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Abstract: A pot experiment was designed and performed in a completely randomized block de-
sign (CRBD) to determine the main effect of two plant growth-promoting rhizobacteria (PGPR)
and their co-inoculation on growth criteria and physio-biochemical attributes of canola plants
(Brassica napus L.) plant grown in saline soil. The results showed that inoculation with two PGPR
(Azotobacter chroococcum and/or Alcaligenes faecalis) energized the growth parameters and photosyn-
thetic pigments of stressed plants. Moreover, soluble sugars’ and proteins’ contents were boosted
due to the treatments mentioned above. Proline, malondialdehyde (MDA), and hydrogen peroxide
(H2O2) contents were markedly declined. At the same time, antioxidant enzymes, viz. superoxide
dismutase (SOD), ascorbate peroxidase (APX), and peroxidase (POD), were augmented due to the
inoculation with Azotobacter chroococcum and/or Alcaligenes faecalis. Regarding minerals’ uptake,
there was a decline in sodium (Na) and an increase in nitrogen (N), potassium (K), calcium (Ca),
and magnesium (Mg) uptake due to the application of either individual or co-inoculation with the
mentioned bacterial isolates. This study showed that co-inoculation with Azotobacter chroococcum and
Alcaligenes faecalis was the most effective treatment and could be considered a premium tool used in
facing environmental problems, especially saline soils.

Keywords: plant growth-promoting rhizobacteria; salinity; canola; osmolytes; antioxidant activity

1. Introduction

Soil salinity directly affects crops. It is one of the most destructive abiotic stresses due to
its disastrous effect on agricultural areas and reducing crops’ quality and productivity [1–4].
Moreover, there is also an abnormal increase in saline soils. This increase is due to several
reasons, including some unfavorable agricultural practices, irrigation with saline water,
and high surface evaporation rate [5].

Salinity of the soil limits crop plants’ productivity depending on the crop plants’ sen-
sitivity to salts concentrations. Salt-stressed soils reduce plant growth [6,7]. They can also
interfere with nitrogen (N) nutrition in the plant in direct or indirect ways, usually at the in-
organic nitrogen compounds’ assimilation pathway. Besides, where high concentrations of
salts are present in soils, the capacity for NO3 leaching in soil may boost because the plants’
efficiency in absorbing or utilizing the applied N from the soil is reduced under salinity
stress [8]. One of the most severe problems that depend on salinity is the accumulation of
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reactive oxygen species (ROS) that leads to oxidative stress causing oxidative damage of
proteins, pigments, and DNA of salt-stressed plants [7,9–11]. The higher concentration of
salt in soil affects the plant’s potency and efficiency to absorb water and essential nutrients
by roots. High sodium concentration inside the plant cell leads to many disturbances that
lead to a decrease in plant growth [12,13]. Excess salt concentration decreased photosyn-
thetic pigments in plant leaves, leaf area, and photosynthetic efficiency [3,14]. Furthermore,
salinity stress caused oxidative stress due to the accumulation of hydrogen peroxide (H2O2),
which induces cell shrinkage, DNA fragmentation, and induce malondialdehyde (MDA)
accumulation, which is represented as an indicator for lipid peroxidation [15].

Plant growth-promoting bacteria (PGPB) play a direct or indirect useful role in enhanc-
ing plant growth, yield, and nutrient uptake through various action mechanisms [4,16].
These bacterial strains directly regulate plant physiology by promoting the nutrient uptake
through phytohormone production (e.g., auxin, gibberellins, and cytokinin), increasing
nitrogen and mineral availability in the soil and/or producing siderophores [17]. The
PGPB containing 1-aminocyclopropane 1-carboxylate (ACC) deaminase are located in
various soils and offer a promising approach for improving plant growth, particularly
under stressed environmental conditions. Plants inoculated with ACC-deaminase con-
taining PGBR showed a decrease in stimulated ethylene due to the diminishing impact
of salt stress on ethylene. Plants with a lower level of ethylene showed more excellent
resistance to abiotic stress [18]. Therefore, it could be mentioned that plants treated with
ACC-deaminase containing PGPB help different plants to face different types of abiotic
stresses [19,20].

