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Abstract: Stellate cells, either hepatic (HSCs) or pancreatic (PSCs), are a type of interstitial cells
characterized by their ability to store retinoids in lipid vesicles. In pathological conditions both
HSCs and PSCs lose their retinoid content and transform into fibroblast-like cells, contributing to
the fibrogenic response. HSCs also participate in other functions including vasoregulation, drug
detoxification, immunotolerance, and maintenance of the hepatocyte population. PSCs maintain
pancreatic tissue architecture and regulate pancreatic exocrine function. Recently, PSCs have attracted
the attention of researchers due to their interactions with pancreatic ductal adenocarcinoma cells.
PSCs promote tumour growth and angiogenesis, and their fibrotic activity increases the resistance of
pancreatic cancer to chemotherapy and radiation. We are reviewing the current literature concerning
the role played by retinoids in the physiology and pathophysiology of the stellate cells, paying
attention to their developmental aspects as well as the function of stellate cells in tissue repair and
organ regeneration.

Keywords: hepatic stellate cells; pancreatic stellate cells; Ito cells; retinoids; retinoic acid; tissue repair;
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1. Introduction

Stellate cells, also called Ito cells, were first described by Kupffer in 1876 as “Sternzellen”. They were
overlooked for almost a century, until their rediscovery in 1971 by Kenjiro Wake [1]. We currently
know that stellate cells are a type of interstitial cell mainly present in liver and pancreas, although
they have also been localized in the intestine and lungs. They can be identified by the expression
of desmin, endoglin, and glial fibrillary acid protein (GFAP). A main feature of stellate cells is the
presence of cytoplasmic lipid vesicles where they store large amounts of retinoids. In fact, between
50% and 80% of all vitamin A in the human body is stored in hepatic stellate cells (HSCs) as retinyl
esters [2]. These retinoid stores allow for easy identification of stellate cells since their exposure to
ultraviolet light elicits a blue fluorescence [3]. Pancreatic stellate cells (PSCs) represent 4–7% of all
the pancreatic cells, and their characteristics are similar to those of HSCs, including the accumulation
of retinyl-esters in lipid vesicles and their ability to become activated [3,4]. Despite the great extent
of similarity between the transcriptomes of HSCs and PSCs [5], proteome comparison reveals some
differences. Proteins more abundant in HSCs are associated with protein synthesis, while PSCs show
a higher abundance of proteins involved in cell structure [6]. The expression of genes related with
retinoid metabolism showed no significant differences,

In pathological conditions, stellate cells from both liver and pancreas lose their lipidic droplets
and transform into fibroblast-like cells, a phenotype able to synthesize large amounts of extracellular
matrix, contributing to the fibrogenic response to tissue damage [7] (Figure 1).
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Figure 1. Graphical summary of the development and functions of stellate cells in physiological and 
pathological conditions. ECM: extracellular matrix; PDAC: pPancreatic ductal adenocarcinoma; RA: 
retinoic acid. 

HSCs account for 5–8% of all the hepatic cells [8]. Besides their roles in retinoid storage and 
fibrotic response, HSCs also participate in vasoregulation through interaction with endothelial cells, 
drug detoxification, immunotolerance, and maintenance of the hepatocyte population [9]. Secretion 
of cytokines and chemokines, activation of immune cells, capacity for antigen presentation, and 
autophagy activity make HSCs important regulators of liver immunology [10,11]. 

PSCs also display a number of relevant functions [12]. For example, PSCs maintain pancreatic 
tissue architecture, regulate pancreatic exocrine function, and reduce insulin expression in β-cells 
[13]. However, the clinically significant interaction between PSCs and cancer cells has attracted the 
attention of researchers in recent years, as explained below [4]. 

We aim to review, in this article, the relevant information about the role played by retinoids in 
the physiology and pathophysiology of the stellate cells from liver and pancreas, paying attention to 
developmental aspects as well as the function of stellate cells in tissue repair and organ regeneration. 

