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Abstract: All Hedgehog (Hh) proteins signal from producing cells to distant receiving cells despite
being synthesized as N-and C-terminally lipidated, membrane-tethered molecules. To explain this
paradoxical situation, over the past 15 years, several hypotheses have been postulated that tie directly
into this property, such as Hh transport on cellular extensions called cytonemes or on secreted vesicles
called lipophorins and exosomes. The alternative situation that tight membrane association merely
serves to prevent unregulated Hh solubilization has been addressed by biochemical and structural
studies suggesting Hh extraction from the membrane or proteolytic Hh release. While some of these
models may act in different organisms, tissues or developmental programs, others may act together
to specify Hh short- and long-range signaling in the same tissues. To test and rank these possibilities,
we here review major models of Hh release and transport and hypothesize that the (bio)chemical and
physical properties of firmly established, homologous, and functionally essential biochemical Hh
modifications are adapted to specify and determine interdependent steps of Hh release, transport and
signaling, while ruling out other steps. This is also described by the term “congruence”, meaning that
the logical combination of biochemical Hh modifications can reveal their true functional implications.
This combined approach reveals potential links between models of Hh release and transport that were
previously regarded as unrelated, thereby expanding our view of how Hhs can steer development in
a simple, yet extremely versatile, manner.
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1. Hedgehog (Hh) Proteins: Extensively Post-Translationally Modified Signals

Cellular communication is essential in multicellular organisms to coordinate both development
and homeostasis in adult life. To this end, the signalling cell often releases soluble molecules that travel
to and bind to receptors expressed by the target cell. Subsequent intracellular signal transmission
requires sequential interactions between ligand-activated cell-surface receptors, adaptors, proteins
of the signal transduction cascade and transcription factors. Most of these intracellular proteins
are switched on or off by post-translational protein modifications (PTMs), such as phosphorylation,
lipidation and proteolytic processing or degradation, but also by association with other proteins and
thereby compartmentalization within cells. Events in the extracellular matrix (ECM) that regulate the
release and transport of signalling molecules have also become recognized as important regulators
of cellular communication. The Hedgehog (Hh) family is one important example of extracellular
signalling molecules that undergo several PTMs during biosynthesis [1]. The most important Hh PTM
is conserved dual lipidation, which firmly tethers Hh molecules to the outer membrane leaflet of the cell
that produces them. Lipidation is also essential for Hh signalling to its receptor Patched (Ptc) on target
cells over both short (2–3 cell diameters in the Drosophila melanogaster wing disc) and long distances
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(up to 12–15 cell diameters in wing discs and vertebrate tissues such as the developing neural tube
and developing limbs) [2–5]. Over the past two decades, genetic, biochemical and advanced imaging
techniques have been extensively used to resolve the paradoxical situation that an insoluble lipidated
molecule can travel to target cells at significant distances from its source, where post-translational
lipidation normally restricts protein movement. In this review, we use the problem-solving principle
of parsimony, or Occam’s razor, to discuss these obtained major models of Hh release and transport.
Occam’s razor originally stated: “Plurality should not be posited without necessity”, i.e., exclude
concepts, variables or constructs that are not needed to explain a phenomenon. An important condition
in the Occam’s razor concept is that the remaining explanations must strictly accommodate all available
evidence: An explanation is to be dismissed if it fails to account for the established evidence and, among
those explanations that are in agreement with the evidence, Occam’s razor favours the “simpler” one,
i.e., the explanation requiring the fewest leaps of logic. Although we find that no single model fulfils
these criteria completely, their combination can. This provides new hypotheses for future exploration.

2. Conserved Post-Translational Hh Lipidation

Hhs were discovered more than 35 years ago in a screen for genes involved in the developmental
segmentation of Drosophila embryos [6]. In vertebrates, three orthologues were identified: Sonic
hedgehog (Shh), Indian hedgehog (Ihh) and Desert hedgehog (Dhh). These proteins differ primarily in
their tissue distribution. Shh is expressed in epithelia and in the developing nervous system [7,8] as
well as in the thymic stroma and foetal liver to regulate lymphocyte development [9–11] (summarized
in [12]). Ihh is expressed in the developing bone [13] and during T-cell development in foetal and
adult thymus [14] as well as during T-cell receptor activation of naïve CD8 cells and cytotoxic T
lymphocytes [15]. Dhh is expressed in the mouse spleen to regulate multiple stages of erythrocyte
differentiation [16] and in the peripheral nervous system and reproductive organs [17] to regulate their
function by localized signalling [18]. Because of its widespread distribution and expression in three
key signalling centres in vertebrate embryos (the notochord, the floor plate and the zone of polarizing
activity), Shh is the most extensively studied vertebrate Hh family member. Yet, all Hhs activate the
same conserved signalling pathway downstream of Ptc receptors to regulate embryonic patterning
in vertebrate and invertebrate embryos [19,20], as well as stem and progenitor cell populations in
the adult [21,22]. Shh misexpression leads to several forms of cancer [23], and loss of Shh function
causes developmental midline defects in mice, chicks and humans [24–27]. Notably, multiple Hh PTMs
contribute significantly to these Hh functions.