Azotobacter genus is characterized as a free-living, aerobic, nitrogen-fixer, heterotrophic,
Gram-negative bacteria in the class γ-proteobacteria. The first described species in Azotobac-
ter genus was A. chroococcum [21]. Inoculation with A. chroococcum improves crop resistance
to salinity through increasing plant content of soluble sugars, soluble proteins, and proline
in shoots and roots. Moreover, it stimulates plant growth by increasing the dry weights
of root and shoot [22–24]. Alcaligenes faecalis was isolated first in 1896, an Alcaligenaceae
family member. This species is Gram-negative rods that are aerobically motile, flagellated,
slightly curved non-spore-forming, slowly growing, and capsule-forming bacteria [25].
Alcaligenes faecalis is considered PGPB due to its ability to produce indole acetic acid
(IAA), ACC-deaminase, and phosphate solubilization and fix atmospheric nitrogen [26].
Also, [27] showed that Alcaligenes sp. could be used as a biofertilizer to enhance the
growth and yield of different plants under typical and different stress types. Inoculation
with Alcaligenes faecalis containing ACC-deaminase ameliorates the salinity stress effect on
growth, biochemistry, and yield of plants [28]. The most prevalent reason for the impact of
Alcaligenes faecalis on plants is based on the production of phytohormones that alter plant
morphology and metabolism, leading to improved water and mineral absorption [26].

Canola (Brassica napus L.), also known as oilseed rape, is one of the most important
oilseed crops globally and was ranked globally as third in the term of oilseed crop produc-
tion following soybean and palm oil [29,30]. At the same time, it ranks first among field oil
crops that tolerate stressed conditions [31]. Canola seeds contain 40–42% oil, 60% oleic acid,
8.8% linoleic acid, and 25% protein [32–34]. Cultivation of canola in Egypt can introduce
an opportunity to beat several deficiencies in edible oil production. Additionally, canola
could be successfully cultivated in newly reclaimed land out of the old Nile Valley areas to
avoid competition with other crops inhabiting the old cultivated lands [35,36].

Because of damage caused by salinity to crops and due to increases in saline land area,
overcoming this problem in Egypt became one of the most critical challenges; therefore,
it was necessary to use one of the appropriate approaches to meet this challenge. So, the
use of plant growth-promoting rhizobacteria (PGPR) was considered as an alternative tool
to alleviate salinity stress of essential oil crops like canola. In this line, we examined the
possible role of PGPR strains Azotobacter chroococcum and Alcaligenes faecalis (individually
or in co-inoculation) in enhancing salinity tolerance in canola plants by evaluating their
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impact on growth attributes, the contents of photosynthetic pigments, osmolytes, oxidative
stress, and minerals as well as the antioxidants’ enzyme activities.

2. Results
2.1. Microbiological Characteristics in the Canola Rhizosphere

Results in Table 1 show the positive effect of bacterial inoculation on both the micro-
bial community’s abundance and activity in the canola rhizosphere. Under salinity-stress
regimes, total microbial count in canola rhizosphere was enhanced in response to inoc-
ulation with Azotobacter chroococcum and Alcaligenes faecalis and their mixture by 65.5%,
110.3%, and 113.7%, respectively. Moreover, nitrogen fixer count was increased in the
treatments, as mentioned earlier, by 3.6%, 3.9%, and 3.9%, respectively. Dehydrogenase
activity in the rhizosphere of Azotobacter chroococcum- and Alcaligenes faecalis-inoculated
plants was increased by 63.3% and 116.6%, while co-inoculation recorded an increase in
dehydrogenase activity by 112%.

Table 1. Effect of bacterial inoculation on the microbial characteristics of the rhizosphere. TBC: total bacterial count, NFC:
nitrogen fixer count.

