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Abstract: Articular cartilage (AC) covers the diarthrodial joints and is responsible for the 

mechanical distribution of loads across the joints. The majority of its structure and function 

is controlled by chondrocytes that regulate Extracellular Matrix (ECM) turnover and 

maintain tissue homeostasis. Imbalance in their function leads to degenerative diseases like 

Osteoarthritis (OA). OA is characterized by cartilage degradation, osteophyte formation 

and stiffening of joints. Cartilage degeneration is a consequence of chondrocyte 

hypertrophy along with the expression of proteolytic enzymes. Matrix Metalloproteinases 

(MMPs) and A Disintegrin and Metalloproteinase with Thrombospondin Motifs 

(ADAMTS) are an example of these enzymes that degrade the ECM. Signaling cascades 

involved in limb patterning and cartilage repair play a role in OA progression. However, 

the regulation of these remains to be elucidated. Further the role of stem cells and mature 

chondrocytes in OA progression is unclear. The progress in cell based therapies that utilize 

Mesenchymal Stem Cell (MSC) infusion for cartilage repair may lead to new therapeutics 

in the long term. However, many questions are unanswered such as the efficacy of MSCs 

usage in therapy. This review focuses on the role of chondrocytes in cartilage formation 

and the progression of OA. Moreover, it summarizes possible alternative therapeutic 

approaches using MSC infusion for cartilage restoration. 
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1. Introduction 

Articular cartilage (AC) is a smooth viscoelastic tissue designed to bear and distribute loads across 

the diarthrodial joints. This highly specialized tissue exhibits a unique mechanical behavior and poor 

regenerative capacities. AC has an organized layered structure that is divided into four zones: 

superficial, middle, deep zone and the zone of calcified cartilage [1]. Chondrocytes in the AC 

proliferate and secrete extracellular matrix to maintain and sustain the cartilage. The cells themselves 

are separated from each other by cartilage matrix [2]. They respond to outside stimuli and tissue 

damage, and are also responsible for degenerative conditions, such as osteoarthritis (OA). There are no 

known drugs today that can retard or reverse the progression of OA. Recent research identified the 

Mesenchymal Stem Cell (MSC) niche in cartilage. This discovery led to advancements in cell based 

therapies for cartilage restoration, and may pave the way for future therapeutic interventions [3]. More 

research is necessary to understand these mechanisms in more detail. In order to understand the role of 

chondrocytes in cartilage repair and in the progression of OA, we will first need to understand their 

primary function within the cartilage. 

2. Chondrocyte Function and Regulation 

Chondrocytes of the AC perform different functions compared to chondrocytes of the epiphyseal 

growth plates. Chondrocytes of the AC aid in joint articulation, while chondrocytes of the growth plate 

regulate the growth of the epiphyseal plates. Since this review focuses on OA, we will relate only to 

chondrocytes of the AC. Chondrocytes are metabolically active cells that synthesize and turnover a 

large volume of extra cellular matrix (ECM) components such as collagen, glycoproteins, 

proteoglycans, and hyaluronan [2]. The metabolic activities of chondrocytes are altered by many 

factors that are present within their chemical and mechanical environment. Most important among 

these factors are the pro-inflammatory cytokines and growth factors that have anabolic and catabolic 

effects. These factors play a role in the degradation and synthesis of matrix macromolecules [4–6]. 

However, little is known about the molecular mechanism by which these growth factors and peptides 

elicit their effects on ECM metabolism. Chondrocytes are derived from MSCs and occupy only 1%–5% 

of the total cartilage tissue [7]. This low density is due to the high matrix to cell volume ratio [7,8]. 

Furthermore, the life span of the chondrocyte is controlled by the areas of its residence. Since AC is an 

avascular tissue, chondrocytes rely on diffusion of nutrients and metabolites from the articular  

surface [8]. Moreover, these cells function in a low oxygen environment with low metabolic turnover. 