Hh PTMs start in the endoplasmic reticulum (ER) with the removal of the signal sequence.
The resulting ~45 kDa pro-proteins consist of an N-terminal signalling domain that starts with
a cysteine (C24 in human nomenclature, C25 in mouse, C85 in Drosophila) and a C-terminal
autoprocessing/cholesterol transferase domain (called HhC/ShhC [28]) (Figure 1A). In a reaction
analogous to intein-mediated protein splicing, ShhC amino acid C198 (human nomenclature,
corresponding to C258 in Drosophila HhC) undergoes an acyl rearrangement (replacement of a peptide
bond with a thioester bond) followed by a transesterification reaction (attack of the thioester bond
by the hydroxyl group of a cholesterol moiety) (Figure 1B). This unique reaction covalently couples
cholesterol to the C-terminus of the N-terminal signalling domain and simultaneously splits the
~45-kDa pro-protein at the cholesteroylation site [29] (Figure 1B,C). The sole known role of HhC is to
catalyse this reaction, consistent with its high sequence similarity to inteins [30]. Therefore, HhC has
redirected the ability of inteins to ligate flanking peptides to the quantitative covalent ligation of HhN
peptides with cholesterol [31].
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Figure 1. Biosynthesis and release models of dual-lipidated Hh, using vertebrate Shh as an example. 
The 45 kDa ShhNC precursors are secreted into the ER and their signal sequence is processed (A). 
This is followed by cholesterol esterification of the C-terminal peptide by intein-related 
autoprocessing/cholesterol esterification (B,C). Subsequent palmitoylation of N-terminal peptides is 
catalysed by Hhat. This generates bioactive dual-lipidated Shh (D). After export to the cell surface, 
Shh firmly tethers to the outer membrane leaflet of the plasma membrane (E) and generates large 
clusters (F), using cell-surface-associated HSPGs as scaffolds (not shown for clarity). Crystal lattice 
interactions, biochemical assays and in vitro cell culture assays suggested that N-terminal peptides of 
one molecule in the cluster block Ptc receptor binding sites (red) of its neighbour, rendering the 
molecule inactive. Several Shh release mechanisms have been proposed: direct, Scube2-mediated 
cholesterol extraction from the membrane (G), proteolytic processing of both lipidated peptides (H), 
micelle formation (K) or Hh piggybacking on exosomes or lipoprotein particles and transport on 
extended, filopodia-like structures called cytonemes (L). Note that one way to explain strongly 
reduced bioactivity of non-palmitoylated Shh is that proteolytic processing of Shh N-termini is 
impaired during release, resulting in soluble clusters with their receptor binding sites still blocked 
(F’,I). Proteolytic processing, in contrast, reverses the Ptc blockade by N-terminal peptides in the 
cluster (J) and thereby activates the protein. The Scube2-assisted in vitro conversion of inactive 
unprocessed Shh into truncated fully bioactive Shh supported this mechanism (F–H). I, J: Tetrameric 
Shh crystal lattice interactions as part of a larger extended structure are shown. P: palmitate, C: 
cholesterol. 

As a consequence of mechanistically coupled Hh cholesteroylation/autoprocessing, Hhs are the 
only known proteins secreted as C-cholesteroylated 19 kDa proteins, and mutations that prevent this 
reaction result in severe developmental defects [26,32]. Unlike the C-terminal autoprocessing domain 
that is rapidly removed by ER-associated degradation, the cholesteroylated signalling domain 
undergoes a second post-translational lipidation, called N-palmitoylation, at the amino terminus of 
the most N-terminal conserved cysteine [33] (Figure 1B,D). This irreversible attachment of the 16-
carbon fatty acid palmitate requires the enzymatic activity of a separate enzyme, called Hedgehog 
acyltransferase (Hhat in mammals or Ski in Drosophila melanogaster) [34,35]. The resulting dual-
lipidated Hh protein is secreted onto the cell surface (Figure 1E) and locates to sterol-rich membrane 
microdomains, also called lipid rafts [36]. Although C-terminal cholesteroylation [37] and 
palmitoylation [38,39] are expected to tightly anchor the protein to cell membranes, dual-lipidated 
Hh is highly bioactive at both short and long ranges, and both lipids affect Hh transport and 
signalling activity but in different manners. Engineered HhN that lacks cholesterol is bioactive and 
is efficiently secreted from the producing cell in vitro [40–43], but when expressed in vivo, it fails to 
concentrate near the HhN-secreting cells and travels too far from the source of secretion, resulting in 

Figure 1. Biosynthesis and release models of dual-lipidated Hh, using vertebrate Shh as an example.
The 45 kDa ShhNC precursors are secreted into the ER and their signal sequence is processed (A). This is
followed by cholesterol esterification of the C-terminal peptide by intein-related autoprocessing/cholesterol
esterification (B,C). Subsequent palmitoylation of N-terminal peptides is catalysed by Hhat. This generates
bioactive dual-lipidated Shh (D). After export to the cell surface, Shh firmly tethers to the outer membrane
leaflet of the plasma membrane (E) and generates large clusters (F), using cell-surface-associated HSPGs
as scaffolds (not shown for clarity). Crystal lattice interactions, biochemical assays and in vitro cell culture
assays suggested that N-terminal peptides of one molecule in the cluster block Ptc receptor binding
sites (red) of its neighbour, rendering the molecule inactive. Several Shh release mechanisms have been
proposed: direct, Scube2-mediated cholesterol extraction from the membrane (G), proteolytic processing of
both lipidated peptides (H), micelle formation (K) or Hh piggybacking on exosomes or lipoprotein particles
and transport on extended, filopodia-like structures called cytonemes (L). Note that one way to explain
strongly reduced bioactivity of non-palmitoylated Shh is that proteolytic processing of Shh N-termini is
impaired during release, resulting in soluble clusters with their receptor binding sites still blocked (F’,I).
Proteolytic processing, in contrast, reverses the Ptc blockade by N-terminal peptides in the cluster (J)
and thereby activates the protein. The Scube2-assisted in vitro conversion of inactive unprocessed Shh
into truncated fully bioactive Shh supported this mechanism (F–H). I, J: Tetrameric Shh crystal lattice
interactions as part of a larger extended structure are shown. P: palmitate, C: cholesterol.