Treatment TBC * × 105

CFU/gm Dry Soil
TBC

Increasing %
NFC × 103

CFU/gm Dry Soil
NFC

Increasing %
Dehydrogenase (µg
TPF/g Dry Soil/24 h)

Dehydrogenase
Increasing %

Saline soil control 78 34.4 2.3 109 112 26.9
A. chroococcum 96 65.5 3.6 227 144 63.3

A. faecalis 122 110.3 3.9 254 191 116.6
A. chroococcum +

A. faecalis 124 113.7 3.9 254 187 112

2.2. PGPR Enhance Canola Plant Growth under Salinity Stress

The results in Figure 1 show that the rhizobacterial inoculation with A. chroococcum,
A. faecalis, and their co-inoculation enhanced the different canola growth parameters such
as lengths of shoot and root, fresh and dry weights of shoot, fresh and dry weights of
root, and number of leaves. Significant increases recorded by the individual inoculation
with A. chroococcum were observed in shoot length by 25%, root length by 54%, shoot
fresh weight by 165.7%, shoot dry weight by 182.8%, and root fresh weight by 66.70%
as compared to un-inoculated canola plants grown in saline soil control. Moreover, the
inoculation with A. faecalis recorded significant increases in shoot length, root length, shoot
fresh weight, shoot dry weight, and root fresh weight by 65.8%, 75.5%, 157.5%, 93.1%,
and 183.3%, respectively. The co-inoculation between the two mentioned strains showed
significant increases reached to 64.6% in shoot length, 69.8% in root length, 248.4% in
shoot fresh weight, 282.8% in shoot dry weight, 233.3% in root fresh weight, and 200% in
root dry weight of salinity-stressed canola plants in comparison with saline soil control.
Results in Figure 1 show that bacterial inoculation with A. chroococcum, A. faecalis, and
their mixture insignificantly enhanced the number of leaves in canola plants under salinity-
stress conditions.
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Figure 1. (A) shoot length; (B) root length; (C) shoot fresh weight; (D) shoot dry weight; (E) root fresh weight; (F) root dry 
weight; and (G) number of leaves of canola plant inoculated with Azotobacter chroococcum, Alcaligenes faecalis, and their co-
inoculation under salinity-stress conditions. Bars show means of three independent replications (n = 3) ± standard error. 
Means with the same letter are not significantly different at p < 0.05. 

2.3. PGPR Protect Photosynthetic Pigments in Leaves of Canola Plant under Salinity Stress 
Both bacterial strains, A. chroococcum and A. faecalis, markedly accumulated fresh 

leaves’ contents of chlorophyll a (by 16% and 39%), chlorophyll b (by 14.1% and 44.6%), 
total chlorophyll (by 15.1% and 41.6%), and carotenoids (by 19.2% and 90.4%), respec-
tively, when compared to saline soil control (Figure 2). The results exhibited that the high-

Figure 1. (A) shoot length; (B) root length; (C) shoot fresh weight; (D) shoot dry weight; (E) root fresh weight; (F) root dry
weight; and (G) number of leaves of canola plant inoculated with Azotobacter chroococcum, Alcaligenes faecalis, and their
co-inoculation under salinity-stress conditions. Bars show means of three independent replications (n = 3) ± standard error.
Means with the same letter are not significantly different at p < 0.05.

2.3. PGPR Protect Photosynthetic Pigments in Leaves of Canola Plant under Salinity Stress

Both bacterial strains, A. chroococcum and A. faecalis, markedly accumulated fresh
leaves’ contents of chlorophyll a (by 16% and 39%), chlorophyll b (by 14.1% and 44.6%),
total chlorophyll (by 15.1% and 41.6%), and carotenoids (by 19.2% and 90.4%), respectively,
when compared to saline soil control (Figure 2). The results exhibited that the highest
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significant increases in chlorophyll a (by 47.4%), chlorophyll b (by 52.7%), total chlorophyll
(by 50%), and carotenoids (by 109.6%) were recorded in response to the co-inoculation with
the two strains when compared to saline soil control.
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2.4. PGPR Regulate Osmolytes’ Contents in Salinity-Stressed Canola Plants

