Coffey et al. Statistical details (One-way ANOVA: multiple comparisons)
Fig 1 D

Number of families	1							
Number of comparisons per family	15							
Alpha	0.05							
Tukey's multiple comparisons test	Mean Diff.	95.00\% Cl of diff.	Significant?	Summary	Adjusted P Value			
0\% EtOH vs. 0.5\% EtOH	0	-0.0761 to 0.0761	No	ns	>0.9999	A-B		
0\% EtOH vs. 1\% EtOH	0	-0.0761 to 0.0761	No	ns	>0.9999	A-C		
0\% EtOH vs. 1.5% EtOH	0	-0.0761 to 0.0761	No	ns	>0.9999	A-D		
0\% EtOH vs. 2\% EtOH	0.04348	-0.03262 to 0.1196	No	ns	0.5751	A-E		
0\% EtOH vs. $2.5 \% \mathrm{EtOH}$	0.8841	0.808 to 0.9602	Yes	...*	<0.0001	A-F		
0.5\% EtOH vs. 1% EtOH	0	-0.0761 to 0.0761	No	ns	>0.9999	B-C		
0.5\% EtOH vs. 1.5\% EtOH	0	-0.0761 to 0.0761	No	ns	>0.9999	B-D		
0.5\% EtOH vs. 2% EtOH	0.04348	-0.03262 to 0.1196	No	ns	0.5751	B-E		
0.5\% EtOH vs. 2.5\% EtOH	0.8841	0.808 to 0.9602	Yes	***	<0.0001	B-F		
1\% EtOH vs. 1.5\% EtOH	0	-0.0761 to 0.0761	No	ns	>0.9999	C-D		
1\% EtOH vs. 2\% EtOH	0.04348	-0.03262 to 0.1196	No	ns	0.5751	C-E		
1\% EtOH vs. 2.5\% EtOH	0.8841	0.808 to 0.9602	Yes	\cdots	<0.0001	C-F		
1.5\% EtOH vs. $2 \% \mathrm{EtOH}$	0.04348	-0.03262 to 0.1196	No	ns	0.5751	D-E		
1.5\% EtOH vs. 2.5\% EtOH	0.8841	0.808 to 0.9602	Yes	..."	<0.0001	D-F		
2\% EtOH vs. 2.5\% EtOH	0.8406	0.7645 to 0.9167	Yes	<0.0001	E-F		
Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1	n2	q	DF
0\% EtOH vs. $0.5 \% \mathrm{EtOH}$	1	1	0	0.02658	69	69	0	408
0\% EtOH vs. 1\% EtOH	1	1	0	0.02658	69	69	0	408
0\% EtOH vs. 1.5% EtOH	1	1	0	0.02658	69	69	0	408
0\% EtOH vs. 2\% Etor	1	0.9565	0.04348	0.02658	69	69	2.314	408
0\% EtOH vs. 2.5% EtOH	1	0.1159	0.8841	0.02658	69	69	47.04	408
0.5\% EtOH vs. 1% EtOH	1	1	0	0.02658	69	69	0	408
0.5\% EtOH vs. 1.5\% EtOH	1	1	0	0.02658	69	69	0	408
0.5\% EtOH vs. $2 \% \mathrm{EtOH}$	1	0.9565	0.04348	0.02658	69	69	2.314	408
0.5\% EtOH vs. 2.5\% EtOH	1	0.1159	0.8841	0.02658	69	69	47.04	408
1\% EtOH vs. $1.5 \% \mathrm{EtOH}$	1	1	0	0.02658	69	69	0	408
1\% EtOH vs. $2 \% \mathrm{EtOH}$	1	0.9565	0.04348	0.02658	69	69	2.314	408
1\% EtOH vs. 2.5% EtOH	1	0.1159	0.8841	0.02658	69	69	47.04	408
1.5\% EtOH vs. 2\% EtOH	1	0.9565	0.04348	0.02658	69	69	2.314	408
1.5\% EtOH vs. 2.5% EtOH	1	0.1159	0.8841	0.02658	69	69	47.04	408
2\% EtOH vs. $2.5 \% \mathrm{EtOH}$	0.9565	0.1159	0.8406	0.02658	69	69	44.73	408