2. Development of Stellate Cells in Liver and Pancreas 

The embryonic origin of HSCs was first related with the endoderm from a supposed common 
hepatoblast/HSC progenitor [14–16]. Another candidate was the neural crest, due to the expression 
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pathological conditions. ECM: extracellular matrix; PDAC: pPancreatic ductal adenocarcinoma; RA:
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HSCs account for 5–8% of all the hepatic cells [8]. Besides their roles in retinoid storage and
fibrotic response, HSCs also participate in vasoregulation through interaction with endothelial cells,
drug detoxification, immunotolerance, and maintenance of the hepatocyte population [9]. Secretion
of cytokines and chemokines, activation of immune cells, capacity for antigen presentation, and
autophagy activity make HSCs important regulators of liver immunology [10,11].

PSCs also display a number of relevant functions [12]. For example, PSCs maintain pancreatic
tissue architecture, regulate pancreatic exocrine function, and reduce insulin expression in β-cells [13].
However, the clinically significant interaction between PSCs and cancer cells has attracted the attention
of researchers in recent years, as explained below [4].

We aim to review, in this article, the relevant information about the role played by retinoids in
the physiology and pathophysiology of the stellate cells from liver and pancreas, paying attention to
developmental aspects as well as the function of stellate cells in tissue repair and organ regeneration.
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2. Development of Stellate Cells in Liver and Pancreas

The embryonic origin of HSCs was first related with the endoderm from a supposed common
hepatoblast/HSC progenitor [14–16]. Another candidate was the neural crest, due to the expression of
neural markers such as GFAP [17,18]. However, a mesodermal origin has been now well established
(reviewed in [19]) (Figure 2). Mesenchymal cells of the septum transversum become trapped in the
subendothelial space of the earliest stages of development of liver sinusoids [20]. Later, further HSC
progenitors derive from cells delaminating from the coelomic epithelium of the liver, as first described by
IJpenberg et al. [21] (Figures 1 and 2C). These authors showed that WT1, a transcription factor expressed
by the coelomic epithelium, controls the expression of the retinoic acid (RA)-synthesizing enzyme
Raldh2, and this signalling axis is required for HSCs and also for proper liver development. Wt1-null
mouse embryos showed reduced Raldh2 expression, less hepatoblast proliferation, and abnormal
differentiation of HSCs. These findings were later confirmed by the study of Asahina et al. [22]
(reviewed in [23]).

HSCs start to accumulate retinoids during foetal life, as early as E13 (stage 13 days post coitum)
in rat embryos [24,25]. These authors also described a strong expression of hepatocyte growth factor
and SDF1α (an important cytokine in hematopoietic stem cells homing) in HSCs, suggesting a key role
in hepatic development and also in haematopoiesis, as described below. The interaction of HSCs with
hepatic progenitor cells is essential for liver development and can be related with RA signalling [19].
In vitro, retinoic acid induces maturation of cultured foetal hepatocytes, increasing the production of
albumin and reducing α-fetoprotein synthesis [26].

The embryonic origin of PSCs is also related, at least in part, with the coelomic epithelium of the
pancreas. Between E10.5 and E15.5 in mouse embryos, this epithelium expresses WT1 (Figure 2A),
allowing for tracing of the coelomic-derived cells. Transgenic mice generated by inserting a Cre
recombinase expressing sequence under control of a WT1 promoter (Wt1Cre) can be crossed with
gene-targeted mice where a stop sequence flanked by lox sites precedes a YPF cassette in the Rosa26
locus (Rosa26REYFP reporter). The offspring of these crosses, carrying both genetic modifications,
will show permanent expression of YFP in Wt1-expressing cells and their lineage [27] (Figure 2A,D,E).

