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Abstract: Primary cilia are microtube-based organelles that extend from the cell surface and function
as biochemical and mechanical extracellular signal sensors. Primary cilia coordinate a series of signal-
ing pathways during development. Cilia dysfunction leads to a pleiotropic group of developmental
disorders, termed ciliopathy. Phosphoinositides (PIs), a group of signaling phospholipids, play a
crucial role in development and tissue homeostasis by regulating membrane trafficking, cytoskeleton
reorganization, and organelle identity. Accumulating evidence implicates the involvement of PI
species in ciliary defects and ciliopathies. The abundance and localization of PIs in the cell are
tightly regulated by the opposing actions of kinases and phosphatases, some of which are recently
discovered in the context of primary cilia. Here, we review several cilium-associated PI kinases and
phosphatases, including their localization along cilia, function in regulating the ciliary biology under
normal conditions, as well as the connection of their disease-associated mutations with ciliopathies.
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1. Introduction

Phosphoinositides (PIs) are reversibly phosphorylated derivatives of the membrane
phosphatidylinositol (PtdIns, Figure 1) [1,2]. PIs consist of two fatty acid chains, a glyc-
erol moiety, and a D-myo-inositol-1-phosphate head group that is decorated by phos-
phate moiety at the 3-, 4-, and/or 5-hydroxyl position to produce seven phosphorylated
derivatives (PtdIns3P, PtdIns4P, PtdIns5P, PtdIns(3,4)P2, PtdIns(3,5)P2, PtdIns(4,5)P2, and
PtdIns(3,4,5)P3) [1]. The exact composition of each species varies in different subcellular
locations and different cell types. Compared to other phospholipids in cellular membrane
compartments, PIs are relatively minor constituents and PtdIns4P and PtdIns(4,5)P2, which
contribute the largest amounts, are less than 1% of the total cellular phospholipid pool [1].
Despite the low abundance, PIs are indispensable to the integrity of cells. PIs play essential
roles in various cellular events including, but not limited to, cytoskeletal dynamics, cell
adhesion and migration, vesicular trafficking, assembly of cargo proteins at membranes,
cell proliferation, and survival [1–4]. Importantly, PIs are key identity determinants of
various cellular membrane compartments and act as spatiotemporal cues to direct signaling
events [2,3,5–7].

Each PI species exhibits unique distribution across the different plasma membrane
(PM) and organelle membrane compartments [2]. In general, the lipid tail of PIs inserts
into membrane compartments, whereas the phosphorylated inositol head of individual PIs
recognizes and binds to unique PI effector proteins [2,8,9]. Current reported PI-binding
domains include the Pleckstrin Homology (PH), FYVE, Phox (PX), C2, PROPPIN, PTB,
Tubby, TRAF, ANTH/ENTH, FERM, and PDZ domains [9–11]. The affinity and specificity
vary between different PIs and binding domains [9]. Individual PI species induce the con-
formational change of effectors and/or recruits them to specific subcellular locales to meet
their signaling partners [8,9,12,13]. This leads to the activation/inhibition of PI effectors at
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unique subcellular locales [8]. Thus, the precisely controlled spatiotemporal availability
of PI species in the cell is critical. PIs metabolism and homeostasis are maintained and
regulated by specific PI kinases and phosphatases that are conserved in evolution [3,5,8].
Many reports have discovered that the dysfunction of components of the PI signaling
pathway is responsible for various human diseases, from rare genetic disorders to the most
common conditions such as cancer, obesity, neurological disorders, cardiovascular disease,
and diabetes [7,14–18].
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Figure 1. Interconversions of seven PIs. The reversible production of the PIs is mediated by the
combined activities of specific phosphatases and kinases, which are labeled in orange and blue,
respectively. The kinases and phosphatases that have been reported to be associated with cilia are
marked in bold. PtdIns, phosphatidylinositol; PtdIns3P, phosphatidylinositol 3-phosphate; PtdIns4P,
phosphatidylinositol 4-phosphate; PtdIns5P, phosphatidylinositol 5-phosphate; PtdIns(3,4)P2, phos-
phatidylinositol 3,4-phosphate; PtdIns(3,5)P2, phosphatidylinositol 3,5-phosphate; PtdIns(4,5)P2,
phosphatidylinositol 4,5-phosphate; PtdIns(3,4,5)P3, phosphatidylinositol 3,4,5-trisphosphate; PI4KA,
phosphatidylinositol 4-kinase alpha; PI4KB, phosphatidylinositol 4-kinase beta; PI4K2A, phos-
phatidylinositol 4-kinase type 2 alpha; PI4K2B, phosphatidylinositol 4-kinase type 2 beta; PIK3C3,
phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3C2A, phosphatidylinositol-4-phosphate
3-kinase catalytic subunit type 2 alpha; PIK3C2B, phosphatidylinositol-4-phosphate 3-kinase cat-
alytic subunit type 2 beta; PIK3C2G, phosphatidylinositol-4-phosphate 3-kinase catalytic sub-
unit type 2 gamma; PIP5K1A, phosphatidylinositol-4-phosphate 5-kinase type 1 alpha; PIP5K1B,
phosphatidylinositol-4-phosphate 5-kinase type 1 beta; PIP5K1C, phosphatidylinositol-4-phosphate
5-kinase type 1 gamma; PIP4K2A, phosphatidylinositol-5-phosphate 4-kinase type 2 alpha; PIP4K2B,
phosphatidylinositol-5-phosphate 4-kinase type 2 beta; PIP4K2C, phosphatidylinositol-5-phosphate
4-kinase type 2 gamma; PIKFYVE, phosphoinositide kinase, FYVE-type zinc finger contain-
ing; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; PIK3CB,
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta; PIK3CD, phosphatidylinositol-
4,5-bisphosphate 3-kinase catalytic subunit delta; PIK3CG, phosphatidylinositol-4,5-bisphosphate
3-kinase catalytic subunit gamma; MTM, myotubularin; MTMR, myotubularin-related; SAC2, Sac
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domain-containing inositol phosphatase 2; SACML1, SAC1 like phosphatidylinositide phosphatase;
SYNJ1/2, synaptojanin 1/2; INPP5E, inositol polyphosphate-5-phosphatase E; INPP5J, inositol
polyphosphate-5-phosphatase J; OCRL, oculocerebrorenal syndrome of Lowe; INPP5B, inositol
polyphosphate-5-phosphatase B; INPP5K, inositol polyphosphate-5-phosphatase K; PTEN, phos-
phatase and tensin homolog; INPP4A, inositol polyphosphate-4-phosphatase type I A; INPP4B,
inositol polyphosphate 4-phosphatase type II; FIG4, factor-induced gene 4; SHIP, Src homology 2
(SH2) domain containing inositol polyphosphate 5-phosphatase.