Soluble sugars’ content of stressed canola plants was insignificantly enhanced in
response to the individual inoculation with A. chroococcum or A. faecalis isolate, while
soluble sugars’ content was significantly augmented, by 94% in the case of the two isolates’
interaction when compared with saline soil control (Table 2). The inoculation with PGPR
changed the soluble proteins’ content of canola plants that were cultivated in saline soil.
The inoculation of stressed canola plants with A. chroococcum, A. faecalis, or their interaction
respectively recorded significant increases by 45.5%, 50.9%, and 55% of soluble proteins
content (Table 2). Proline content was insignificantly decreased due to the treatment with
Azotobacter chroococcum strain (Table 2). The decreases of proline content in salinity-stressed
canola plants were recorded by 7.8% and 10.9% when the plants were inoculated with
Alcaligenes faecalis and the interaction (Table 2).
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Table 2. Organic solutes contents (mg g−1 DW) in canola plant inoculated with Azotobacter chroococ-
cum, Alcaligenes faecalis, and their co-inoculation under salinity-stress conditions. Bars show means
of three independent replications (n = 3) ± standard error. Means with the same letter are not
significantly different at p < 0.05. DW: dry weight.

Treatments Soluble Sugars Soluble Proteins Proline

Saline soil control 116.7 ± 3.85 b 16.9 ± 0.26 b 0.64 ± 0.04 a
A. chroococcum 135.3 ± 11.85 b 24.6 ± 0.48 a 0.62 ± 0.009 ab

A. faecalis 157.1 ± 9.76 b 25.5 ± 0.70 a 0.59 ± 0.006 bc
A. chroococcum + A. faecalis 226.5 ± 6.69 a 26.2 ± 0.38 a 0.57 ± 0.023 c

2.5. PGPR Lessen MDA and H2O2 Contents in Leaves of Salinity-Stressed Canola Plants

Comparing with the non-inoculated plants, MDA and H2O2 contents of salinized
canola plants were inhibited due to the application of A. chroococcum about 12% and
7%, A. faecalis by 13.5% and 4.7%, and their interaction by 19.6% and 2.3%, respectively
(Figure 3).
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Figure 3. (A) Malondialdehyde (MDA) content and (B) hydrogen peroxide (H2O2) content in canola plant fresh leaves
inoculated with Azotobacter chroococcum, Alcaligenes faecalis, and their co-inoculation under salinity-stress conditions. Bars
show means of three independent replications (n = 3) ± standard error. Means with the same letter are not significantly
different at p < 0.05. FW: fresh weight.

2.6. PGPR Stimulate Antioxidant Enzymes under Salinity-Stress Conditions

The inoculation with Azotobacter chroococcum insignificantly stimulated the levels of
SOD and APX of salinity-stressed canola plants, while it significantly stimulated POD by
121.7% (Figure 4). Regarding the inoculation with Alcaligenes faecalis, the activities of SOD,
APX, and POD were insignificantly enhanced. In the interaction treatment with the two
bacterial strains, there was a significant enhancement in SOD by 228.6%, APX by 29.3%,
and POD by 130.4% of canola plants grown in saline soil in comparison with un-inoculated
plants (Figure 4).
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Figure 4. (A) Superoxide dismutase (SOD), (B) ascorbate-peroxidase (APX), and (C) peroxidase
(POD) activity in canola plant fresh leaves inoculated with Azotobacter chroococcum, Alcaligenes faecalis,
and their co-inoculation under salinity-stress conditions. Bars show means of three independent
replications (n = 3) ± standard error. Means with the same letter are not significantly different at
p < 0.05. FW: fresh weight.