Using this cell tracing system, we have shown that coelomic-derived cells express Raldh2
(Figure 2B) and contribute to a major part of the pancreatic mesenchyme and the PSCs [28]. Deletion of
the transcription factor WT1 between E9.5 and E12.5 results in normal dorsal pancreatic bud, but the
number of acini in the ventral bud as well as the proliferation of acinar cells are significantly reduced.

Retinoid stores in HSCs can be related with developmental processes of other tissues and organs.
Cellular retinol-binding protein-1 (cRBP-1) is a marker of HSCs, and the number of cRBP-1 + HSCs
was used in the liver human foetuses with congenital diaphragmatic hernia to search for a correlation
with the growth of liver and lungs [29]. The results showed a positive correlation between the number
of cRBP-1 + HSCs and the lung weight of the side not affected by the hernia, but the lung from the
affected side showed no significant correlation. The liver growth was not correlated with the number
of cRBP-1 + HSC. Thus, some relationship between the hepatic retinoid stores and the lung growth
may exist.

HSCs can play some role also in the foetal liver phase of definitive haematopoiesis. HSCs are
topologically associated to hematopoietic sites (the space of Disse) [30]. Insulin-like growth factor 2
(IGF2) is highly expressed by murine HSCs by the time of expansion of the haematopoietic population
(E12.5-E16.5) [31]. IGF2 is also secreted by hepatoblasts, and it is an essential component of the foetal
liver erythropoietic niche [32,33]. Isolated adult HSCs co-cultured with Sca1+ hematopoietic stem
cells support these cells in a similar way to bone marrow mesenchymal stem cells [30]. Retinoids
accumulated by HSCs and retinoid X receptor α (RXRα) signalling are both required for erythropoiesis.
Erythropoietin (EPO) is a direct target of RA, and it is produced by foetal hepatoblasts. EPO expression
is 10 folds lower in RXRα−/− foetal liver than in controls at E10, but there are no differences at E12,
suggesting that RXRα mediated signalling is dispensable from E12 on [34] (reviewed in [35]).
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Figure 2. Origin of stellate cells during pancreas and liver development. (A) Wt1Cre; R26REYFP mouse 
embryo, stage E13.5. WT1 protein (in red) is expressed only in the coelomic epithelium of the 
embryonic pancreas. However, WT1-lineage cells (green) constitute most of the pancreatic stroma 
around the developing acini. Pancreatic stellate cells (PSCs) will develop from these stromal cells in 
later stages. (B) Mouse embryo, stage E15.5. The retinoic acid synthesizing enzyme Raldh2 (green 
label) is expressed in the pancreatic coelomic epithelium (arrows). Pancreatic acini (PA) are stained 
in red due to the expression of E-cadherin. (C) Wt1Cre; R26REYFP mouse embryo, stage E15.5. In the 
liver (LI), cells migrating from the coelomic epithelium (positive for cytokeratin staining in red) and 
expressing the WT1 lineage marker (green) also incorporate to the mesodermal compartment of the 
liver (arrows). (D) Wt1Cre; R26REYFP mouse embryo, stage E16.5. Colocalization of desmin (red) with 
the WT1 lineage marker (green) shows that part of the pancreatic stellate cells derives from the 
coelomic epithelium (arrows). (E) Wt1Cre; R26REYFP mouse embryo, stage E19.5. Pancreas and liver 
contain a similar population of WT1 lineage cells (green). Part of them have already differentiated 
into stellate cells. Scale bars: (A)–(D) = 25 μm; (E) = 50 μm. 