As a consequence of mechanistically coupled Hh cholesteroylation/autoprocessing, Hhs are the
only known proteins secreted as C-cholesteroylated 19 kDa proteins, and mutations that prevent
this reaction result in severe developmental defects [26,32]. Unlike the C-terminal autoprocessing
domain that is rapidly removed by ER-associated degradation, the cholesteroylated signalling
domain undergoes a second post-translational lipidation, called N-palmitoylation, at the amino
terminus of the most N-terminal conserved cysteine [33] (Figure 1B,D). This irreversible attachment
of the 16-carbon fatty acid palmitate requires the enzymatic activity of a separate enzyme, called
Hedgehog acyltransferase (Hhat in mammals or Ski in Drosophila melanogaster) [34,35]. The resulting
dual-lipidated Hh protein is secreted onto the cell surface (Figure 1E) and locates to sterol-rich
membrane microdomains, also called lipid rafts [36]. Although C-terminal cholesteroylation [37] and
palmitoylation [38,39] are expected to tightly anchor the protein to cell membranes, dual-lipidated
Hh is highly bioactive at both short and long ranges, and both lipids affect Hh transport and
signalling activity but in different manners. Engineered HhN that lacks cholesterol is bioactive
and is efficiently secreted from the producing cell in vitro [40–43], but when expressed in vivo,
it fails to concentrate near the HhN-secreting cells and travels too far from the source of secretion,
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resulting in aberrant tissue patterning [32,41,44,45]. This suggests that rather than regulating the
affinity of Hh proteins for their Ptc receptors, cholesterol restricts Hh movement through tissues [32].
By contrast, N-palmitoylation regulates Hh bioactivity [33,43,46–48]. In cultured cells that express the
Hh receptor Ptc, the dual-lipidated protein is 30–800 times as active as non-palmitoylated Shh [33,49],
and non-palmitoylated Drosophila Hh is completely inactive in vivo [42,50]. In vivo, N-palmitate in
vertebrates seems to be less important: Ectopic overexpression of non-palmitoylated Shh in the mouse
induces significant gain-of-function phenotypes [46,47,50], and loss of palmitoylase activity in Hhat
mutants causes defects that are characteristic of defective Shh signalling, yet are less severe than Shh
loss-of-function phenotypes [46]. Several models have been proposed to explain the various effects
of dual Hh lipidation on its function. One broadly accepted idea is that Hh lipidation is essential for
membrane association, which is a prerequisite for subsequent Hh interaction with factors required for
its regulated transport.

3. Hh Lipidation as a Prerequisite for Cell-Autonomous Hh Interactions at the Cell Surface

One firmly established accessory protein that interacts with lipidated Hh at its site of secretion
is the transmembrane protein Dispatched (Disp) [51]. Mice and flies deficient in Disp synthesize
Shh/Hh but fail to release the protein from the surface of producing cells, resulting in developmental
phenotypes similar to those seen in Shh/Hh knockouts [51,52]. Consistent with Disp containing
a sterol-sensing domain, it releases cholesterol-modified Shh but is not required for the secretion of
genetically engineered ShhN variants that lack C-cholesterol [51]. This indicates that in addition to
firmly tethering Hh to the membrane of the cell, C-cholesterol may be involved in Hh solubilization
by Disp. To date, however, the subcellular localization and exact mode of Disp function is not clear,
in part because Disp alone is insufficient to solubilize Shh [53]. This finding suggests that cofactors are
required to form a functional Hh release complex at the cell surface.

One such group of cofactors are the cell-surface heparan sulfate (HS) proteoglycans (HSPGs) of the
glypican family. Glypican HSPGs are composed of a glycosylphosphatidyl-inositol (GPI)-linked protein
core to which varying numbers of linear glycosaminoglycan chains are covalently attached. Mutations
in genes required for the biosynthesis of cell-surface-associated glypican core proteins and HS chains
severely attenuate Hh signalling in vivo [54–56]. Two established HSPG functions may explain
attenuated Hh signalling: First, HSPGs act as scaffolds for the assembly of large, light microscopically
visible Hh clusters at the cell surface [57,58] (Figure 1F) that are up to 50-fold more potent than
monomeric HhN in activating biological responses [46]. Second, cell clones deficient in the HSPG
biosynthetic or modifying genes tout-velu (required for biosynthesis of the HS glycosaminoglycan
backbone) and sulfateless (required for HS sulfation) completely block Hh transport to receiving cells
in Drosophila wing discs [54], and HSPG-modifying sulfatase enzymes (that selectively desulfate HS)
also modulate Hh transport [59,60]. These observations indicate that HSPGs are essential direct or
indirect mediators of Hh multimerization and transport that act up to 50 µm from the Hh source in
Drosophila imaginal wing discs and up to 300 µm from the source in vertebrate limbs [5].