The primary cilium is a sensory organelle presenting on the surface of most mam-
malian cell types [19]. Although the ciliary membrane is reported to be continuous with the
plasma membrane, the lipid and protein composition in the ciliary membrane is maintained
unique and distinguishable from the plasma membrane [20,21]. To fulfill its function as a
signaling hub and cellular antenna, the trafficking of protein and membrane components in
and out of cilia is highly active and tightly controlled, suggesting the potential involvement
of PIs in cilia. Indeed, it was reported in 2009 that mutations in an inositol polyphosphate
5-phosphatase, INPP5E, are causal for multiple ciliopathies [22,23]. After Subsequently,
more studies implicated the connection between PIs and primary cilia. PIs are reported
to regulate the stability/disassembly of primary cilia [24,25], ciliogenesis [26], and ciliary
trafficking [27,28]. The dysfunction of multiple PI enzymes, both phosphatases, and kinases,
is connected to ciliary defects and ciliopathies [6]. The localization and function of PIs in
cilia have been reviewed in several excellent recent reviews [6,29,30]. Here, we mainly
focus on the role of several cilia-associated components of the PI signaling pathway in
development, tissue homeostasis, and related diseases.

2. Primary Cilia
2.1. Structure of Primary Cilia

The primary cilium is a sensory organelle presenting on the surface of most quiescent
cells in vertebrates [19,31]. The primary cilium is composed of a microtubule-based core
structure called the axoneme, which is surrounded by a ciliary membrane that is contin-
uously extended from the plasma membrane (Figure 2) [32]. Different from motile cilia,
which can generate a fluid flow on cells such as respiratory epithelial and ependymal cells,
primary cilia only contain nine microtubule doublets without two centrally located singlet
microtubules (Figure 2) and are non-motile for lacking the axonemal dynein arms on the
outer microtubules [33].

The basal body, transformed from the mother centriole upon serum starvation, nucle-
ates the outgrowth of the axoneme and forms the base of primary cilia. The region between
the axoneme and basal body is identified as the transition zone, which is characterized
by Y-links connecting the axonemal microtubules to the ciliary membrane [34]. Transition
fibers, which are transformed from distal appendages of the mother centriole, are located
below the transition zone on the distal end of the basal body [35]. In addition to anchor-
ing the basal body to the plasma membrane, transition fibers function together with the
transition zone as the ciliary gate to regulate ciliogenesis and signaling by controlling the
selective transport of specific ciliary proteins between the cell body and the cilium [35,36].
Intriguingly, many transition zone and transition fiber proteins are reported to contain
phosphoinositide binding domains; however, the physiological significance of their PI
binding potential remains unclear [37].



J. Dev. Biol. 2022, 10, 51 4 of 19J. Dev. Biol. 2022, 10, x FOR PEER REVIEW 4 of 20 
 

 

 
Figure 2. Structure of the primary cilium. A primary cilium is composed of a “9 + 0” microtubule 
axoneme and basal body complex (labeled in green). A motile cilium has two extra central singlet 
microtubules, generating a “9 + 2” arrangement (labeled in green). A motile cilium also contains 
dynein arms for ciliary movement and radial spoke to regulate the motility and motion pattern of 
motile cilia (labeled in black). Transition zone is characterized by the Y-links, which connect the 
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to the ciliary membrane. Transition zone and transition fibers together coordinate the ciliary gate 
function (labeled in red) (created with BioRender.com, accessed on 18 November 2022). 
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Consistently, defects in primary cilia lead to a panel of genetic human diseases, col-
lectively termed ciliopathies, including numerous seemingly unrelated syndromes, with 
involvement of the brain, eye, kidney, liver, pancreas, skeletal system, and some others in 
a growing list [43–48]. Common ciliopathies range from organ-specific disorders such as 
autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive PKD 
(ARPKD) to pleiotropic disorders such as Joubert syndrome (JBST), nephronophthisis 
(NPHP), Bardet–Biedl syndrome (BBS), and Meckel syndrome (MKS) [49,50]. Currently, 
more than 190 established and 250 candidate cilium-associated proteins are identified as 
ciliopathy proteins and over 35 ciliopathies are reported, emphasizing the significance of 
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cance of the primary cilium, the molecular mechanisms underlying its biogenesis, func-
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Figure 2. Structure of the primary cilium. A primary cilium is composed of a “9 + 0” microtubule
axoneme and basal body complex (labeled in green). A motile cilium has two extra central singlet
microtubules, generating a “9 + 2” arrangement (labeled in green). A motile cilium also contains
dynein arms for ciliary movement and radial spoke to regulate the motility and motion pattern of
motile cilia (labeled in black). Transition zone is characterized by the Y-links, which connect the
proximal axoneme to the ciliary membrane. Transition fibers connect the distal end of the basal body
to the ciliary membrane. Transition zone and transition fibers together coordinate the ciliary gate
function (labeled in red) (created with BioRender.com, accessed on 18 November 2022).

2.2. Ciliopathy

Although largely considered a vestige before 1999, the primary cilium is now demon-
strated as a signaling center to interpret both chemical and mechanical signals. Major
components of multiple signaling pathways specifically localize in primary cilia [38]. These
include pathways that are essential for the biogenesis and homeostasis of tissues and
organs, such as the Hedgehog signaling [19], canonical Wnt signaling [39], Planar cell
polarity [40], G protein-coupled receptor signaling [41], as well as tyrosine kinase receptor
signaling [42] pathways. The activation and regulation of these pathways occur in cilia and
depend on the normal structure and functionality of primary cilia [19].