Figure 2. Origin of stellate cells during pancreas and liver development. (A) Wt1Cre; R26REYFP mouse
embryo, stage E13.5. WT1 protein (in red) is expressed only in the coelomic epithelium of the embryonic
pancreas. However, WT1-lineage cells (green) constitute most of the pancreatic stroma around the
developing acini. Pancreatic stellate cells (PSCs) will develop from these stromal cells in later stages.
(B) Mouse embryo, stage E15.5. The retinoic acid synthesizing enzyme Raldh2 (green label) is expressed
in the pancreatic coelomic epithelium (arrows). Pancreatic acini (PA) are stained in red due to the
expression of E-cadherin. (C) Wt1Cre; R26REYFP mouse embryo, stage E15.5. In the liver (LI), cells
migrating from the coelomic epithelium (positive for cytokeratin staining in red) and expressing the
WT1 lineage marker (green) also incorporate to the mesodermal compartment of the liver (arrows).
(D) Wt1Cre; R26REYFP mouse embryo, stage E16.5. Colocalization of desmin (red) with the WT1 lineage
marker (green) shows that part of the pancreatic stellate cells derives from the coelomic epithelium
(arrows). (E) Wt1Cre; R26REYFP mouse embryo, stage E19.5. Pancreas and liver contain a similar
population of WT1 lineage cells (green). Part of them have already differentiated into stellate cells.
Scale bars: (A)–(D) = 25 µm; (E) = 50 µm.

Like HSCs, PSCs possess the mechanisms to accumulate and metabolize retinoids, bioactive
molecules that are involved in both, exocrine and endocrine pancreas development [36]. Differentiation
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of ducts and endocrine cells during development is induced by epithelial-mesenchymal interactions
where retinoic acid signalling is critically involved. Exogenous retinoic acid stimulates differentiation
of duct and endocrine cells in tissue culture experiments; it promotes apoptosis of acinar cells and
upregulates PDX1 expression [37]. This requirement of RA signalling for development of the pancreas
does not apply to the embryonic liver [38]. Since Raldh2 is only expressed by embryonic pancreatic
mesothelial cells (Figure 2B), and retinoids are stored in PSCs, these findings emphasize the importance
of PSCs in pancreatic development.

β1 integrin and collagen I matrix interactions are required for maintaining foetal pancreatic stellate
cell function and proliferation. In fact, culture of human foetal PSCs on collagen I stimulates their
proliferation, and blocking of the β1 integrin reduces adhesion, migration and proliferation [39].

Development of stellate cells has been studied in other animal models. In zebrafish, HSCs labelled
with a hand2:EGFP (enhanced green fluorescent protein) reporter colonize the liver migrating from the
lateral mesoderm after the sinusoidal endothelial cells [40]. Migration is reduced if vascular endothelial
growth factor is inhibited. However, HSC migration does not depend on endothelium and it occurs
even in mutant zebrafish lacking of endothelial cells. In this case, HSCs abnormally associate with
biliary cells.

Fibroblastoid progenitors of HSCs appear in the Disse’s space of 6-day-old chick embryos. Retinoid
accumulation revealed by fluorescence of lipid droplets starts later, by 9 days of incubation. By the end
of incubation, about a half of the perisinusoidal cells show retinoid-containing droplets [41].

3. Stellate Cells and Tissue Fibrosis

As stated in the introduction both HSCs and PSCs can be activated by extrinsic signals and
transdifferentiate into a myofibroblast-like phenotype, with enhanced migratory and extracellular
matrix secreting abilities and expression of smooth muscle cell α-actin [19] (Figure 3). In chronic disease,
the repeated activation of stellate cells causes hepatic or pancreatic fibrosis, characterized by disruption
of the normal cytoarchitecture and excessive deposition of extracellular matrix, particularly fibrillar
collagens, proteoglycans, and fibronectin. Transforming growth factor-β (TGFβ) is a main activator
of the stellate cell activation and the fibrogenic process, as well as the mechanical stiffness of the
extracellular matrix [42]. This is clinically relevant since progressive liver fibrosis can lead to cirrhosis.
Thus, HSCs have become a key cellular target for therapeutic intervention in liver fibrosis [43–45].