2.7. PGPR Regulate Mineral Uptake in Salinity-Stressed Canola Plants

Under salinity-stress conditions, canola plants inoculated with Azotobacter chroococcum,
Alcaligenes faecalis, and their co-inoculation significantly decreased sodium (Na) content by
50.31%, 37.62%, and 57%, respectively (Table 3). However, the content of potassium (K)
was increased dramatically due to the treatments as mentioned above by 51.98%, 77.98%,
and 41.47%, respectively (Table 3), as compared to saline soil control. The contents of
nitrogen (N) and calcium (Ca) were significantly increased in response to inoculation
with Azotobacter chroococcum by 57.46% and 11.76%, respectively, while the content of
magnesium (Mg) was decreased by 21.19% (Table 3). Moreover, inoculation with microbial
strain Alcaligenes faecalis significantly increased contents of N, Ca, and Mg by 46.84%,
33.82%, and 80.50%, respectively (Table 3). Co-inoculation with Azotobacter chroococcum and
Alcaligenes faecalis enhanced the contents of N, Ca, and Mg by 79.28%, 175%, and 55.08%
versus saline soil control (Table 3).
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Table 3. Minerals’ contents (mg g−1 DW) in canola plant inoculated with Azotobacter chroococcum, Alcaligenes faecalis, and
their co-inoculation under salinity-stress conditions. Bars show means of three independent replications (n = 3) ± standard
error. Means with the same letter are not significantly different at p < 0.05. DW: dry weight.

Treatments Na K N Ca Mg

Saline soil control 14.81 ± 0.96 a 2.34 ± 0.10 d 1.34 ± 0.06 d 0.22 ± 0.05 b 0.39 ± 0.04 b
A. chroococcum 7.36 ± 0.35 c 3.56 ± 0.06 c 2.12 ± 0.09 b 0.25 ± 0.04 b 0.31 ± 0.03 b

A. faecalis 9.24 ± 0.70 b 4.17 ± 0.08 b 1.97 ± 0.07 c 0.30 ± 0.04 b 0.71 ± 0.05 a
A. chroococcum + A. faecalis 6.37 ± 0.11 d 5.66 ± 0.09 a 2.41 ± 0.05 a 0.62 ± 0.08 a 0.61 ± 0.02 a

3. Discussion

Salinization of water and soil plays a crucial role in limiting crops’ growth and produc-
tivity [3,4,37]. Soil salinity is a vast problem that spreads in most areas over the world, so it
is imperative to found solutions for plants to have the ability to grow in these salinized
areas [38]. In recent years, light has been shed on the use of natural sources and microor-
ganisms (bacteria, fungi, algae, plant extracts, etc.) to cope with salt stress and mitigate
its harmful effects on plant life [4,7,39–42]. PGPB have the colossal ability to lessen salt
stress and improve plant development, playing a critical role in food security by boosting
the productivity of crops. Use of PGPB under salinity stress enhances plant growth in
several ways, including ACC deaminase activity, synthesis of plant hormones as IAA,
gibberellic acid (GA), abscisic acid (ABA), cytokinin, and exopolysaccharides [43]. PGPR
stimulate plant growth directly by enhancing the uptake of nutrients through phytohor-
mone production (e.g., auxin, gibberellins, and cytokinin) or by lowering plant ethylene
levels enzymatically [17]. It has been suggested that the production of auxins by root-
associated microbes is one of the most important mechanisms through which microbes
regulate plant growth. Also, specific beneficial endophytes can produce auxin and/or
display ACC deaminase activity that can aid host plant growth in dangerous areas [44].

Soil salinity as a vital stress factor harms the microbial process, diminishing bacterial di-
versity and controlling microbial wealth, composition, and functions [28]. Plants’ inoculation
can mitigate this negative impact of salinity with our tested PGPR Azotobacter chroococcum,
Alcaligenes faecalis, and co-inoculation. Bacterial treatment of canola plants with plant
growth-promoting rhizobacteria had a remarkable stimulation effect on the rhizosphere’s
microbial population [45]. Dehydrogenase activity by indigenous microorganisms in soil
can serve as a valuable marker of microbial activity, which indicates the relative effective-
ness of microbes with plant rhizosphere in soils [46]. Our results are in harmony with
results [47] that stated that the combined inoculation with Azospirillum sp. and Bacillus sp.
increased the dehydrogenase at all growth plant stages. Plant growth-promoting rhizobac-
teria can enhance the tolerance of plants to various abiotic stresses, including salinity.