They inherently contain low mitochondrial numbers [2]. The mechanosensitive chondrocytes are major 

contributors for ECM production and they provide the functional and mechanical ability to withstand 

compressional, tensile, and shear forces across the diarthrodial joints. 
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3. ECM Production and Its Regulation by Chondrocytes 

The main function of chondrocytes in the superficial and mid zone is to synthesize ECM composed 

of collagen type II, IX, and XI and proteoglycans. This ECM facilitates compressional and tensile 

forces across the diarthrodial joint [9,10]. Collagens are the most abundant macromolecules of the 

ECM, make up 60% of the dry weight of the cartilage, and provide tensile and shear strength to the 

tissue. Collagen also stabilizes the matrix. Collagen type II makes up 90%–95% of the collagen in 

ECM and forms fibrils and fibers interwoven with proteoglycan like aggrecans [10]. Collagens type IX 

and XI represent 5%–10% of the AC collagenous network and offer support for the collagen fibrilar 

crosslinking. Chondrocytes of the deep zone are terminally differentiated and actively synthesize 

collagen type X. Proteoglycans represent the second largest group of macromolecules and are heavily 

glycosylated protein monomers that resist compressional forces by swelling pressure due to their 

affinity to water across the articular joint [9]. These proteoglycans include aggrecan, decorin, biglycan, 

and fibromodulin. Aggrecans are the largest among the group [9,11]. Growth factors play a crucial role 

in controlling chondrogenesis by affecting MSCs differentiation to chondrocytes. They also influence 

chondrocytes to synthesize specific ECM proteins (Figure 1). The shift in expression of collagen type 

X by the chondrocytes also marks the regulation of proteolytic enzymes production. These enzymes 

aid in the clearing of the cartilage ECM and allow vascularization and calcification of tissue [10,12]. 

 

Figure 1. Organization of normal articular cartilage. Superficial, middle, and deep zones 

and their extracellular matrix is divided using different sections. Growth factors that 

control the chondrocyte function are divided based on the stage of chondrocyte lineage. 

In order to maintain the homeostasis of the ECM, the synthesis and degradation of the ECM must 

be fine-tuned. Damage to AC tissue leads to loss of its ECM, followed by chondrocytes secreting new 

ECM to repair the damage. Although, chondrocytes are the primary contributors of AC ECM 

secretion, their turnover rates are not balanced. Proteoglycan turnover is estimated to take up to 25 

years, while collagen half-life is estimated to range from several decades to 400 years [9,13]. 

Therefore, damages to the tissue can further play a role in the progression of slow degeneration of the 

tissue and elevate OA like conditions. 
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The composition of the ECM as well as the organization of chondrocytes and their response to 

external factors such as cytokines is dependent on the age of the tissue, however chondrocyte numbers 

remain unchanged [14]. In the course of aging, dissipation of chondrocytes in the superficial region is 

followed by an increase in the number of chondrocytes in the deep layers. Consequently the decrease 

in the hydration of the matrix results in an increased compressive stiffness. The age related decrease in 

the proteoglycan aggregate numbers within the ECM may be a result of proteolytic damage to the link 

proteins and glycosaminoglycan chains and increase in partially degraded hyaluronan without newly 

synthesized molecules [15–17]. Thus, increased mechanical forces exerted on the tissue further lead to 

subchondral tissue calcification [18,19]. These overall structural changes seen in the aging cartilage 

may just be another factor for the development of diseases, such as OA. 

4. Structural Changes in OA Cartilage 

OA is the most prevalent type of cartilage degenerative disease, the other being rheumatoid arthritis. 

OA results in progressive cartilage degradation characterized by the softening, fibrillation and erosions 

of the articular surface [20]. Breakdown of proteoglycans leads to a reduction in the compressive 

stiffness of the tissue that accelerates the rate of collagen loss [21]. In OA, besides cartilage erosion in 

subchondral bone, synovial fluid, and the synovial membrane also play a role in the progression of 

OA. Osteophyte formations, subchondral bone remodeling, and synovial membrane inflammation may 

further aid in cartilage tissue degradation. In early stages of OA, hypertrophic chondrocytes express 

collagen type X. This production marks the terminal differentiation of chondrocytes that regulates the 

expression of proteolytic enzymes like MMPs, and ADAMTS that degrade the proteoglycan and 

collagen network. Simultaneously, activation of transcriptional regulators such as Runt-Related 