Retinoids have a strong ability to modulate the activation of stellate cells in both liver and pancreas.
However, the role played by RA signalling in the process of stellate cell activation is still poorly
known [19,46]. For example, it is not known why retinoid stores are lost during activation, if this
loss is required for the process, or what the precise effects of retinol metabolites on stellate cells are
after pancreas or liver injury [46]. According to these authors, RA released from HSCs regulates the
immune response upon liver inflammation. On the other hand, it has long been known that vitamin A
inhibits liver fibrosis. Reversion of liver fibrosis could be mediated by a synergistic action between
RA and peroxisome proliferator-activated receptor-γ (PPAR-γ) signalling through the formation of
transcriptional heterodimers between their receptors [47]. Fibrosis regression is concomitant to a
reversion of HSCs to an inactive phenotype [48]. Again PPAR-γ signalling is involved in this reversion
since ectopic expression of this nuclear receptor reverts cultured activated HSCs to quiescence [49].
In vitro, RA suppresses HSC proliferation [50], but divergent effects on HSCs have been attributed to
the different effects of all-trans-RA (ATRA) and 9-cis-RA, as well as to differences between natural and
synthetic retinoids [51,52].

In normal pancreas, retinoic acid signalling is restricted to the islets and a few exocrine cells,
as shown by the retinoic acid responsive element (RARE-LacZ) murine model. After induction of
pancreatitis with caerulein, the acinar cells become responsive to RA. However, when pancreatic cancer
is induced, RA signalling activity is not detected in the tumours or in their precursor lesions [53].
This observation can be clinically significant, as commented below. PSCs reduce proliferation and
synthesis of extracellular matrix and α-smooth actin when they are treated with ATRA or vitamin
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A [54,55]. Retinoic acid promotes the quiescent, non-activated state of PSCs [54,56]. Elimination of
activated PSCs can also occurs by apoptosis [57]. Cellular senescence is a third, independent process in
the termination of PSC activation [58]. This process had been previously involved in HSC elimination
after acute liver damage [59].
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Figure 3. Adult stellate cells in mouse. (A) Pancreatic stellate cells are located around the pancreatic 
acini and can be identified by desmin (green) and endoglin (red) coexpression. In the vessels (V), 
desmin is expressed by the smooth muscle and endoglin by the endothelium. (B) Wt1Cre; R26REYFP 
adult mouse. After a pancreatic injury (in this case, caerulein-induced pancreatitis), stellate cells 
upregulate the expression of WT1 and its transcriptional target, the retinoic acid synthesizing 
enzyme Raldh2 (red). Some of the Raldh2 expressing cells show the WT1-lineage marker yellow 
fluorescent protein (YFP) (white arrows) and other are YFP-negative (red arrows), suggesting de 
novo expression of WT1. (C) Wt1Cre; R26REYFP adult mouse. Caerulein-induced pancreatitis. 
Activated pancreatic stellate cells express smooth muscle α-actin. (D) Normal pancreas. Smooth 
muscle α-actin expression is restricted to perivascular cells. Scale bars: 50 μm. 

All these observations about the behaviour of PSCs are important because activated PSCs 
promote growth of pancreatic ductal adenocarcinoma (PDAC) and the excess of extracellular matrix 
(called desmoplasia, desmoplastic reaction or stromal reaction to a tumour) increases the resistance 
of pancreatic cancer to chemotherapy and radiation. PSCs indirectly stimulate tumour growth and 
metastasis by promoting angiogenesis. PSCs from the primary tumour have been localized even 
associated to metastatic foci where they facilitate the proliferation of tumour cells (reviewed in 
[60,61]). Retinoic signalling and retinoid receptors are much reduced in PDAC [62]. Thus, targeting 
PSC activation can be considered as a therapeutic target in PDAC, and knowing better the role 
played by retinoids in the modulation of the quiescent/activated state must be relevant in this 
regard. 