Our study demonstrated enhancements in salinity-stressed canola plants’ growth
parameters in response to inoculation with Azotobacter chroococcum and Alcaligenes faecalis.
Similar improvements in plant growth due to inoculation with halotolerant plant growth-
promoting bacterium Alcaligenes faecalis were evidenced in the study of [48], which stated
that vegetative growth characteristics of salinity-stressed rice and wheat plants, respectively,
were increased. These results documented that PGPR inoculation appeared to reinforce
canola’s growth by relieving the suppression caused by salinity stress [49]. The utilization
of PGPR was recommended to boost the growth of different salinity-stressed crops [50–53].
Ref. [54,55] linked the augmentation of plant growth with the ability of PGPR to produce
some plant growth regulators, solubilize phosphate, and fix nitrogen. These features are
found in the selected isolates and generally increase a plant’s ability to absorb nutrients
from the soil and improve its growth, especially under salinity-stress conditions.

Photosynthetic pigments are a fundamental physiological trait directly associated
with photosynthesis ability under abiotic stresses. Our results observed increases in chloro-
phylls and carotenoids in canola plants cultivated in saline soil. These increases were
due to the soil supplementation with the tested PGPR. Similar results recorded enhance-
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ments in the photosynthetic pigments in PGPR-inoculated plants under different saline
conditions [56–58]. The augmentation in photosynthetic pigments in PGPR-inoculated
plants suggests the potency of bacterial inoculation to nullify the harmful impacts of
salinity stress by improving the activities of electron transporters associated with photo-
synthesis [59] as well as the biosynthesis of proteins and enzymes that related to pigment
stabilization [60].

In the present study, the inoculation with plant growth-promoting rhizobacterial
strains Azotobacter chroococcum and Alcaligenes faecalis, especially the co-inoculation be-
tween them, led to enhancements in soluble sugars’ content in canola plants cultivated in
saline soil. These enhancements were evidenced in several studies [61–65]. Recently, the
inoculation with A. chroococcum exhibited increases in sugar contents in maize plants culti-
vated in salt-affected soil [4]. They documented that sugar content rising is considered as a
vital osmolyte that maintains the plant against salinity stress. The current study clarified
that soluble proteins’ content in salinity-stressed canola plants was increased due to the
inoculation with PGPR. Various studies on crop plants have well documented the positive
impacts of rhizobacterial inoculation on increasing the soluble protein content [4,63–65]. A
possible strategy behind this increase could be that bacterial inoculation might inhibit the
activity of protein-hydrolyzing enzymes in addition to the ability of bacteria in promoting
the efficiency of proline in protecting soluble proteins and, thus, increasing their amounts
under the salt-stress conditions [63,65,66].

The plant faces environmental stressors by accumulating some osmolytes like proline,
which acts as a solute for osmoregulation [67]. However, the accumulation of proline in
plants has been documented as an environmental stress indicator [68]. The proline level in
the present study was inhibited in salinity-stressed canola plants that were inoculated with
the tested PGPR containing ACC-deaminase. This result is in harmony with the findings
of [69,70]. The current results may imply that PGPR alleviated the severity of salinity
stress on the plant and, thus, the proline content (a marker of stress) in canola shoots also
lessened.

Our study showed a reduction in the contents of MDA and H2O2 in salinized canola
plants that were inoculated with PGP rhizobacterial isolates. Our findings on the efficacy
of PGPR in decreasing the contents of MDA and H2O2 in plants cultivated in conditions
of salinity stress are in harmony with the studies of [52,70,71]. Thus, PGPR could prevent
canola plants from oxidative destruction caused by salinity stress.

To mitigate the oxidative stress induced by salinity stress, the plants developed a group
of physiological and biochemical strategies made of various enzymes that can scavenge
the ROS species. Antioxidant enzymes act in a network to achieve the detoxification of
ROS species [10,72,73]. In our study, we noticed different increases in SOD, APX, and POD
activities in the inoculated canola plants with the mentioned PGPR under saline conditions.
Our findings comply with the reports of [74] on mung bean.

In this study, PGPR’s positive role appeared in removing the harmful effect of salinity
stress by limiting the uptake of Na and increasing the uptake of essential minerals such as
N, K, Ca, and Mg. This positive role may be attributed to the finding that PGPR facilitate
the entity of essential elements in the soil to be easily absorbed by the plant [13,75] or due to
roots’ exudates initiated by PGPR, increasing the availability of some micronutrients [57,76].
Moreover, increasing nitrogen content in canola shoots is attributed to the ability of PGPR
in increasing nitrogen and mineral availability in the soil [17].