Transcription Factor 2 (RUNX2) are known to induce terminal differentiation and enhance the 

expression of collagen type X and proteolytic enzymes that digest the AC ECM [22–24]. MMP-1 

(Collagenase-1) and MMP-13 (Collagenase-3) are the primary factors that lead to overall degradation 

of collagenous framework. MMP-3 (Stromelysin-1) and ADAMTS-4 (aggrecanase-1) degrade 

proteoglycans [25,26]. It is shown that MMP activities are controlled by physiologic activators such as 

cathepsin B and tissue inhibitors of MMPs (TIMPs) [27]. An imbalance between these factors is 

commonly seen in OA tissue. Repeated mechanical insult to AC enhances MMP production and 

enhances cartilage matrix breakdown, [28,29]. These deleterious effects are pronounced in the 

superficial region of AC [30]. However, the process that regulates the production of proteolytic 

enzymes still remains unclear [30]. 

Inflammatory cytokines, such as IL-1β, TNF-α, and IL-6, are known to be upregulated during OA 

progression [4]. These inflammatory cytokines are secreted by chondrocytes and synoviocytes. They 

play a role in the disruption of cartilage homeostasis, and MMP mediated cartilage degradation [4,31] 

modulating the chondrocyte metabolism by increasing MMP expression and inhibiting the production 

of MMP inhibitors [27]. IL-1β mediated TNF-α expression has been shown to regulate IL-6 production 

and nuclear factor-κβ (NF-κβ) dependent transcriptional expression of Hypoxia-inducible factor 2α 

(HIF-2α) drive the processes that may further enhance AC destruction [32–37]. OA induced cartilage 

damage follows a myriad of cascades that once activated result in an irreversible damage to the tissue. 

Chondrocytes recognize the loss of ECM and actively produce collagen type II and proteoglycans. 
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However, the ratio between the ECM protein production to proteolytic enzyme production is 

imbalanced and results in complete loss of cartilaginous tissue overtime. Moreover, cellular attempts to 

repair the tissue results in aberrant osteoblast like differentiation forming osteophytes or fibroblastic 

differentiation inducing fibrosis or stiffening of the joints [38–40]. 

5. OA Induced Osteophyte Formation and Fibrosis 

OA pathology shows chondro/osteophyte formation and sclerosis of subchondral bone [39].  

In addition synovitis is a common occurrence in OA, which involves osteophyte formation at the 

junction of periosteum and synovium [20,41–43]. Commonly osteophyte development is caused by 

MSCs near the periosteum as a form of repair mechanism to help stabilize the joints [20,41]. The 

increase in endogenous MSCs recruitment and chondrogenic differentiation in the damaged cartilage 

can be seen as a form of tissue repair and regeneration [44]. However, in this process aberrant 

expression of growth factors, such as Transforming Growth Factor β (TGF-β), BMP-2 and 

upregulation of other inflammatory responses, might leads to chondrocyte hypertrophy/apoptosis and 

osteophyte formation [45,46]. The mechanisms that control this activity remain unknown. 

Macrophages from the synovial lining enhance the inflammatory response and the cartilage damage. 

These synovial macrophages induce both anabolic and catabolic processes. Macrophages initiate these 

processes by secreting growth factors such as TGF-β, and BMP-2 [47,48]. 

The development of osteophytes causes negative effects, such as pain and loss of movement.  

The osteophytes are composed of cells expressing procollagen type 1 and type IIA [38,41,49]. 

Simultaneously, the production of spontaneous nitric oxide by chondrocytes and chondrocyte death 

allows osteophyte formation [38]. 

Another important hallmark of OA along with cartilage degeneration, and osteophyte formation is 

fibrosis that results in joint pain and stiffness. It results from the imbalance induced by the growth 

factor activity regulating matrix synthesis and degradation. Two main factors contribute to this, TGF-β 

and Connective Tissue Growth Factor (CTGF) [50,51]. Fibrosis results in fibrin deposition within the 

synovium. It causes joint stiffness that is another symptom in the progression of OA in combination 

with osteophyte formation and degradation of the AC. The body’s attempts at cellular repair include 

the recruitment of chondroprogenitors from the surrounding MSC niche. However, MSCs ability for 

multi lineage differentiation makes this an arduous process. Moreover, MSC differentiation relies on 

the signaling factors that control the cell turnover. Signaling in OA cartilage may be a potential 

problem for treatments in the long term. 