4. Hh Lipidation as a Prerequisite for Cell-Non-Autonomous Hh Interactions
with Soluble Molecules

In addition to cell-autonomous Disp and HSPG functions, several cell-non-autonomous
mechanisms help release Shh from the surface of vertebrate cells. One example of Shh release factors
that act in trans are the secreted Scube (Signal peptide, CUB-EGF-like domain containing protein)
glycoprotein homologues 1–3. Scube1 is highly expressed in liver, lung and brain [61], while Scube2
is more broadly expressed [62], and Scube3 is expressed in bones and osteoblasts [63]. Despite
the differential expression of Scube1–3, their structural topology is highly conserved, suggesting
a similar function. All Scube homologues consist of nine N-terminal epidermal growth factor
(EGF)-like domains, followed by a spacer region, three cysteine-rich domains and a C-terminal CUB
domain [64–66]. In vivo, Scube functions were revealed in a functional screen for Hh-related (you-class)
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phenotypes in the zebra fish, “sonic you” representing Shh in this species [66,67]. Morpholino
(MO)-mediated knockdown of Scube2 activity in the zebra fish embryo leads to mild defects in
Hh signalling [64], and the simultaneous knockdown of all three Scube homologues completely
abrogates Hh signalling [68]. Finally, recombinant Scube2 was found to increase Shh release from
the surface of producing cells by about ten-fold [64–66,69], an activity for which the CUB domain is
required in vitro [53,70,71] and in vivo [72]. Another region essential for Scube-mediated Shh release
is the spacer region [62], which specifically binds physiological HS and thereby co-localizes the Scube2
release factor with the HSPG-associated Shh substrate at the cell surface [73,74].

5. Proposed Model of Direct Disp- and Scube2-Mediated Shh Extraction from the Producing Cell

How can Scube2 CUB domain-dependent Shh solubilisation from the cell surface be mechanistically
explained? One idea is that the release of dual-lipidated, and thus hydrophobic, Shh into the
hydrophilic extracellular environment requires Shh extraction from the membrane and subsequent
lipid sequestration to permit transport. One recent model proposed transfer of membrane-associated
Shh to soluble Scube2 via Disp and suggested that cholesterol modification is sufficient to drive
this interaction [53]. Scube2 then continues to “chaperone” the extracted cholesterol away from the
aqueous environment to transport Shh to the receiving cell [53] (Figure 1G). Another study showed
that Scube2 solubilizes dual-lipidated Shh from cultured cells or purified detergent-resistant membrane
microdomains and that Shh solubilisation is enhanced by the palmitate adduct and by Disp [70].
Both studies confirm the essential role of the Scube2 CUB domain in Shh release, possibly by cholesterol
sequestration [53], which suggests a mechanism for lipid-modified Shh signalling at distal sites,
in agreement with established protein transport modes [39]. The proposed model explains the essential
signalling function of N-palmitate by its continued exposure during Scube2/Shh transport to allow for
its subsequent direct interaction with the Hh receptor Ptc [75].

This model generates several predictions that can be assessed for their congruence with established
properties of Hh PTMs. The first prediction is that Scube2-mediated Hh extraction can occur despite
being highly endergonic. The removal of a single cholesterol from a lipid bilayer requires approximately
82 kJ/mol [76,77]. Hence, the extraction of cholesteroylated Hh hexamers would require 6 × 82 kJ/mol
(approximately 500 kJ/mol), and approximately 1.6 MJ/mol would be required to extract average-sized
400-kDa Hh clusters from the cell surface [58]. These thermodynamic constraints, together with
the lack of extracellular energy donors that could theoretically drive the process, make protein
solubilisation through extraction unlikely. The other possibility, that Disp consumes intracellular ATP
to extract and hand over Shh to Scube2, is ruled out by reported Disp-independent Shh release [53] and
Scube2-enhanced Shh release in cell-free systems [70]. The second prediction is that the N-palmitate
of membrane-associated Hh clusters [46,78,79] (Figure 1F) does not prevent Hh solubilisation, which,
however, is not in line with its hydrophobicity and established membrane association [38,80]. The third
prediction—that N-palmitate plays a direct role in receptor binding [75]—is at odds with largely
unimpaired signalling of Hh variants that were N-terminally linked to a variety of long-chain fatty
acids or hydrophobic amino acids [48,81], as these will not bind to Ptc. Finally, and most importantly,
the lack of Scube orthologues in Drosophila suggests completely different mechanisms of Hh release in
vertebrates and invertebrates, despite otherwise similar signalling modes. Therefore, the proposed
model of direct Shh extraction makes a number of assumptions about the roles of Hh PTMs, especially
its dual lipidations, and does not account for thermodynamic constraints of Hh multimer extraction
from the membrane (Table 1).
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Table 1. Summary of proposed models of Hh release and transport (top) and their compatibility with
established biochemical properties of Hh proteins and CUB-domain functions (left). −: incompatible.
?: unknown; +: compatible. Note that combined cytoneme Hh transport to target tissues and proteolytic
Hh release at these sites is consistent with, and explains, dual Hh lipidation and membrane association,
established Scube2 CUB-domain functions as protease enhancers, the essential yet variable role of
N-palmitate for Hh biofunction, differential Hh short- and long-range transport to Ptc-receptors on
target cells, and the essential roles of HSPGs in Hh-producing (Shedding) and -receiving (Cytonemes)
cells. See text for details.