Consistently, defects in primary cilia lead to a panel of genetic human diseases, col-
lectively termed ciliopathies, including numerous seemingly unrelated syndromes, with
involvement of the brain, eye, kidney, liver, pancreas, skeletal system, and some others in
a growing list [43–48]. Common ciliopathies range from organ-specific disorders such as
autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive PKD
(ARPKD) to pleiotropic disorders such as Joubert syndrome (JBST), nephronophthisis
(NPHP), Bardet–Biedl syndrome (BBS), and Meckel syndrome (MKS) [49,50]. Currently,
more than 190 established and 250 candidate cilium-associated proteins are identified as
ciliopathy proteins and over 35 ciliopathies are reported, emphasizing the significance of
primary cilia in development and human disease [51,52]. Given the physiological signifi-
cance of the primary cilium, the molecular mechanisms underlying its biogenesis, function,
and related disease pathogenesis have just started to be explored in the recent two decades.
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3. Cilium-Associated Phosphoinositides and PI-Binding Ciliary Proteins
3.1. Cilium-Associated Phosphoinositides

Although continuously extended from the PM, the ciliary membrane possesses unique
composition and compartmentalization of PIs (Figure 3). PtdIns4P and PtdIns(4,5)P2 are
the most well-studied ciliary PIs. PtdIns4P is the dominant phosphoinositide along the
ciliary membrane, whereas PtdIns(4,5)P2 is mainly limited to the proximal part of the
cilium and the ciliary base [28,53]. Different from the Golgi membrane that enriches Pt-
dIns4P by residential PI4Ks, this unique PtdIns4P compartmentalization in the ciliary
membrane is achieved and maintained by the ciliary PI 5-phosphatase INPP5E [27,28]. Loss
of INPP5E from cilia leads to the replacement of ciliary PtdIns4P by PtdIns(4,5)P2. Increased
ciliary PtdIns(4,5)P2 disrupts Hedgehog signaling through recruitment of the PtdIns(4,5)P2-
binding, trafficking protein Tubby-like protein-3 (TULP3) and its cargoGPR161, the Hedge-
hog negative regulator G protein-coupled receptor, into cilia [26–28]. Additionally,
PtdIns(4,5)P2 regulates the stability of primary cilia by balancing membrane turnovers.
Ciliary remodeling PtdIns(4,5)P2 is reported to cause ciliary disassembly through ciliary
vesicle release by actin polymerization [54–56]. This process is likely to be modulated by
ciliary disassembly regulator Aurora A Kinase (AURKA) with involvement of Histone
Deacetylase 6 (HDAC6)-dependent microtubule disassembly. However, contemporary
studies only show that both inhibitors of AURKA and HDAC6 ameliorate the ciliary disas-
sembly induced by acute PtdIns(4,5)P2 synthesis [56,57], leaving the underlying molecular
mechanism unexamined.
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Figure 3. Ciliary localization of PIs and associated phosphatases and kinases. PtdIns4P is the main
PI along the ciliary membrane. PtdIns(4,5)P2 and PtdIns(3,4,5)P3 mainly localize at the cilia base.
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by the arrows (Created with BioRender.com, accessed on 18 November 2022).

PtdIns(4,5)P2 and PtdIns(3,4,5)P3 are also reported to accumulate at the transition
zone in the Inpp5e-null mouse embryonic fibroblast cells (MEFs) upon Hedgehog signaling
activation and are associated with the reduced ciliary accumulation of Smoothened (SMO)
and GLI2 [24], two important components of the Hedgehog pathway. INPP5E by dephos-
phorylating PtdIns(3,4,5)P3 generates a PtdIns(3,4)P2 pool at the basal body, which together
with PtdIns(3,4,5)P3 activates PI3K/AKT and helps maintain the ciliary stability [24,25].
Moreover, a PtdIns3P pool is discovered in the pericentriolar recycling endocytic compart-

BioRender.com


J. Dev. Biol. 2022, 10, 51 6 of 19

ment around the base of primary cilia, which is likely maintained by a class II PI 3-kinase
PI3K-C2α enriched at the ciliary base [58]. This specific pool of PtdIns3P is necessary for
the activation of Rab8 and Rab11, which is required for the axoneme elongation and the
ciliary transport of polycystin-2 and Hedgehog signaling components [58–60].

3.2. PI-Binding Ciliary Proteins

It has been well documented that PIs are important regulators of membrane traffick-
ing, protein transportation, and protein complex assembly in various subcellular loca-
tions [4,5,21], which are key events for the ciliary signaling. Similarly to in the cytoplasm,
PIs exhibit different functions in cilia in different subdomains, and this spatiotemporal
availability/functionality of specific PI species is achieved by the specific ciliary localization
of relevant phosphatases, kinases, as well as PI-binding effectors. Among all the reported
PI-binding domains, PH, C2, Tubby and B9 domains are found in primary cilium-associated
proteins [28,37,61–63].

PH domains are well-characterized signaling modules identified in diverse pro-
teins [64]. A small subset of PH domains (about 10–20%) bind individual PIs, com-
monly PtdIns(3,4,5)P3, PtdIns(3,4)P2, PtdIns4P, and PtdIns(4,5)P2 [64,65]. As one of the
most well-studied PI-effectors, AKT has an N-terminal PH domain which, by binding
to PtdIns(3,4,5)P3, recruits AKT to the plasma membrane in response to growth fac-
tor stimulation, which is required for the consequent phosphorylation and activation
of AKT [62]. The phosphorylated and activated AKT is also reported to localize at the
ciliary base and facilitate the ciliogenesis by phosphorylating the ciliary structural pro-
tein Inversin (INVS), which is a causative gene for ciliopathy nephronophthisis type II
(NPHP2) [53,61,66]. In Hedgehog-dependent medulloblastoma cells, a compartmentalized
PtdIns(3,4,5)P3/AKT/GSK3β signaling axis is also identified at the ciliary base, where AKT
phosphorylates and inhibits GSK3β, leading to cilia loss [25,60].