6. Signaling in OA Cartilage 

AC development, growth, maintenance, and repair are controlled by several signaling factors that 

trigger multiple bioactive roles within the chondrocyte metabolism. The regulatory mechanisms of the 

growth factors are responsible for cartilage homeostasis. An imbalance between them is often noticed 

in OA cartilage. The activated signaling cascades involved in OA progression are TGF-β1, BMP2/4/7, 

Wnt5a, Insulin Growth Factor 1 (IGF-1), and Fibroblast Growth Factor 2 (FGF-2) [22,52–54]. TGF-β1 

together with BMP2/4/7, and IGF-1, contributes to cartilage formation and their mechanisms are 

extensively studied [5,55]. However, these anabolic growth factors are also catabolic in OA [24,56–58]. 
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Similarly, HIF, NF-κβ pathway, Mitogen-Activation Protein Kinase (MAPK) pathways may contribute 

to OA progression [34,59]. 

The effect of BMPs on chondrogenesis was demonstrated. BMPs function promote differentiation, 

proliferation, and maturation throughout the chondrocytes lineage [60]. While BMP7 enhanced 

chondrogenic activity, BMP2 also induces chondrocyte hypertrophy. This is remarkable since both 

factors signal through the same receptors. The BMP canonical Smad 1/5/8 pathway is a potent inducer 

of chondrocyte hypertrophy and endochondral ossification [61]. Therefore, other pathways within 

BMP signaling may be responsible for the diversity of effects. During OA, BMP2 mRNA levels are 

upregulated and followed by terminal differentiation of chondrocytes [62]. The terminal differentiation 

of chondrocytes enhances the secretion of collagen type X and MMP-13. During progression of OA, 

several chondrocytes within the cartilage tissue express BMPs. Enhanced BMP production may 

influence the MSCs present in the OA cartilage. BMPs may potentiate chondrogenic differentiation but 

may also initiate aberrant osteophyte formation as well as enhance proteolytic enzyme production for 

the acceleration of cartilage degradation [63]. Crosstalk between BMP, TGF-β and Wnt signaling 

pathways is known to regulate terminal differentiation of chondrocytes and the differential modulation 

between these signaling pathways could accelerate OA [64,65]. Wnt-16, Wnt-2B, and Wnt-induced 

signaling protein 1 (WISP-1) are expressed at high levels in OA, similar to the level of BMPs [66].  

BMP2-induced Wnt/β-catenin signaling enhances the low-density-lipoprotein receptor-related protein 

5 catabolic activity, followed by promoting hypertrophy in osteoarthritic chondrocytes.[57].  

Wnt/β-catenin negatively regulate NF-κβ and drive TGF-β/BMP signaling. This leads to enhanced 

expression of RUNX2 that enhances the expression of MMP-13, MMP3, and collagen type X [53]. 

This process drives chondrocyte hypertrophy and accelerates OA induced cartilage damage. Figure 2 

summarizes the pathways involved in OA progression. How or what causes these imbalances in these 

signaling cascades is not known. Moreover, the regulation of the crosstalk between the factors is not 

completely understood. 

 

Figure 2. Signaling cascades involved in Osteoarthritis. Red arrows indicate the primary 

signaling protein that regulate OA progression. The black arrows signify the activation of 

the proteins. The bars indicate inhibition of the proteins. 
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7. Mesenchymal Stem Cell Niche for Cartilage Repair 

During skeletal development chondrogenesis begins with mesenchymal cell recruitment, migration, 

and proliferation [58,67]. Condensation or aggregation of chondroprogenitor mesenchymal cells by  

cell–cell and cell–matrix interactions are associated with an increase in cell adhesion. This process can 

be measured by determining the levels of neural cadherin (N-cadherin), and neural cell adhesion 

molecule (N-CAM) [68]. Multiple growth factors, such as TGF-β, BMPs, FGFs, and Wnts, control the 

limb patterning for the development of AC of the epiphyseal plates and endochondral ossification of 

the metaphyseal plates [69]. 