Hh Cholesterol
Extraction by

Scube2

Scube2-Regulated
Hh Shedding

Micelle,
Lipoprotein,
and Exosome

Transport

Model of Hh
Transport Via

Cytonemes

Dual Hh membrane
association and
multimerization

−
Problem: Energy
required for Hh
release from
membrane

+
No energy
required, general
release mechanism
in ECM

−
Problem: Energy
required for Hh
release from
membrane

−
Problem: required
Hh transfer at the
cytoneme synapse

Established
CUB-domain functions,
exergonic Hh release

?
CUB
binding/extraction
of cholesterol
endergonic

+
CUBs are
established
protease regulators

?
Not addressed

?
Not addressed

Variable role of
palmitate and
functionality of other
hydrophobic Hh
modifications

?
Not addressed

+
Processing of
lipidated termini
activates Hh, lipids
function indirectly
as membrane
tethers

?
Not addressed

?
Not addressed

Short-range and
long-range Hh
transport

−
Problem: Subsequent
diffusion-based
transport is not
sufficient

−
Problem:
Subsequent
diffusion-based
transport is not
sufficient

−
Problem:
Subsequent
diffusion-based
transport is not
sufficient

+
Regulated
transport,
no long-range
diffusion required

HSPGs in Hh release
and transport

?
Not addressed

+
Recruit Scube2 and
generate release
hubs (in producing
compartment)

+
Permissive
factors for Hh
transfer and
transport

+
Permissive factors
for cytoneme
extension
(in receiving
compartment)

6. Proposed Model of Indirect Scube2 Effects as Enhancers of Proteolytic Shh Processing
from the Surface of Producing Cells

An alternative indirect mechanism of Scube2 CUB domain-dependent Shh release is suggested by
the CUB acronym, which is derived from the complement serine proteinases C1r, C1s, MASP-1, MASP-2
and MASP-3; UEGF; and bone morphogenetic protein-1/tolloid metalloproteinases (consisting of
the four members BMP-1, mTLD, mTLL-1 and mTLL-2) [82]. The essential role of CUB domains in
these proteinases is to mediate specific protease/substrate complex assembly to promote regulated
substrate proteolysis [83]. Other examples of CUB-regulated proteolytic activators are the procollagen
C-proteinase enhancers (PCPEs), which stimulate C-terminal processing of fibrillar procollagens by
CUB domain-mediated binding to the substrate [82,84]. However, PCPEs are devoid of intrinsic
proteolytic activity, and instead function by changing the procollagen structure, which in turn results
in a ten-fold increase in tolloid proteinase binding and cleavage of the pro-domain [85]. Notably,
this activity is solely a property of the CUB domain [84,86]. Both PCPEs and Scube proteins strongly
bind to HSPGs [73,74,87], and polysulphated glycans super-stimulate PCPE-regulated proteolytic
procollagen processing [88] and Shh solubilisation [29,57]. Hence, it is possible that Scube2 CUB
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domains also act as protease activators for the regulated cleavage of both lipidated Shh termini from
the globular Shh signalling domain (Figure 1H). This activity would release the morphogen from the
cell surface as a prerequisite for its short- and long-range transport.

Indeed, both proteolytic Shh release from the surface of producing cells and Scube2-mediated
enhanced Shh processing have been reported [71,89–91]. These reports generate several predictions that
can be assessed for their congruence with established functions of Hh PTMs. The first prediction—that
Hh lipids tether the unprocessed protein to the cell membrane to restrict its spread until Hh release
is required—is fulfilled [33,92], and the role of Hh N-palmitate in the process is comparable to
that of the Drosophila EGF receptor ligand, Spitz. Here, the same acyltransferase that palmitoylates
Hh also palmitoylates N-terminal cysteine residue 29 of Spitz to promote its association with the
extracellular leaflet of the plasma membrane [93,94]. Because N-palmitoylation is resistant to all known
palmitoylate esterase activities [38,95], theoretical possibilities for solubilising Spitz are restricted to
proteolytic processing of its palmitoylated N-peptide. Consistent with this, the sequence of wild-type
soluble Spitz in vitro begins at methionine 45, whereas a palmitoylation-deficient mutant (SpitzC29S)
remains unprocessed, starting with serine 29 [93], as a consequence of its direct secretion from the cell.
Proteolytic Spitz release is also consistent with the unimpaired capacity of non-palmitoylated Spitz
to bind to and activate its receptor in vitro (reviewed by [96]), and its release from the membrane is
consistent with the reported solubilisation of the mammalian Spitz orthologue, transforming growth
factor-α by the cell-surface-associated protease ADAM17 [97].