TULP3 is a PtdIns(4,5)P2-binding protein with a conserved C-terminal Tubby domain
and a conserved N-terminal helix that interacts with the intraflagellar transport complex
IFT-A [67]. TULP3 is required for the ciliary localization of multiple membrane-associated
proteins [67–70]. GPR161 is a Gαs-coupled receptor that suppresses the Hedgehog pathway
by increasing cAMP and PKA activity [68,71]. In Inpp5e KO cells, accumulated PtdIns(4,5)P2
in cilia attracts more TULP3 and subsequently more GPR161 in cilia for the repression of the
Hedgehog signaling [27,28]. Reducing TULP3 levels restored the activation of Hedgehog
pathway in Inpp5e KO cells, supporting that TULP3 is the key effector influenced by the
availability of INPP5E and PtdIns4P [28]. On the other hand, TULP3 is also necessary for
the ciliary localization of INPP5E, as well as other proteins bound to the ciliary membrane
including the small G-protein ARL13B and ADPKD disease proteins polycystin 1 and
polycystin 2 [69,70]. Current studies suggested that the IFT-A-binding motif instead of the
PtdIns(4,5)P2-binding domain of TULP3 is necessary for the ciliary localization of those
membrane proteins in normal conditions [70].

Many transition zone proteins contain C2 domains, such as AHI1, NPHP1, NPHP4,
MKS5/RPGRIP1L/NPHP8 and CC2D2A/MKS6 [37,72], which have the potential to bind
PIs. However, whether they indeed bind to PIs and/or regulated by PI binding have not
been well characterized. MKS-5 acts as an assembly factor for the establishment of the tran-
sition zone [73,74]. In Caenorhabditis elegans, it was proposed that the C2 domains of MKS-5
interact with other transition zone proteins, which potentially forms a lipid gate to limit the
abundance of PtdIns(4,5)P2 within cilia [73]. This study showed that PtdIns(4,5)P2 diffused
from the transition zone to the ciliary proper in the mks-5 mutant [73]. The homeostasis of
compartmentalized PtdIns(4,5)P2 is critical for the stability and signaling of cilia [28,55];
thus, it is worth investigating whether and how PtdIns(4,5)P2 localization is controlled by
this MKS5-centered lipid barrier in vertebrates. B9 domains are specific ciliary C2 domains
that are identified in MKS1, B9D1/MKS9, and B9D2/MKS10 [37,72,75]. These transition
zone proteins form a linear MKS1–B9D2–B9D1 tripartite complex through the binding of
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B9 domain and are required for the diffusion-barrier function of the transition zone [63,76].
Similarly, the phosphoinositide binding property of these B9 domains is unclear.

4. Primary Cilium-Associated PI Phosphatases
4.1. INPP5E

INPP5E dephosphorylates the 5-position on the inositol ring of PtdIns(4,5)P2 and
PtdIns(3,4,5)P3 and converts them to PtdIns4P and PtdIns(3,4)P2, respectively [1]. In non-
ciliated cells, INPP5E resides at distal appendages of the mother centriole and maintains
a specific centrosomal PtdIns4P pool [26]. PtdIns4P binds to both tau-tubulin kinase-2
(TTBK2) and the distal appendage protein CEP164, which compromises the TTBK2-CEP164
interaction and inhibits the recruitment of TTBK2 [26]. In quiescent cells, INPP5E translo-
cates to cilia with a decreased PtdIns4P level at centrosome, leading to the recruitment of
TTBK2 and the initiation of ciliogenesis [26]. During ciliogenesis, INPP5E translocates to
the ciliary membrane, where it maintains the stability and signaling function of primary
cilia by preserving a PtdIns4P-dominant environment (Figure 3) [23,26]. INPP5E contains
an N-terminal proline-rich domain, an inositol polyphosphate 5-phosphatase domain, and
a C-terminal CAAX prenylation motif which is necessary for its ciliary localization [1,23].
As reported, phosphodiesterase PDE6D, the transition fiber protein CEP164, and the small
GTPase ARL13B coordinate to recruit INPP5E into the ciliary membrane [77–79].

Current knowledge from human patients and animal models supports that INPP5E is
essential for development. Two human ciliopathy syndromes are associated with INPP5E
mutations: Joubert syndrome (JBTS) and MORM syndrome (Tables 1 and 2) [80–83]. JBTS
is an autosomal recessive neurodevelopmental disorder characterized by the appearance
of a “molar tooth sign” on axial MRI, which results from the abnormal development
of the cerebellar vermis and the brainstem [84]. The most common clinical features of
JBTS include ataxia, hyperpnea, sleep apnea, ocular motor apraxia, hypotonia, and cystic
dysplastic kidney (Figure 4 and Table 2) [85]. JBTS-associated INPP5E mutations are
mainly missense and cluster in the catalytic domain (Table 1). In vitro experiments also
confirmed that these muted INPP5E exhibit decreased phosphatase activity and cause
impaired PI distribution in cilia [81,83,85–87]. On the other hand, MORM syndrome is
resulted from C-terminal deletions of INPP5E (Table 1), which leads to loss of the CAAX
motif and exclusion of INPP5E from the ciliary membrane without affecting the catalytic
activity [23,88]. Correspondingly, in addition to similar symptoms as JBTS including
intellectual disability and retinal dystrophy, MORM syndrome shows phenotypes unseen
in JBTS, including obesity and micropenis, as observed in other ciliopathies such as Bardet–
Biedl syndrome and Cohen syndrome (Figure 4 and Table 2) [23,88,89]. Compared with
JBTS-associated INPP5E mutants which lead to a loss of INPP5E activity in the whole cell
and whole body, MORM-associated INPP5E mutants only damage the INPP5E activity in
cilia but may increase the INPP5E activity in other cellular locales due to mislocalization.
In this context, the phenotypic differences between JBTS and MORM may be caused
by the abnormal non-ciliary activity of INPP5E, which could be seen when other ciliary
abnormalities disturb the ciliary targeting of INPP5E.