A typical injury to tissues results in multiphase wound healing. It involves different phases in the 

order of inflammation, proliferation, and maturation. Any damage to the cartilage may go unrepaired 

and result in post-traumatic OA progression. Chondrocyte cell senescence may be another factor 

contributing to improper healing of subsurface cartilage injuries in addition to the lack of progenitor 

cells surrounding the tissue area [70]. Furthermore, the dense pericellular matrix (chondrons) 

surrounding the chondrocytes makes migration a challenging process. Cartilagenous ECM is 

constantly under pressure due to the swelling nature of the tissue and high tensile collagen network 

reinforcing it. This makes it even harder for chondrocytes to achieve the cellular motion within the 

tissue [71–73]. Although this process was identified in vitro, it is still difficult to gauge the 

chondrocytes capacity to migrate to the site of injury in vivo [73]. In a study by Kouri et al, OA tissue 

of fibrillar and non-fibrillar regions exhibited cell clustering effect. The cells proliferated and clustered 

in the regions of damage [74]. The study also demonstrated changes in the cytoskeletal arrangement by 

the presence of abundant filopodia and primary cilium. These data suggest the possibility of active 

movement of chondrocytes to areas of damage. Moreover, a recent study suggests that chondrocytes or 

chondroprogenitors migrate to the site of injury and repair the injury by synthesizing the lost ECM [73]. 

For this movement cells may remove the surrounding ECM by expressing proteolytic enzymes, and 

utilizing amoeboid locomotion [73]. Another study describes the differentiation and recruitment of 

chondroprogenitors through the synovial mesenchymal stem cell niche for cartilage repair [75,76]. 

Synovial cells plated on BMP coated plates differentiated into chondrocytes [77]. This suggests the 

influence of growth factors such as TGF-β/BMPs on synovial cells. These factors may induce the 

differentiation and migration of synovial stem cells to AC as an attempt to repair damaged cartilage 

tissue in OA [78]. Moreover, autologous synovial fluid was utilized to expand MSCs in tissue culture 

of synovium from OA patients [78]. There is also evidence that a progenitor cell population resides in 

the regions of synovial cavities, perichondrial Groove of Ranvier and in the infrapatellar fat pad [79–81]. 

Researchers demonstrated the presence of the known stem cell markers Stro-1, and Jagged-1 in the 

perichondrial Groove of Ranvier and also Stro-1, and BMPRIa in significant portion of the superficial 

zone of AC in three-month-old New Zealand white rabbits [79]. Furthermore, isolated stem cells from 

the infrapatellar fat pads and from the synovium regions demonstrated superior chondrogenic potential 

compared to that of mesenchymal stem cells derived from the bone marrow tissue [82,83]. 

Interestingly, cell populations that are expressing the stem cell markers such as Notch-1, Stro-1, and 

VCAM-1 were found to have increased expression in the superficial zone of OA cartilage than 

compared to the middle or the deep zone of AC [84]. These findings suggest the contribution of 

endogenous progenitors in synovium and infrapatellar fat pads for the renewal of AC. 
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8. Mesenchymal Stem Cell Therapy for OA Cartilage Repair 

Current research aims to utilize cell-based therapies to reverse cartilage loss. These MSCs are 

isolated from bone marrow, adipose tissue, placenta, and umbilical cord. The ability of these MSCs to 

form cartilage is under rigorous investigation [85]. No specific markers have been identified for 

detecting MSCs populations. However, the International Society of Cell Therapy along with 

researchers have defined a few markers to distinguish stromal cells (CD73, CD105, CD109, etc.) from 

hematopoietic stem cell (CD45, Cd34, CD14, Cd19, CD11b, HLADR, etc.) (Table 1) [3,86,87]. 