Therefore, the second prediction is that proteolytically processed Hhs are also bioactive and
lack palmitoylated N-terminal peptides, as shown for Spitz. Indeed, N-terminally truncated soluble
and bioactive vertebrate Shh and invertebrate Hh have been described [91,92,98]. This finding,
however, seems to be at odds with the established essential role of N-palmitate for Hh biofunction,
as demonstrated by genetic Hhat inactivation [78,79] and site-directed mutagenesis of the conserved
palmitate acceptor cysteine [33,43]. A solution to this paradox came from the observation that
unprocessed N-terminal peptides block Ptc receptor binding sites of adjacent molecules in the
multimeric cluster (Figure 1F) and that their proteolytic removal exposes these sites to activate the
truncated protein [90,91] (Figure 1H). Because of its continued membrane association, the essential yet
indirect role of N-palmitate is to ensure that only fully processed Hh clusters are released from the cell
surface and are simultaneously primed for Ptc binding at the surface of target cells. As a consequence
of this mechanism, genetic or pharmaceutical inhibition of Hh palmitoylation results in the release
of N-terminally unprocessed proteins (similar to SpitzC29S secretion) with their Ptc binding sites still
blocked [90] (Figure 1F’). In contrast, by using a bicistronic Shh/Hhat co-expression system to enhance
otherwise low Shh N-palmitoylation to almost complete levels in vitro, soluble protein clusters lacked
almost all N-terminal peptides and were highly bioactive [71]. Coupled N-terminal Hh processing
and activation is supported by crystal lattice interactions observed in the protein database structure
3m1n [90,99] (Figure 1I). Here, unprocessed N-terminal extended peptides locate to the Hh binding site
for its receptor Ptc and the Hh inhibitory 5E1 antibody that binds to the same site [100–102] (Figure 1J).
Finally, and notably, Scube2-assisted removal of non-palmitoylated ShhC25A peptides restored Shh
biofunction in vitro [91]. This finding supports the suggestion that N-palmitate is not required for
direct Ptc binding and Hh signalling at the receiving cell and explains how non-palmitoylated ShhC25S

can retain significant inductive and patterning activity in vertebrate tissues in vivo, as described
previously [46,49,50,91] (Table 1).

The third prediction implied by proteolytic Hh cleavage—that thermodynamics restricts all
reactions in the ECM to exergonic modes, such as peptide cleavage—is also fulfilled. Proteolytic
Hh processing is thus in accordance with Occam’s razor in several ways: First, no unnecessary
assumptions need to be made about the mechanisms of Hh release from the membrane, its energy
requirements, and the role of CUB domains in the process, because Shh processing resembles that of
other lipidated proteins, such as Spitz and Wnt [103]. Virtually all proteins can be shed if they have
a globular domain at some distance from the cell membrane, and there is no reason to assume that
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Hh is an exception: Here, cholesterol tethers Hh to membranes [37] to prevent leakage and accidental
perturbation of the Hh pathway by non-lipidated bioactive HhN [32], and N-palmitate controls Hh
bioactivation. The congruence principle is also fulfilled because direct functional links exist between
quantitative Hh cholesteroylation (to tether all 19-kDa Hh to the plasma membrane), HSPG-assisted
Hh multimerization (which assembles and stores inactive Hh clusters and recruits Scubes for
their release [57,73]), Scube2 CUB domain-regulated proteolytic processing [91] and irreversible
Hh N-palmitoylation (making Hhs resistant to the alternative possibility of esterase-mediated
release [95,98]). Therefore, Hh lipidation, HSPG functions and Scube2-assisted proteolytic processing
can be combined without problems into one interdependent multi-step mechanism of Shh release and
activation. In further support of this combined mode, Chamberlain et al. reported that MβCD, a ringed
compound that extracts cholesterol from cell membranes, releases Shh and a green fluorescent protein
(GFP)-tagged Shh variant into the media of expressing cells [104]. Although the authors suggested
MβCD solubilisation of these proteins by direct extraction of the Shh cholesterol, this mechanism is
not in line with the molecular mechanism of MβCD cholesterol extraction [76,77]. MβCD association
with the membrane surface destabilizes the local packaging of cholesterol and favours cholesterol
uptake into the MβCD dimer, but only if MβCD is positioned right above the cholesterol. Such MβCD
positioning, however, is made impossible by the cholesterol-linked C-terminal Hh protein stalk that
blocks the site above the cholesterol. Instead, MβCD depletes membranes of free cholesterol, perturbs
lipid rafts, and thereby increases proteolytic protein processing at the membrane [105].

HSPG-modulated shedding also represents a useful model to explain functional links between
cell-surface HS biosynthesis and Hh bioactivation in lung [106], spinal cord [60] and fly wing [59]
development in vivo. Moreover, Scube2-regulated shedding provides an explanation for the
compensated loss of embryonic Hh function as a consequence of simultaneous knockdown of all
three Scube genes in triple MO embryos [68] by increased ligand expression. Shh mRNA injection
into Scube triple MO embryos rescued you-class phenotypes, and a moderate (four-fold) Shh mRNA
increase induced wild-type-like ectopic Shh target gene expression in these embryos [68]. These in vivo
observations are incompatible with direct Scube-mediated Shh extraction and continued association
during transport because any Scube1-3 extraction and transport blockade would not simply be bypassed
by increased amounts of ligand. By contrast, baseline Shh processing in the absence of Scube is
influenced by the frequency of random protease/substrate encounters that increase with increasing
concentrations of Shh ligand and protease. Scube enhancer function also explains the tissue-restricted
phenotypes in you-class zebrafish mutants [65] and in Scube-deficient mice [61,107], the lack of Scube
orthologues in Drosophila [53] and the CUB domain-independent release of Shh mutants made prone to
proteolytic processing [91]. Furthermore, the role of the N-terminal lipid—to anchor the unprocessed
protein to the cell surface, as opposed to a direct role in receptor binding [75]—explains why it can
be functionally replaced by a wide variety of hydrophobic residues ranging from long-chain fatty
acids to hydrophobic amino acids [48,81]. An important limitation to the model of proteolytic Hh
solubilisation, however, is that diffusive Hh transport is the only possibility to relay the released protein
from producing to receiving cells in vivo. Yet, timely and reliable paracrine Hh function through
extracellular diffusion is difficult to envision for two main reasons. First, patterning of folded epithelia,
such as Drosophila imaginal discs, poses a problem if Hh spreading were to occur out of the plane of the
epithelial cell layer through diffusion or flow. The second limitation is that it normally takes much time
for diffusing molecules to travel long distances away from the source because the timescale of diffusion
increases with the square of the distance [108–110] and is inversely correlated with protein size. Both
limitations, therefore, also apply to Hh that is permanently associated with soluble Scube2, as described
earlier, and to Hh linked to large lipid carriers, as described in the following section (Table 1).