Results from animal models reinforce the conclusion in human patients that INPP5E
function in primary cilia is required for the development of multiple organs [23,24,90].
Inpp5eD/D mice (deletion of exons 7 and 8) are embryonic and postnatal lethal with ciliopa-
thy features, including bilateral anophthalmos, postaxial hexadactyly, renal cyst, skeletal
abnormalities, as well as cerebral developmental defects, suggesting that INPP5E is essen-
tial for primary cilium-mediated functions [23]. Interestingly, the inactivation of Inpp5e
in mice on the postnatal day-28 did not affect the survival of adult mice; however, still
caused ciliopathy phenotypes such as higher body weight, retinal dystrophy, and cystic
glomeruli [23]. This result supports the involvement of INPP5E in the cilium-dependent
homeostasis of mature tissues/organs, whereas also indicates that the INPP5E-dependent
ciliary function is more important for the embryonic development. Further studies using the
Inpp5eD/D MEFs suggest that the Inpp5e deletion increases the ciliary level of the Hedgehog
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suppressor GPR161 via PtdIns(4,5)P2-dependent recruitment of TULP3, which promotes
GLI3R formation and reduces Hedgehog signaling [28]. Consistent with the Inpp5eD/D

mice, another mouse model of Inpp5e-/- (deletion of exons 2 to 6) also recapitulates JBTS
features, including polycystic kidneys, cleft palate, polydactyly, edema, and ossification
delays [23,24,90]. Inpp5e-/- MEFs exhibited the defective Hedgehog signaling with reduced
ciliary accumulation of SMO and GLI2 when treated with the SMO agonist [24]. Expression
of a constitutively active SMO mutant (SMOM2) in Inpp5e-/- mice partially restored the
associated embryonic development defects, emphasizing the involvement of Hedgehog
signaling in INPP5E regulation in embryonic development [24]. However, whether the
expression of SMOM2 can rescue the defects in Inpp5e-/- adult mice is not determined in
this study.

Table 1. Disease-causal mutations in INPP5E and OCRL.

Human Disease Disease-Causal Mutations Domain

Joubert
Syndrome

(INPP5E-associated)

R345S, R378C, T426N, R435Q, R435W, T436N, W474R, R512W, R515W,
Y534D/R621Q, Y543X, G552A, R563H, K580E, V303M/R585C, Y588C phosphatase domain

G286R, R621Q/L234Pfs*56, C641R Others 1

MORM Syndrome
(INPP5E-associated) Q627X, Q633X Others 1

Lowe Syndrome
(OCRL-associated)

F242S, W247C/X, W261C, Y272H, F276S, Q277R, Q295X, W297X,
E302X, A328P, R334P/X, Y335X, R337C, G357E, R361I, T367del, V372G,

N373Y, S374F, H414R, G421E, D422N, N424D, L448G, D451N/G,
Q452R, R457G, K460X, F463S, E468K/G, P475H, R476W, Y477X, P478L,
P495L, W497G/X, C498Y, D499H, R500G/Q/X, W503R, V508D, Y513C,

S522R, H524R/Q, P526T/L, V527D, I533S

phosphatase domain

V777E, E585del, N597K, L634P, F668V, C679W, L687P ASH domain
I768N, A797P, P801L, A861T, L891R RhoGAP domain

Q215X Others 1

Dent-2 disease
(OCRL-associated)

C87X, L56DfsX1, Q70RfsX18, E85FfsX26, PH domain
I257T, R301C, R301H, G304E, G321E, N354H, Y462C, R476W, P478L,

Y479C, R493W 5-phosphatase

E737D, P799L RhoGAP domain
T121NfsX1, I147KfsX1, S149X, P161PfsX3, M170IfsX1, F226S Others 1

Lowe’s syndrome and
Dent 2 disease

(OCRL-associated)

I274T, F287S, R318C/H,
D523N/G 5-phosphatase domain

1 The regions do not belong to any domains.

Although most INPP5E-associated JBTS patients mainly show neurologic symptoms
with rare kidney or hepatic features, both Inpp5eD/D and Inpp5e-/- mice showed polycystic
kidneys with a 100% penetrance [23,24]. Moreover, the renal-specific deletion of Inpp5e
exons 2-6 in mice resulted in severe polycystic kidneys and renal failure, likely caused by
the hyperactivation of PI3K/Akt and mTORC1 pathway [90]. Despite the possibility that
INPP5E may carry slightly diverse functions in different species, that the PKD phenotype
in Inpp5e-inactivated mice is absent in INPP5E-mutated human patients more likely reflects
the dosage difference of functional INPP5E in both models. Mouse models suffer from a
complete loss of INPP5E protein during the embryonic and/or postnatal development of
kidneys [23,90], whereas in patients, INPP5E mutations are often hypomorphic with re-
duced protein level, weakened phosphatase activity, or defective ciliary localization [23,83],
which may be sufficient to support the development and homeostasis of kidneys. In other
animal model such as zebrafish, Inpp5e knockdown in morphants also impairs cilia forma-
tion and function in the Kupffer’s vesicle and pronephric ducts, thus leads to ciliopathy-like
phenotypes including body axis asymmetry, microphthalmia, pericardial edema, kinked
tail, and pronephric cyst formation [91]. Moreover, expression of human INPP5E rescues
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the defects in the Inpp5e knockdown morphants [91], suggesting that the functionality of
INPP5E is mostly conserved in vertebrate development.

Especially, INPP5E patient mutations exhibit reduced cilia stability compared with
the wild-type protein [23]. Taken together, INPP5E is the most well-studied PI enzyme,
which plays a critical role in cilia assembly, stability, and signaling pathways [6,29,92,93],
highlighting the importance of INPP5E in development.

Table 2. Clinical features of INPP5E- and OCRL-associated human diseases.