The Kras(G12D)/Trp53(R172H)/Pdx-1-Cre (KPC) mouse model of PDAC [63,64] has been used 
in several studies about the effects of retinoids on PSC/tumour cell interaction. Combined 
gemcitabine and ATRA treatment in KPC mice was more effective for reducing tumour growth than 
the use of gemcitabine alone [65,66]. Delivery of ATRA and small interfering RNA targeting HSP47 
(a collagen-specific molecular chaperone) using gold nanoparticles induces PSC quiescence and 
reduces the desmoplastic reaction. This treatment significantly enhanced the efficacy of 
chemotherapeutics [67]. The effect of ATRA can be mediated by (RARβ)-dependent downregulation 

Figure 3. Adult stellate cells in mouse. (A) Pancreatic stellate cells are located around the pancreatic
acini and can be identified by desmin (green) and endoglin (red) coexpression. In the vessels (V),
desmin is expressed by the smooth muscle and endoglin by the endothelium. (B) Wt1Cre; R26REYFP

adult mouse. After a pancreatic injury (in this case, caerulein-induced pancreatitis), stellate cells
upregulate the expression of WT1 and its transcriptional target, the retinoic acid synthesizing enzyme
Raldh2 (red). Some of the Raldh2 expressing cells show the WT1-lineage marker yellow fluorescent
protein (YFP) (white arrows) and other are YFP-negative (red arrows), suggesting de novo expression
of WT1. (C) Wt1Cre; R26REYFP adult mouse. Caerulein-induced pancreatitis. Activated pancreatic
stellate cells express smooth muscle α-actin. (D) Normal pancreas. Smooth muscle α-actin expression
is restricted to perivascular cells. Scale bars: 50 µm.

All these observations about the behaviour of PSCs are important because activated PSCs promote
growth of pancreatic ductal adenocarcinoma (PDAC) and the excess of extracellular matrix (called
desmoplasia, desmoplastic reaction or stromal reaction to a tumour) increases the resistance of
pancreatic cancer to chemotherapy and radiation. PSCs indirectly stimulate tumour growth and
metastasis by promoting angiogenesis. PSCs from the primary tumour have been localized even
associated to metastatic foci where they facilitate the proliferation of tumour cells (reviewed in [60,61]).
Retinoic signalling and retinoid receptors are much reduced in PDAC [62]. Thus, targeting PSC
activation can be considered as a therapeutic target in PDAC, and knowing better the role played by
retinoids in the modulation of the quiescent/activated state must be relevant in this regard.

The Kras(G12D)/Trp53(R172H)/Pdx-1-Cre (KPC) mouse model of PDAC [63,64] has been used in
several studies about the effects of retinoids on PSC/tumour cell interaction. Combined gemcitabine and
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ATRA treatment in KPC mice was more effective for reducing tumour growth than the use of gemcitabine
alone [65,66]. Delivery of ATRA and small interfering RNA targeting HSP47 (a collagen-specific
molecular chaperone) using gold nanoparticles induces PSC quiescence and reduces the desmoplastic
reaction. This treatment significantly enhanced the efficacy of chemotherapeutics [67]. The effect of
ATRA can be mediated by (RARβ)-dependent downregulation of actomyosin contractility, reducing
the mechanical ability of PSCs for extracellular matrix remodelling [68] and release of TGFβ from its
complex with latent TGFβ binding protein [69].

Open issues that deserve attention are the changes in retinoid storage and metabolism during
stellate cell activation, as well as the roles of HSCs during fibrosis resolution. About the first issue,
it has been shown that the stored retinols are metabolized into RA, promoting a number of reparative
RA-dependent pathways in hepatocytes and also in immune cells [46].

4. Stellate Cells and Organ Regeneration

Besides their fibrogenic activity, activated stellate cells secrete cytokines and growth factors that
promote the regeneration of both liver and pancreas. RA released by activated HSCs can have a direct
mitogenic effect on hepatocytes through the RXRα receptor, contributing to tissue regeneration (Bushue
and Wan, 2009) [70].

