new users, as well as experienced contributors.
Besides, good quality data contributed by inexperienced users should be recognized as their true value
to ensure the quality of the work done in crowdsourcing platforms [33].

Therefore, we take into account the users’ participation behaviour on the platform through
different user features:

• total_contributions: total number of a user’s contributions.It is obtained by summing the number
of contributions in the changesets made on the study area, which include an edit on at least one
OSM building.

• p_modi f ication: portion of a user’s contributions that are data modifications.
• p_delete: portion of a user’s contributions that are data suppressions.
• p_is_used: portion of a user’s contributions that are reused by other contributors [29].
• p_is_edited: portion of a user’s contributions that were afterwards modified by other contributors.
• p_is_deleted: portion of a user’s contributions that were afterwards deleted by other contributors.
• nbWeeks: number of weeks during which a contributor edited the OSM database. It corresponds

to the age of the user, which was seen as critical regarding Pokemon GO vandalism [9].
• f ocalisation: This feature evaluates the geometry of the area on which a contributor made his/her

edits compared to the geometry of the study area. Its value ranges between zero and one.
It tends towards zero when the participation area is broader than the study area and to one when
the participation area is mainly inside the study area. A vandal is less likely to contribute to
a large area.

In order to score the contributors’ trustworthiness, we consider avg and weighted_avg as,
respectively, the average and the weighted average of the user features. Ideally, the more trustworthy
a contributor is, the higher avg and weighted_avg should be. Assuming that the more a user’s
contributions are edited (resp. deleted), the less he/she appears trustworthy, it is noted that avg
and weighted_avg take into account 1− p_is_edited and 1− p_is_deleted. Table 2 gives the weights
that are used for weighted_avg.

https://wiki.openstreetmap.org/wiki/Vandalism#Detection
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Table 2. User feature weights for weighted_avg.

User Feature Weight

total_contributions 1
p_modi f ication 1
p_delete 1
p_is_edited 2
p_is_used 2
p_is_deleted 2
nbWeeks 3
f ocalisation 3

However, as artificial vandalized buildings do not have a context regarding their history and
their contributors in OSM, we had to create these pieces of information. Therefore, all vandalized
building have a version numbered at 1. Regarding the user features, fake user profiles were built by
giving arbitrary values to these features, at first. Then, after analysing the distribution of real user
features, we could assign low values to the fake profiles’ user features in order to create a vandal profile.
This way, poor trust scores would be associated with vandalized buildings. However, to simulate the
fact that a trustworthy contributor might vandalize OSM [34], we gave higher scores to some of the
fake users.

Table 3 summarizes the selected features used to describe the different OSM snapshot data.

Table 3. Selected features.

Features Description

Perimeter perimeter of the polygon
shortest_length length of the shortest side
median_length median length of the polygon sides
elongation elongation
convexity convexity of the polygon
compactness compactness of the polygon
n_is_within_lulc number of natural areas containing the polygon
n_inter_lulc number of natural areas that intersect the polygon
max_special_ratio syntactical index
n_tags number of tags describing the object
n_users number of different contributors of the object
timespan_to_previous duration of the period between the current version and the previous one
avg average of contributor’s trustworthiness
weighted_avg weighted average of contributor’s trustworthiness

5.2. Data Classification

Random forest is a supervised learning algorithm that operates by randomly building multiple
decision trees that are trained on different subsets of the input features given as the input to the
algorithm. The final data predictions are made by counting the predictions made by each decision
tree [35].

In these experiments, we built random forest classifiers in R using the Caret package.
Each classifier was trained with a 10 cross-fold validation repeated three times. Eighty percent
of pA, pB, and pC were used to train the classifiers, while the remaining 20% was used for the test
phase. Table 4 gives the prediction results for the three classifiers.
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Table 4. OSMWatchman prediction results.