7. Proposed Models of Micelle-, Lipophorin- and Membrane-Linked Hh Transport

Although Hh can be solubilized from expressing vertebrate cells in vitro, the majority of Hh
in Drosophila is found in vesicles in target cells, rather than at the producing cell surface or in the
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extracellular space [51,111]. This led to several independent models of carrier-dependent extracellular
Hh transport. One such model suggests that Hh “pinches off” the plasma membrane and forms
micelles to sequester their hydrophobic N- and C-terminal lipids away from the aqueous extracellular
environment [40] (Figure 1K). Another model suggests that Hh clusters at the cell surface, through their
interaction with glypican HSPGs, recruit and translocate to lipophorin particles (insect apolipoproteins).
Lipophorin particles contain various lipidated and GPI-linked proteins, such as Wingless, Hh and
glypican; they transport this cargo to target tissues and are endocytosed by the receiving cells [112,113].
More recently, several groups reported Hh transfer by microvesicles or exosomes [114–116]. These
vesicles are thought to be generated by plasma membrane budding or by fusion of multivesicular
bodies with the plasma membrane, which releases intraluminal vesicles into the extracellular space.
Evidence for this model also came from RNAi-mediated knockdown of proteins of the endosomal
sorting complex required for transport (ESCRT) in Hh-producing cells. Impaired ESCRT function
enhanced Hh accumulation at the apical cell surface and decreased long-range signalling in Drosophila
wing imaginal discs [116].

As in the previous models of Scube2-mediated Shh solubilisation, Hh transport on lipophilic
carriers generates testable predictions. The first prediction is that soluble Hh should always remain
unprocessed and form large multimers that are, because of their lipid content, less dense than water.
This prediction derives from, and is a strict consequence of, quantitative Hh cholesteroylation resulting
from its unique intein-related maturation, as described earlier. However, biochemical Hh analysis
provided ample (yet largely undiscussed) evidence for protein processing, as indicated by different Hh
molecular weight fractions on immunoblots [46,81,98,104,114,115,117] and the release of unlipidated
monomeric proteins, as judged from gel filtration data [46]. The second important prediction is that
general mechanisms of cell-surface protein internalization, sorting and trafficking must have specific
adjustments for reliable and robust Hh signalling: It seems unlikely that completely different proteins
with specific signalling function are all regulated by the same general mechanisms acting at the same
time on the same structures [112,113]. As one such specific adjustment, proposed ESCRT-regulated Hh
sorting and internalization for subsequent Hh recycling back to the apical [118,119] or basolateral [120]
cell surfaces normally requires cargo recognition via transmembrane and cytoplasmic domains.
However, lipid- and GPI-tethered Hh-HSPG clusters lack such domains, which makes the complex
“invisible” to the intracellular internalization and sorting machinery. This raises the question of how
the established interaction of ESCRT proteins with (ubiquitinylated) cytoplasmic tails is adjusted
for Hh internalization and trafficking [114–116] and of whether ESCRT proteins interact directly or
indirectly with Hh. Other studies showed that the endocytic motor dynamin is not required for Hh
transport [54] and that unlabelled Hh visualized by click chemistry in conjunction with proximity
ligation assay is not internalized in vitro, as demonstrated by the lack of Hh co-localization with the
early endosome marker Rab5a-GFP or the late endosome marker Rab7a-GFP [121]. The final possibility
that alternative dynamin-independent endocytosis pathways, such as the clathrin-independent
carrier/GPI-AP-enriched early endosomal compartment pathways [122], internalize cell-surface Hh
has not been demonstrated so far. We note that one caveat of the observed permanent association
of Hh with micelles, lipophorin or trafficking components may be the use of lipidated GFP tags for
detection, at least in part, because HhC/ShhC-catalysed GFP cholesteroylation conducted in many of
these studies is sufficient to permanently target the protein to cell membranes [123].