Without a proper marker to identify the MSC populations it is difficult to study the biological 

properties of these cells. Although, bone marrow stromal cells (BMSCs) are known to differentiate 

into chondrocytes, adipocytes, and osteocytes controlling their fate of differentiation is a feat on its 

own [88,89]. Several models have shown that the quality of cartilage produced by BMSCs is 

equivalent compared to that using chondrocytes [90]. Other research uses scaffolds from several 

biomaterials, such as poly-lactic-co-glycolic acid sponge or fibrin gels, along with TGF-β1 and 

BMSCs [91]. These biomaterials demonstrated satisfactory cartilage tissue restoration among various 

other synthetic and natural scaffolds used for cartilage repair treatment [92]. Therefore, appropriate 

biomaterials and scaffolds may be necessary for the controlled differentiation of BMSCs for cartilage 

restoration. Several factors have to be considered for the treatment of BMSCs for the cartilage 

restoration. These include unwanted differentiation of cell fate influenced by the environmental factors 

that are present in persisting pathological condition. In practice, implants are still expensive, labor 

intensive and the transplants need to be cell source transplants that need to be placed in a suboptimal 

environment. Placing the implant in a wound or scar may provoke innate immunity that can hamper 

cell survival [93]. Fine tuning of this process requires a greater knowledge of the environmental 

influence on the cells of the patellar cavity and in AC. Therefore, it is important to study the long term 

effects of the cell based therapies in patients suffering from OA. 

Table 1. Isolation potential of adult stem cell sources depending on the site specific areas 

of the patellar cavity. 

Tissue Specific Progenitor Cells 

Tissue Source Pros Cons 
Tissue Specific Cell  

Surface Markers 
References 

Bone Marrow 

Can differentiate in to 

adipocytes, osteoblasts,  

and chondrocytes.  

High chondroprogenitor 

populations. High  

expansion potential 

Heterogeneous 

population of cells. 

Invasive procedure  

to harvest 

CD105, CD73, CD45, 

CD109, CD44, CD90, 

CD271, CD14, CD19, 

CD11b, CD13, CD166, 

CD146, CD34, SSEA-4,  

and HLADR 

[3,86,87,94] 

Synovium/synovial 

Fluid 

Superior chondrogenic 

potential., regardless of 

donor age. High  

expansion potential 

Heterogeneous 

populations of cells 

CD105, CD73, CD44, CD90, 

CD271, CD13, CD166 
[3,95–97] 

Infrapatellar Fat Pad 

Superior source of 

progenitor cells  

for chondrogenic 

differentiation potential 

Early senescence, 

differentiation 

capacity to  

other tissues 

CD105, CD73, CD44, 

CD166, D271, CD13, CD90, 

CD34, CD45, CD31, VEGF-2 

[3,95,98,99] 
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9. Conclusions 

OA pathophysiology features loss of AC through the loss of cartilaginous ECM and the cells that 

are embedded in it. Chondrocytes are relatively inert cells with insufficient regenerative capacity. 

Overexpression of proteolytic enzymes including MMPs, ADAMTS further degrade the diseased 

cartilage. Common practice for mild OA treatments include using physiotherapy, and pharmacologic 

agents to reduce pain and inflammation. As the disease progresses intra-articular steroids or hyaluronic 

acid administration is the common practice [100]. However, while the patients experience temporary 

relief, its short lived and its effectiveness is debatable. In advanced cases of OA progression knee 

replacements are common [87,101]. 

Although, the causes for the degenerative disorders like OA are still unknown. MSC niche 

identification allowed us to understand the interactions between damaged cartilage and synovium. It 

also helps to identify their potential role in cartilage damage repair. Similarly, how the signaling 

cascades of TGFβ, BMP, Wnts, and FGF help in cartilage formation should be determined and utilized 

to retard or reverse the progression of OA. Cell-based MSC therapies for cartilage restoration made 

noteworthy progress. Regenerating a significant portion of the cartilage in OA alleviates pain. 

However, this process has not yet been studied in long-term cases. Moreover, cartilage formed by 

artificial MSC grafts has not been studied in detail for its mechanical properties. It may be a possible 

that OA-like conditions may resurface in the long term. While this process has made progress for 

treating OA patients, it is still unclear how these MSC graft therapy compare to the native cartilage in 

terms of its structure and functional longevity. There are still many questions to be answered. There 

are no drugs today that can stop or reverse the process. Therefore, a great deal of work is still needed 

to understand this degenerative disease, and for the development of therapeutics to stop the progression 

of OA. 
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