Aubervilliers Pred. Stuhr Pred. Lannilis Pred. Heilsbronn Pred.
TPR TNR TPR TNR TPR TNR TPR TNR

Aubervilliers 1 1 0.18 0.99 0 0.99 0 0.99
Stuhr 0.36 0.99 1 0.99 0 1 0 0.99
Aubervilliers + Stuhr 0.97 0.99 0.98 1 0 1 0 1

5.3. Results

The classifier trained on the Aubervilliers building performs very well in predicting vandalism
in Aubervilliers. However, it performs poorly in Stuhr. Furthermore, it even fails at detecting
any vandalized building in Lannilis (same country, but rural) and Heilsbronn (different country
and rural). Likewise, the classifier trained on Stuhr succeeds at detecting vandalism in the same area.
However, it performs poorly in the other study areas. The same observations are made for the classifier
trained on Aubervilliers and Stuhr.

As none of these classifiers perform better than the others for predicting vandalism in an unknown
area, a new classifier CA+B∗ was trained on Aubervilliers and Stuhr, but without taking into account
any user features. Table 5 gives the prediction results for CA+B∗. Even if this classifier still succeeds at
detecting vandalism in Aubervilliers and Stuhr (the TPR and TNR values are still high), we notice that
the TPR is slightly lower than the TPR values found with CA+B in the same areas, meaning that a few
vandalized buildings were no longer detected. Besides, predictions in Lannilis and Heilsbronn
with CA+B∗ give slightly lower TNR values, which means that some non-vandalized buildings
were detected. Indeed, by looking at the false positives detected by CA+B∗, we notice that they
correspond to tiny mapping elements that are actually pieces of buildings (Figure 9). These elements
are likely to be data from the French cadaster, which were imported into OSM by a trustful contributor.
Therefore, it would explain why these data were not classified as vandalism by CA+B, contrary to
CA+B∗. Therefore, user features are relevant to detect vandalism, in particular by reducing the number
of false positives.

Table 5. Predictions of OSMWatchman with CA+B∗ without user features.

TPR TNR

Aubervilliers 0.94 0.99
Stuhr 0.90 1
Lannilis 0.03 0.98
Heilsbronn 0 0.99

Figure 9. False positives (small building pieces coloured in red) detected by CA+B∗.
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6. Discussion

This section discusses the advantages and drawbacks of OSMWatchman (Supplementary
Materials). The high performance of random forest classifiers to detect vandalism in the same areas
as the ones used for the training shows that it is possible to detect OSM vandalism automatically in
familiar areas. A trained random forest ranksthe features that are the most important to predict the
data, which can help to determine the features that describe OSM vandalism data best.

However, developing the algorithm for the input features can be costly, and the proposed features
have clear limitations. To illustrate these limitations, we applied the model trained on Aubervilliers to
detect vandalized buildings in the neighbouring city of Pantin, which has a similar geography, but no
fake vandalism. Some buildings are wrongly classified as vandalism, due to the max_special_ratio
feature that counts the number of special characters in the tags. In these cases (Figure 10), a tag contains
the URL of a website related to the buildings, and this URL contains multiple instances of special
characters; but, these buildings are clearly not vandalized. This shows that the syntactical feature built
on tags should be more sophisticated to tolerate URLs as tags.

Figure 10. False positives detected by the model trained on Aubervilliers and applied to the
neighbouring city of Pantin, caused by the max_special_ratio feature.

In the same areas, several tiny buildings are wrongly classified as vandalism because they are
contained in a forest polygon (Figure 11). In fact, this place contains several shared urban gardens,
and these small buildings are cabins that are actually located under the trees. This example shows that
the n_is_within_lulc and n_inter_lulc features should be refined, as in some cases, it is not impossible
to have small buildings located inside small wooded areas.

Figure 11. False positives detected by the model trained on Aubervilliers and applied to the
neighbouring city of Pantin, caused by the n_is_within_lulc feature.