Human Disease Clinical Features

Joubert Syndrome
(INPP5E-associated)

MTS (molar tooth sign), hypotonia,
abnormal breathing, retinal dystrophy, cystic echogenic kidneys

MORM Syndrome
(INPP5E-associated)

mental retardation, obesity, congenital retinal dystrophy, and
micropenis in males

Lowe Syndrome
(OCRL-associated)

mental retardation, congenital cataracts, maladaptive behavior,
renal dysfunction, postnatal growth retardation, areflexia, and

arthropathy

Dent-2 disease
(OCRL-associated)

renal dysfunction, mild mental retardation, hypotonia, cataracts,
and rickets
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4.2. OCRL and INPP5B

OCRL and INPP5B are both members of the inositol polyphosphate 5-phosphatase
family as INPP5E, but mainly hydrolyze PtdIns(4,5)P2 to generate PtdIns4P [1]. OCRL
localizes to the cilium and basal body, as well as the endocytic network, and functions in
the assembly and maintenance of primary cilia (Figure 3) [94–98]. OCRL is a multi-domain
protein including PH, 5-phosphatase, ASH (ASPM-SPD2-Hydin), and catalytically inactive
RhoGAP (Rho GTPase-activating protein) domains [1]. At the early stage of ciliogenesis,
OCRL is recruited by the small GTPase RAB8 to cilia through direct binding [95,99], which is
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essential for primary cilia assembly [94]. Mutations of OCRL in the 5-phosphatase domain
interrupts its ciliary localization, whereas deletion of the RhoGAP domain eliminates OCRL
in the ciliary proper and restrains it near the ciliary base [95]. This is consistent with the
discovery that patients’ fibroblasts with OCRL mutations exhibit defective ciliogenesis and
shortened cilia [95,96], indicating the diverse disorders present in OCRL-mutated patients
may be due to the dysregulation of primary cilia. As a paralog of OCRL, INPP5B shares
similar structural domains [1] but contains a C-terminal CAAX prenylation domain, which
is essential for the ciliary localization of INPP5B [100]. Knockdown of INPP5B results in a
significant decrease of ciliogenesis and ciliary length in both cultured mammalian cells and
zebrafish Kupffer’s vesicle, but the detailed mechanism remains unclear [100].

OCRL mutations are identified as causative of two human diseases: oculocere-
brorenal syndrome of Lowe (OCRL), also called Lowe syndrome, and Dent-2 disease
(Tables 1 and 2) [101–105]. Both Lowe syndrome and Dent-2 disease are rare X-linked
genetic disorders. Lowe syndrome patients exhibit defective cilium assembly and ciliopa-
thy symptoms such as intellectual disability, congenital cataracts, and renal dysfunction
(Figure 4) [105]. Dent-2 is often described as a milder form of Lowe syndrome, as most pa-
tients only develop renal symptoms and a few have mild intellectual disability, hypotonia,
cataracts, and rickets (Figure 4) [101]. Genetic analyses showed that Lowe syndrome-
associated mutations are mostly in exons 8–23 (5-phosphatase, ASH, and RhoGAP do-
mains), whereas Dent-2-associated mutations are typically in exons 1-7 (PH domain)
(Table 1) [101,104], suggesting that the distinct symptoms in these two disorders result from
different mutations. Interestingly, one study using different Lowe and Den-2 fibroblasts
displays similar reduced protein and accumulated PtdIns(4,5)P2 levels but milder cilio-
genesis defects in Den-2 [96], indicating the ciliation defect may be related to the disease
severity. Moreover, the epigenetic differences among individual patients and/or secondary
genetic mutations should be considered because the disease severity varies widely between
patients who carry the same OCRL mutation [105,106]. However, INPP5B has not been
associated with any human diseases. Thus, although INPP5B’s function may be partially
redundant with OCRL [107], OCRL is the dominant enzyme accountable for corresponding
developmental needs in human.

Results from animal studies suggest that mice respond differently from humans to
the loss of OCRL [107,108]. Ocrl knockout mice are fertile with normal kidneys, eyes,
and brains, failing to recapitulate the phenotypes of Lowe syndrome [107]. However,
Ocrl;Inpp5b double knockout mice are embryonic lethal [107] and the kidney-tubule-
specific deletion of Inpp5b in Ocrl−/− mice phenocopy the tubulopathy disorder of Lowe
Syndrome/Dent-2 [109]. These results indicate that Ocrl and Inpp5b carry redundant func-
tions in mice, and normal mouse development can be conducted if the combined enzyme
activity of Ocrl and Inpp5b is above certain threshold. Once levels of Ocrl and Inpp5b drop
below this threshold, the severity of developmental defects negatively correlates with the
remaining dosage of functional Ocrl and Inpp5b. Interestingly, knock-in of human INPP5B
in Ocrl;Inpp5b mice corrected the lethality, but animals still showed phenotypes such as
Lowe syndrome/Dent-2 disease including reduced postnatal growth, low molecular weight
proteinuria, and aminoaciduria [108]. This is consistent with the previous discovery that
although INPP5B and Inpp5b are highly conserved in most exons, the significant differences
in exons 7 and 8 lead to different gene transcription, mRNA splicing, and primary protein
sequence of between human and mouse [110]. Moreover, one study showed that Inpp5b
expression level was dramatically higher in mouse trabecular meshwork cells than the same
human cells [100]. This distinct expression may partly explain why Inpp5b and INPP5B
compensate the loss of Ocrl in mice differently.

Although several studies have confirmed the ciliary localization of OCRL and
INPP5B [94,95,100], the investigation of OCRL and INPP5B in cilia has just begun. OCRL
can be recruited to cilia by RAB8, which is essential for ciliary assembly, and regulate ciliary
protein trafficking in an Rab8- and endosome-dependent manner [94,95]. Knockdown of
Ocrl or Inpp5b in zebrafish resulted in defective cilium formation in Kupffer’s vesicle and
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ciliopathy-like phenotypes including microphthalmia, body-axis asymmetry, microlens,
distorted retinas, and hydrocephalus [95,100]. Double knockdown of both Ocrl and Inpp5b
in zebrafish showed synergistic effects, suggesting that these two ciliary PI phosphatases
may play some non-redundant function in zebrafish development [100]. Consistent with
the observation in zebrafish, the lack of OCRL in human retinal pigmented epithelial
cells and patients’ fibroblasts results in defective ciliogenesis and shortened cilia [94,95].
However, one study using MDCK cells demonstrated an increased ciliary length when
knocking down OCRL [98], indicating a potential cell-specific function of OCRL. Further
investigation on the molecular mechanism underlying these differences may help the
understanding of the tissue-specific manifestations in Lowe syndrome/Dent-2 disease.
As PI phosphatases, how OCRL and INPP5B regulate the disruption of ciliary PIs is also
unclear. One study using Lowe syndrome patients’ fibroblasts and Ocrl-null MEFs shows
increased PtdIns(4,5)P2 and decreased PtdIns4P in cilia, which is similar to the observa-
tion in Inpp5e-null MEFs [97]. Intriguingly, OCRL is also necessary for the activation of
Hedgehog signaling, but through a different mechanism from INPP5E. Unlike INPP5E that
suppresses the ciliary entry of GPR161 but not SMO [27,28], OCRL deficiency has no effect
on GPR161, but disrupts the ciliary translocalization of SMO upon SAG treatment [97]. The
underlying molecular mechanism and involvement of corresponding PI species is highly
interesting and should be determined in future studies.