The basic concept underlying the most prominent model of lipidated Hh transport has been
introduced by the Kornberg group, who observed that thin, actin-based filopodia-like extensions carry
different signalling proteins over distances of up to several cell diameters in vivo [124,125] (Figure 1L).
These specialized extensions, called cytonemes, deliver their cargo to receptors on receiving cells at
cellular contacts called “cytoneme synapses” [126]. In larval imaginal wing discs, live cell imaging
revealed that cytonemes either emanate from the receiving compartment to take up GFP-labelled
Hh from producing cells [127] or from the producing compartment to deliver Hh-GFP to receiving
cells [114,128]. In vertebrates and invertebrates, GFP-tagged Hh is transported in the form of large,
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highly motile cytoneme-associated particles. Yet, because cytonemes represent very thin and highly
dynamic structures, it is not clear whether Hh-GFP localizes inside cytonemes or at their surface:
Vertebrate ShhN-GFP locates to the exterior of the cytoneme [129], although its fast anterograde and
retrograde movements strongly suggest intracellular transport by dynamin motors. Indeed, most
recently, intracellular dynamin-dependent transport has been demonstrated for intracellular Hh-GFP
vesicles in fly wing disc cytonemes [127].

Despite these ambiguities and despite the multiple steps required for Hh secretion,
reinternalization, sorting and transport to and by cytonemes, the cytoneme model fulfils Occam’s
razor in two important ways. First, no unnecessary assumptions need to be made about the energy
requirements of Hh transport and established lipid biochemistry. Lipids tether Hh to membranes
as a prerequisite for cytoneme transport to the receiving cell (Table 1). Second, most cytonemes are
impaired in their ability to cross a field of cells made deficient in HSPG expression, revealing a direct
functional link between Hh transport and HSPG expression [128]. One important restriction to the
model, however, is that non-physiological ShhN-GFP lacking C-cholesterol uses the same route as
described for the cholesteroylated protein [129] because cholesteroylated and non-cholesteroylated
proteins are both found in large particles within or on cytonemes. In contrast, non-cholesteroylated
and untagged Hh is usually monomeric and soluble [40,46]. The cytoneme model alone, therefore,
does not explain the functional role of Hh cholesteroylation in Hh biology. Further assumptions must
be made to address how, when and where cytoneme length and dynamic regulation is achieved as
a necessary prerequisite for specific and robust Hh transport. Finally, an explanation is needed about
how lipidated Hhs at cytoneme synapses “switch” between sending and receiving cytonemes, or from
sending cytonemes to their receptors on receiving cells [127,130].

One solution to the latter problem may come from a direct functional link between Hh lipidation
(and subsequent Hh membrane association for cytoneme-mediated transport) and proteolytic Hh
release and activation. In this combined mode, Hh processing relays the protein from the cytonemes of
producing cells [131] or exosomes [114,132] to the adjacent cytonemes of responding cells [128,129]
or to Ptc on the receiving cell surface [133]. Such a proteolytic Hh “relay” over short distances,
e.g., in the “cytoneme synapse”, would diminish inherent problems of long-range protein diffusion,
as described earlier. Indeed, the logical combination of Hh cytoneme transport to target tissues with
a subsequent proteolytic relay was recently indicated by impaired Ptc internalization and function
upon binding to irreversibly membrane-linked Hh-CD2 [130]. Hh processing at cytoneme synapses,
however, escapes detection by live cell imaging, and the described optimization of cloning protocols
for improved in vivo detection of Hh-GFP on membranes via truncation of terminal cholesteroylated
peptides [129] may have achieved this goal via impaired Hh processing, resulting in a situation as
described for Hh-CD2 [3,130]. Therefore, it is important to determine whether Hh tagging with bulky
cholesteroylated GFP can influence Hh PTMs such as HSPG association, multimerization and shedding,
and therefore Hh trafficking and function, in vivo.

8. Conclusion and Outlook

Occam’s razor admonishes us to choose the simplest from a set of models of a given phenomenon
that is in accordance with the evidence. Currently, none of the individual postulated concepts
accommodate all the available experimental evidence, but their combination can. We propose a working
model in which (Scube2-enhanced) proteolytic processing is preceded by membrane-linked Hh transport
to target cells. To support possible links between these models, we need to identify further congruencies
between them, ideally by using methods and constructs that expand and complement our current
knowledge of Hh release and transport. To this end, results obtained from the visualization of
Hh-GFP by advanced light microscopy could be tested biochemically and with untagged Hh proteins,
and biochemical studies and concepts of Hh processing await in vivo confirmation. The combined
model may also be tested for its ability to relay Hh in a reliable and robust manner over both, short and
long ranges in vertebrates and invertebrates. Finally, it may help determine whether model organisms
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using primary cilia for Hh reception, such as vertebrates, possibly modified cilia such as T-cells, or no
cilia such as Drosophila require different modes of Hh release and transport.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Hh Hedgehog
Shh Sonic hedgehog
HhC C-terminal autoprocessing/cholesterol transferase domain
Hh/Shh fully bioactive, dual-lipidated proteins

HhN/ShhN
non-cholesteroylated artificial forms of invertebrate Hh/vertebrate Shh due to deletion of
HhC/ShhC ShhC25S represent C-cholesteroylated, N-terminally unpalmitoylated protein

PTM posttranslational protein modification
ECM extracellular matrix
Ptc Patched
GPI glycosylphosphatidyl-inositol
ER endoplasmic reticulum
Disp Dispatched
Hhat Hedgehog acyltransferase, also called Ski (Skinny hedgehog)
EGF epidermal growth factor
Scube Signal sequence, cubulin domain, EGF-like growth factor domain
HS heparan sulfate
HSPG HS proteoglycan
PCPE procollagen C-proteinase enhancer
MO morpholino
GFP green fluorescent protein
ESCRT endosomal sorting complex required for transport
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