A surprising role of HSCs in hepatic regeneration was suggested by Yang et al. [71]. These authors
used a fate-mapping model based on the expression of GFAP (a marker of HSCs), in mice fed
with a diet that activates and expands HSCs and oval cell populations. After liver injury, HSCs
downregulated GFAP, but the GFP reporter was found in highly proliferative cells that coexpressed
markers of mesenchymal and oval cells. Later, GFP+ hepatocytes repopulated large areas of the
liver. Similar findings were reported by using EGFP-labelled HSCs purified by retinoid-dependent
fluorescence activated cell sorting and transplanted to rats that had undergone partial hepatectomy [72].
The implanted cells gave rise to mesenchymal cells, hepatocytes and cholangiocytes. Some HSCs
engrafted in the bone marrow of hosts, and could be isolated and retransplanted in other rats with
injured liver, where they displayed the same progenitor functions. Thus, both studies suggest that
HSCs can be considered as a source of liver progenitor cells, although it is uncertain the role that RA
signalling can play in the process.

PSCs also play an essential role in the regeneration of the pancreas after partial pancreatectomy.
Proliferation of acinar and islet cells increases when co-cultured with activated PSCs. Interestingly,
this effect is dependent of the production of extracellular matrix by the PSC. In fact, inhibition of the
collagen synthesis using a specific siRNA encapsulated in a vitamin A-coupled liposome blocked this
mitogenic effect [73].

As described above for HSCs, PSCs might also display a wide regenerative potential. Treatment
of isolated PSCs with cytokines can induce the expression of hepatocyte markers. Transplantation of
GFP-labelled, activated PSCs into partially hepatectomised rats showed differentiation into hepatocytes
and cholangiocytes [74]. However, no evidence has hitherto been obtained of acinar or islet cell
differentiation from PSCs.

The importance of RA signalling in pancreatic regeneration has been emphasized by our recent
study on the conditional deletion of WT1 in adult mice [75]. Downregulation of WT1 in pancreas
provokes a severe deterioration of the exocrine pancreas, with mesothelial disruption, E-cadherin
downregulation, disorganization of acinar architecture, and accumulation of ascitic transudate. Despite
this extensive damage, pancreatic stellate cells do not become activated and lose their canonical
markers. We observed that pharmacological induction of pancreatitis in normal mice provokes de
novo expression of WT1 in pancreatic stellate cells, concomitant with their activation (Figure 3B).
When pancreatitis was induced in mice after WT1 ablation, pancreatic stellate cells expressed WT1
de novo and became activated, leading to a partial rescue of the acinar structure and the quiescent
pancreatic stellate cell population after recovery from pancreatitis. We propose that WT1 modulates
through the RALDH2/retinoic acid axis the restabilisation of a part of the pancreatic stellate cell
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population, and, indirectly, the repair of the pancreatic architecture, since quiescent pancreatic stellate
cells are required for pancreas stability and repair.

5. Conclusion and Perspectives

In recent years both HSCs and PSCs have acquired great importance with respect to knowledge
of the normal functions of the liver and pancreas, and also because of their roles in pathologies of
these organs. The ability of these cells to store and metabolize retinoids seems to be highly related
to their physiological and pathophysiological functions. The unique properties of these cells in the
liver and pancreas homeostasis and repair raise the issue of their potential utility in cell therapy.
A preclinical study has demonstrated that cotransplantation of HSCs with hepatocytes improves
hepatocyte engraftment [76]. We have also described above the possibility of transdifferentiation of
HSCs into hepatocytes (71,72). On the other hand, the issue of the relationships established among
PSCs and pancreatic cancer cells is particularly important. Despite this significance, many uncertainties
still remain, particularly about the mechanisms related with accumulation, metabolism, and release of
retinoids, and the molecular regulation of activation and return to quiescence. A better knowledge of
the mechanisms controlling these mechanisms could be attained using new generation technologies,
such as single cell RNA sequencing, functional imaging of living systems, or development of organoids.
We are aware that the research on these fields will increase the relevance of the stellate cells and the
attractiveness of their potential as clinical targets.
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