Besides, artificial vandalisms that do not have context features need to be assigned arbitrary values.
There was purposely very few examples of vandalized data regarding the number of OSM buildings,
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as vandalism is quite unusual in OSM (although there is a risk). As the dataset is very unbalanced,
there is no way for data augmentation. The solution is to manually generate more vandalized objects
in the vandalism corpus. Furthermore, even in the cases where OSM seems to be vandalized, it is
complex to be sure it is vandalism and not, only, honest mistakes. The contribution illustrated in
Figure 12 appeared in the Aubervilliers area and was not considered as vandalism by our classifiers.
There is clearly no building on this esplanade between two large apartment blocks. The name given to
this building can be translated to “free esplanade - roof of the parking lot”. It seems to be a vernacular
way of calling the esplanade, probably used by the inhabitants of the apartment blocks. Besides this
contribution, the same user contributed to several other map features in the same area, and they seem
to be good contributions. In this case, we would argue that both possible classifications (vandalism or
error) are acceptable.

Figure 12. A contribution that is complex to classify as vandalism or as an error.

Eventually, random forest did not prove its effectiveness in predicting vandalism in unfamiliar
OSM regions, because the features happened to be very different from one area to another.
This phenomenon can be seen as a kind of concept drift, not due to a temporal evolution as in [36],
but due to a spatial evolution. For instance, buildings can have different shapes in very urban or very
rural areas, and the geographic context also changes greatly, so all the features related to the shape and
the spatial relations can have distributions that vary with with the geographic landscape (Figure 9).
Even the features related to users and history can be very different in urban areas with many users and
edits and rural areas with often a few users to edit the whole area. There are also differences between
countries due to the availability of source datasets, such as the cadaster data in France for buildings.
We see three possible solutions to overcome this domain adaptation problem:

• Define new or normalized features that are less sensitive to changes in landscapes and data sources;
• Use transfer learning to fine-tune a trained model to specific landscapes, maybe just with

non-vandalized contributions, which are much easier to annotate;
• Train different versions of OSMWatchman, each one being specialized for some types of

landscapes.

7. Conclusions and Future Work

This study explored the potential of supervised learning methods for OSM vandalism detection.
A random forest-based model, OSMWatchman, was proposed and experimented with, yielding mixed
results: while OSMWatchman is able to automatically detect vandalism in familiar OSM regions,
the model is not successful enough in terms of domain adaptation yet.

Our research opens up many perspectives. The first consists of improving the performance of
OSMWatchman. To better understand the domain adaptation limitations, it could be interesting to
test vandalism prediction in regions that are closer to the ones used for training, such as neighbouring
areas or regions, which have the same geographic landscapes. Thus, this would help to determine if
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random forest is not at least domain adaptable in unknown regions close to the training areas. On this,
a study on the similarity of OSM regions may help to better assess the transfer learning ability of
the method considered here. It requires qualifying OSM data at a regional level [12]. We also saw in
the previous discussion that there are limitations with some features used in OSMWatchman, as they
can cause false positive predictions. Improved features should help improve the detection results,
even when transferring the model to unknown regions.

Another way to improve OSMWatchman would be to train it with more diverse map objects than
just buildings. Several of the features are specific to buildings (e.g., n_inter_lulc) or just to polygons
(e.g., perimeter, or compactness). Therefore, we rather plan to train several classifiers, for each of the
types of OSM map objects, with their own set of features, than to train a global classifier able to detect
vandalism whatever the type of object.

The OSM users are able to revert most of the actual vandalism because they have access to the
ground truth, either by field survey or by looking at aerial images. In order to introduce this ground
truth into a learning model, one idea would be to use a convolutional neural network [37] with
images combining the OSM contributions and aerial imagery. Recent research shows the ability of
convolutional neural networks to recognize geographic features such as roads and buildings in aerial
imagery [38,39], so such models could recognize building footprints that are introduced into OSM
without actual existence on the ground.

The corpus of OSM vandalism should also be improved. As vandalized buildings were manually
mapped, a perspective can be to enrich the corpus with real examples, by seeking old OSM vandalized
data that have been repaired or deleted by now. Reusing the dataset on Pokemon GO vandalism [9]
to create new snapshot would be a first step. This would require digging deeper into the history of
OSM data.

Finally, we would like to develop OSMWatchman as a tool that could be used by OSM users to go
after vandalism more easily.

Supplementary Materials: The following will be available online at https://github.com/umrlastig/
OSMWatchman: source codes, corpus, and tutorials.
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