5. Primary Cilium-Associated PI Kinases
5.1. PI3K-C2α

PI3K-C2α is a phosphoinositide 3-kinase and phosphorylates PtdIns and PtdIns4P
to produce PtdIns3P and PtdIns(3,4)P2, respectively (Figure 1) [1]. PI3K-C2α is involved
in a wide range of biological events such as endocytosis [111–113], exocytosis [114], mi-
tosis [115], and autophagy [116,117]. Recently, a specific accumulation of PI3K-C2α is
observed in the pericentriolar recycling endocytic compartment (PC-REC) at the ciliary
base (Figure 1), where it produces a local pool of PtdIns3P [58]. In PI3K-C2α-depleted cells,
the reduction in pericentriolar PtdIns3P altered the organization of PC-REC around the
ciliary base, reduced RAB11 activation and impaired the ciliary targeting of RAB8 [58]. By
this means, PI3K-C2α regulates the elongation of cilia and the trafficking of ciliary proteins
such as polycystin 2 in a RAB8-dependent manner [58,59,118].

Homozygous global knockout of Pik3c2a (deletion of exon 1) in mice leads to em-
bryonic lethality between E10.5 and E11.5 with abnormalities in multiple organs [119].
In addition to the defective angiogenesis and vascular maturation observed in Pik3c2a-/-

embryos [119], some developmental disorders typically detected in mice with deficient
Hedgehog signaling were identified, such as disrupted cardiac tube looping and impaired
left–right patterning [58,120,121]. Consistent with the observation, Pik3c2a-/- MEFs and
embryos exhibit impaired cilium elongation and ciliary reduction in the Hedgehog signal
transducer SMO [58]. Furthermore, the loss of one Pik3c2a allele worsened the renal cystic
burden in two PKD mouse models (Pkd2+/- and Pkd1+/-) [59]. In vitro studies using MEFs
and IMCD3 cells also confirmed the impaired ciliary targeting of polycystin-2, encoded by
Pkd2, in PI3K-C2α-depleted cells [59], supporting an essential role of PI3K-C2α in cilia in
mouse development.

Recently, a novel human syndrome with short stature, cataracts, secondary glaucoma,
and skeletal malformations has been identified in homozygous loss-of-function mutations
in PIK3C2A (which encodes PI3K-C2α) (Table 3) [122]. This syndrome shares many similar
features to classical ciliopathy syndromes and is especially close to the Lowe syndrome
caused by mutations in the PI 5-phosphatase OCRL, as discussed above [122]. Similar
to the observation in mice models, patients’ fibroblasts exhibited decreased PtdIns3P
and RAB11 levels at the ciliary base, as well as reduced cilia length, suggesting that
PIK3C2A is a candidate ciliopathy gene [122]. Further identification of additional patients
will improve our understanding of the genotype–phenotype correlation associated with
PIK3C2A mutations.
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Table 3. Clinical features of PI3K-C2α and PIPKIγ-associated human diseases.

Human Disease Disease-Causing Mutations

PI3K-C2α-associated skeletal malformations, short stature, cataracts,
secondary glaucoma, and developmental delay

LCCS3
(PIPKIγ-associated)

arthrogryposis with multiple joint contractures, muscle
wasting, and atrophy

Although PI3K-C2α can generate both PtdIns3P and PtdIns(3,4)P2, current evidence
suggests that PI3K-C2α regulates cilia by producing PtdIns3P at the PC-REC [58,59]. It
was proposed that PtdIns3P activates the regional RAB11/RAB8 cascade and regulates
the trafficking of membrane proteins such as SMO and polycystin 2 into cilia [58,59];
however, the underlying molecular mechanisms remain to be illustrated. Nevertheless,
the ciliopathy phenotypes observed in mouse models and human patients endorse the
importance of PI3K-C2α in the context of primary cilia and cilia-dependent developmental
events [58,59,122].

5.2. PIPKIγ

Type Iγ phosphatidylinositol-4-phosphate 5-kinase (PIPKIγ) is the main kinase gen-
erating PtdIns(4,5)P2 by phosphorylating PtdIns4P (Figure 1) [1]. PIPKIγ is encoded by
PIP5K1C. Currently, six alternative splicing isoforms of PIPKIγ have been identified that
differ from each other solely by the C-terminal extension sequences [123]. Only isoform
3 with a unique motif at the C-terminus targets the proximal ends of centrioles or the
basal body (Figure 3) [123]. While suppressing the centriole amplification in proliferating
cells, PIPKIγ in non-duplicating cells regulates ciliogenesis in a kinase-dependent man-
ner [26,124]. In proliferating cells, a centrosomal PtdIns4P pool generated by INPP5E
inhibits the recruitment of tau tubule kinase 2 (TTBK2) and the subsequent removal of
microtubule capping protein CP110 from the distal end of the mother centriole, thus blocks
the initiation of axoneme assembly [26]. Signals promoting ciliogenesis triggers the re-
moval of INPP5E from the mother centriole, leaving the centrosomal PtdIns4P pool to be
exhausted by PIPKIγ, promoting the TTBK2 recruitment and the downstream axoneme
elongation [26,124].