Fig 1 L

Fig 1 M

Fig 1 N

Number of families	1							
Number of comparisons per family	15							
Alpha	0.05							
Tukey's multiple comparisons test	Mean Diff.	$95.00 \% \mathrm{Cl}$ of diff.	Significant?	Summary	Adjusted P Value			
Trial 1200 proof vs. Trial 2200 proof	-0.2317	-0.5109 to 0.04746	No	ns	0.1655	A-B		
Trial 1200 proof vs. Trial 3200 proof	-0.2647	-0.567 to 0.03765	No	ns	0.1236	A-C		
Trial 1200 proof vs. Trial 1190 proof	-0.4386	-0.7117 to -0.1655	Yes	\ldots	<0.0001	A-D		
Trial 1200 proof vs. Trial 2190 proof	-0.2568	-0.5245 to 0.01093	No	ns	0.0684	A-E		
Trial 1200 proof vs. Trial 3190 proof	0.01038	-0.228 to 0.2488	No	ns	>0.9999	A-F		
Trial 2200 proof vs. Trial 3200 proof	-0.03298	-0.3747 to 0.3087	No	ns	0.9998	B-C		
Trial 2200 proof vs. Trial 1190 proof	-0.2069	-0.5231 to 0.1093	No	ns	0.4163	B-D		
Trial 2200 proof vs. Trial 2190 proof	-0.02508	-0.3366 to 0.2864	No	ns	>0.9999	B-E		
Trial 2200 proof vs. Trial 3190 proof	0.2421	-0.04466 to 0.5288	No	ns	0.1514	B-F		
Trial 3200 proof vs. Trial 1190 proof	-0.1739	-0.5107 to 0.1629	No	ns	0.6744	C-D		
Trial 3200 proof vs. Trial 2190 proof	0.007905	-0.3245 to 0.3403	No	ns	>0.9999	C-E		
Trial 3200 proof vs. Trial 3190 proof	0.2751	-0.03428 to 0.5844	No	ns	0.1127	C-F		
Trial 1190 proof vs. Trial 2190 proof	0.1818	-0.1243 to 0.4879	No	ns	0.5281	D-E		
Trial 1190 proof vs. Trial 3190 proof	0.449	0.1681 to 0.7298	Yes	\cdots	0.0001	D-F		
Trial 2190 proof vs. Trial 3190 proof	0.2672	-0.008444 to 0.5428	No	ns	0.0633	E-F		
Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1	n2	q	DF
Trial 1200 proof vs. Trial 2200 proof	0.5614	0.7931	-0.2317	0.09708	57	29	3.375	216
Trial 1200 proof vs. Trial 3200 proof	0.5614	0.8261	-0.2647	0.1051	57	23	3.56	216
Trial 1200 proof vs. Trial 1190 proof	0.5614	1	-0.4386	0.09498	57	31	6.53	216
Trial 1200 proof vs. Trial 2190 proof	0.5614	0.8182	-0.2568	0.0931	57	33	3.901	216
Trial 1200 proof vs. Trial 3190 proof	0.5614	0.551	0.01038	0.08292	57	49	0.1771	216
Trial 2200 proof vs. Trial 3200 proof	0.7931	0.8261	-0.03298	0.1188	29	23	0.3925	216
Trial 2200 proof vs. Trial 1190 proof	0.7931	1	-0.2069	0.11	29	31	2.661	216
Trial 2200 proof vs. Trial 2190 proof	0.7931	0.8182	-0.02508	0.1083	29	33	0.3274	216
Trial 2200 proof vs. Trial 3190 proof	0.7931	0.551	0.2421	0.09972	29	49	3.433	216
Trial 3200 proof vs. Trial 1190 proof	0.8261	1	-0.1739	0.1171	23	31	2.1	216
Trial 3200 proof vs. Trial 2190 proof	0.8261	0.8182	0.007905	0.1156	23	33	0.0967	216
Trial 3200 proof vs. Trial 3190 proof	0.8261	0.551	0.2751	0.1076	23	49	3.616	216
Trial 1190 proof vs. Trial 2190 proof	1	0.8182	0.1818	0.1065	31	33	2.415	216
Trial 1190 proof vs. Trial 3190 proof	1	0.551	0.449	0.09768	31	49	6.501	216
Trial 0 1an nmmf ve Trial a 100 nmaf	ก 818	n 551	ก 2 ¢7\%	ก пагя5	22	40	3 04,	216

Fig 10

Fig 5 F

Number of families	1							
Number of comparisons per family	6							
Alpha	0.05							
Tukey's multiple comparisons test	Mean Diff.	95.00\% Cl of diff.	Significant?	Summary	Adjusted P Value			
AB control 0\% vs. AB control 2%	-0.2407	-0.5949 to 0.1134	No	ns	0.2928	A-B		
AB control 0% vs. bactin paxillin 0%	0	-0.4531 to 0.4531	No	ns	>0.9999	A-C		
AB control 0% vs. bactin paxillin 2%	-0.4717	-0.8265 to -0.1169	Yes	*	0.0040	A-D		
AB control 2% vs. bactin paxillin 0%	0.2407	-0.1134 to 0.5949	No	ns	0.2928	B-C		
AB control 2% vs. bactin paxillin 2%	-0.231	-0.4455 to - 0.01638	Yes	-	0.0296	B-D		
bactin paxillin 0% vs. bactin paxillin 2%	-0.4717	-0.8265 to -0.1169	Yes	*	0.0040	C-D		
Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1	n2	q	DF
AB control 0\% vs. AB control 2%	0	0.2407	-0.2407	0.136	12	54	2.503	127
AB control 0% vs. bactin paxillin 0%	0	0	0	0.174	12	12	0	127
AB control 0% vs. bactin paxillin 2%	0	0.4717	-0.4717	0.1363	12	53	4.895	127
AB control 2% vs. bactin paxillin 0%	0.2407	0	0.2407	0.136	54	12	2.503	127
AB control 2% vs. bactin paxillin 2%	0.2407	0.4717	-0.231	0.08242	54	53	3.963	127
bactin paxillin 0% vs. bactin paxillin 2%	0	0.4717	-0.4717	0.1363	12	53	4.895	127