Although PIPKIγ appears indispensable for ciliogenesis, it also plays essential role in a
wide range of cellular events at various subcellular locales such as focal adhesion assembly
and endocytic trafficking, likely via different splicing variants [123,125–128]. Up to date,
the only reported human developmental disorder associated with PIPKIγ is the lethal
congenital contractural syndrome type 3 (LCCS3), a severe form of arthrogryposis [129].
Caused by a single homozygous mutation in PIP5K1C (PIPKIγ p.D253N, a kinase-dead
mutation), LCCS3 patients exhibit multiple joint contractures, severe muscle wasting,
and atrophy (Table 3) [129], sharing similar features observed in LCCS10, which is in the
same phenotypic series and defined as a ciliopathy [130]. However, the LCCS3-associated
PIP5K1C mutation affects all splicing isoforms of PIPKIγ. Whether and to what extent the
cilia-associated PIPKIγ isoform 3 contributes to the pathogenesis of LCCS3 remain to be
determined. Future studies in the context of cilia using patient-derived fibroblast or epithe-
lial cells may provide useful evidence to answer these questions. Similar to LCCS3 patients,
Pip5k1c-interrupted mice are embryonic or postnatal lethal with severe developmental
defects. Among three different Pip5k1c-KO mouse models [131–133], Pip5k1c knockout
mice with a fusion of β-Gal to the first 32 amino acids of PIPKIγ were embryonic lethal
at E10.5 and exhibited ciliopathy-like phenotypes including exencephaly and pericardial
effusion [131]. However, the other two Pip5k1c KO mice models with deletion of exons
2–6 or deletion of exon 18 died within 24 h after birth, with no apparent ciliopathy-like
phenotypes observed in this time frame [132,133]. This is not surprising because all three
Pip5k1c editing approaches affect all PIPKIγ equally. To understand the cilium-dependent
functionality of PIPKIγ in development, it is necessary to generate mouse models in which



J. Dev. Biol. 2022, 10, 51 13 of 19

individual PIPKIγ isoform is inactivated in specific ciliated tissues/organs. In addition,
we recently showed that hydrocephalus syndrome protein 1 (HYLS1), a ciliopathy protein,
functions as a PIPKIγ activator at the ciliary base. In cultured renal epithelial cells, both
PIPKIγ and HYLS1 are necessary for the assembly of NPHP module at the transition zone
and promote the removal of ciliary GPR161 and activation of the Hedgehog pathway [124].
Surprisingly, the kinase activity of PIPKIγ is vital for HYLS1 to regulate the axoneme
elongation but appears dispensable for the ciliary trafficking of Hedgehog signaling compo-
nents, indicating that the PIPKIγ-HYLS1 axis plays multiple roles in the context of primary
cilia [124].

6. Unanswered Questions and Perspectives

Comparing to what has been known for PIs in the plasma membrane and various
cytosolic membrane compartments, the role of each PI species in the context of primary
cilia just started to emerge. In addition to the PI species, PI kinases and phosphatases, and
PI effectors we discussed above, recent studies revealed more PI metabolic enzymes that
may function in the context of primary cilia [134–136]. For example, the PI 3-phosphatase
and tensin homolog (PTEN) (Figure 1) [1], which is mainly identified as a potent tumor
suppressor [137], also functions significantly in multicilia formation and cilia disassembly
by controlling the phosphorylation of the WNT signaling component Dishevelled in Xeno-
pus [134]. Loss of phosphatidylinositol 4-kinase β (PI4KB), the main generator of PtdIns4P
in the Golgi membrane (Figure 1) [1], in zebrafish led to the absence of primary cilia and
ciliopathy phenotypes including neuromasts, pronephric ducts, and edema [135]. More-
over, the Src homology-2-domain-containing inositol-5-phosphatase SHIP2 was reported
to increase the ciliary length and stability by confining AURKA at the basolateral mem-
brane in polarized MDCK cells that formed spherical acini/cysts in 3D Matrigel, which is
important for the lumen formation during the morphogenesis of epithelial tubules [136].
Future studies are needed to determine the mechanistic connection of these PI enzymes
with the primary cilia and cilia-dependent cellular and biological processes that influence
the development and tissue/organ homeostasis.

PIs are not only essential signaling components in various cell membranes, but also
critical structural components to retain specific PI-binding proteins and determine the
identity of these membrane domains/compartments [2,3,5]. Due to the interconvertibility,
PIs together with PI kinases and phosphatases at the interface between different mem-
brane compartments are essential integrators of membrane dynamics and facilitate the
exchange/trafficking of proteins between membrane compartments [5]. In the context of
primary cilia, PIs should act following similar mechanistic principles, which is proven true
for the dynamics of PtdIns4P and PtdIns(4,5)P2 in the context of cilia [27,28]. However,
systemic studies are needed to understand whether, which, and how PIs contribute to the
transport of proteins and lipids from the endosomal membrane compartments to pericentri-
olar vesicles surrounding the basal body, through the ciliary gate, in the ciliary membrane
to the ciliary tip, and then back to the ciliary base for recycling or activating downstream
signaling molecules. To this end, determination of the precise localization and dynamics
of PIs, as well as PI enzymes and effectors, at specific ciliary subdomains is critical. Al-
though PI biosensors and antibodies were successfully employed to visualize various PI
species and PI-binding proteins in cytoplasmic membranes, their application in cilia is
harder due to the low abundance of PIs, the highly selective ciliary targeting of exogenous
proteins, or the unique physicochemical property of primary cilia which is unfriendly to
common immunostaining and imaging approaches [138–141]. Utilizing super-resolution
microscopy, a recent study reported that PtdIns(3,4,5)P3 and PtdIns(4,5)P2 were visualized
using validated antibodies in a ring shape at distinct subdomains of the inner transition
zone membrane [53], indicating that more advanced microscopy imaging techniques are
necessary for studying the sub-ciliary localization of PIs and PI-binding proteins.

In addition to identify more cilium-associated PIs and PI enzymes, it is vital to define
more PI effectors. Many cilium-associated proteins are identified with PI-binding domains
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such as PH, C2, Tubby, and B9 domains [53,61,62,66–70,142,143]. Potential PI-binding
motifs are also suggested in the cytoplasmic domains of ciliary transmembrane proteins,
such as polycystins [144], via in vitro lipid binding assays. However, it has not been
confirmed whether and to which PI species these proteins bind in vivo, and the consequent
physiological significance of binding to these PIs remain unclear. In the future, it is vital
to develop new tools, from novel biosensors and imaging methods to new mutations and
animal models, to answer these questions. These studies will yield adequate knowledge to
complete the route map of PI signaling in the context of primary cilia and development.
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