4. Materials and Methods
4.1. Isolation, Identification, and Description of PGPR (Salt-Tolerant Bacteria)

Two halophilic bacterial strains were used for alleviating the salt stress in canola
plants. The first halophilic strain is rhizospheric bacteria isolated, purified on Ashby’s
media as selective media [77] from the rhizosphere of wheat plant cultivated in saline soil
at Sahl El-Tina, Sinai, Egypt (Electrical conductivity (EC 6000–7000 ppm), and identified
to its molecular level as Azotobacter chroococcum strain NBRC using partial 16S rRNA
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gene sequence technique according to [78] in Sigma Scientific Services Co. (Giza, Egypt).
The second strain is rhizospheric bacteria isolated, purified on King’s media as selective
media [79] from the barley plant’s rhizosphere cultivated in saline soil at Ras Sudr, Sinai,
Egypt (EC 5000–6000 ppm), and identified to molecular level as Alcaligenes faecalis strain
NBRC 13111. Two strains were assigned in Gene Bank NCBI with accession number as NR
113606.1 and NR114167, respectively.

4.2. Pot Experiment

A pot experiment was conducted in the greenhouse of the microbiological unit of
Desert Research Center, Cairo, Egypt. Canola (Brassica napus L. cv. Pactol) was pro-
vided by Agricultural Research Center (ARC), Giza, Egypt. Microbial inoculants of
Azotobacter chroococcum, Alcaligenes faecalis, and a mixture of them were used for treat-
ing canola plants. The experimental design was performed in a complete randomized
block design (CRBD) with three replications. Climate conditions were: average day/night
temperature cycle of 23/12, light 10/14 h, and air humidity between 39% and 58%. Ten
Seeds of canola were planted into 10-kg pots containing saline soil collected from Sahl
El-Tina, Sinai, Egypt. The physical and chemical characteristics of the soil were soil depth
0–15 cm−1, total sand 30%, silt 10.2%, clay 59.8%, texture clay, EC 11.5 mmhos cm−1,
pH 7.6, HCO3- 18.5 mg g−1, Cl- 51.6 mg g−1, SO4

− 9.8 mg g−1, Ca2+ 21.1 mg g−1, Mg2+

15.1 mg g−1, Na+ 56.2 mg g−1, and K+ 0.64 mg g−1. For bacterial treatments, seeds were
coated with bacterial inoculum using carboxymethyl cellulose (CMC) solution (1%) in the
ratio of 1 kg seeds/250 mL of inoculum (106 CFU/mL) mixed with 50 g−1 of CMC before
application to get a thin, uniform coating of bacterial inoculum on seeds. Inoculated seeds
were dried in shade before sowing [80]. Untreated control seeds were maintained. After
seed germination, plants were thinned1to five plants per pot then each pot was inoculated
with 10 mL of microbial inoculum (106 CFU/mL) of an individual strain and mixture
of them. Pots were arranged as follows: (1) saline soil control, (2) saline soil control +
Azotobacter chroococcum, (3) saline soil control + Alcaligenes faecalis, and (4) saline soil control
+ co-inoculation with Azotobacter chroococcum and Alcaligenes faecalis. Pots were irrigated
two times weekly. After 66 days of planting, the plants were harvested to determine lengths
of shoots and roots, fresh and dry weights of shoots and roots, and biochemical parameters.

4.3. Microbiological Analysis of Canola Rhizosphere

Total microbial count and populations of Azotobacter chroococcum and Alcaligenes faecalis
in the rhizosphere samples were estimated using yeast extract agar medium [81], Ashby’s [77],
and King’s media [79]. Soil dehydrogenase activity (µg TPF/g dry soil/24 h) was analyzed
by the reduction of 2,3,5-triphenyl tetrazolium chloride (TTC) to triphenyl formazan (TPF)
as described by [82].

4.4. Determination of Photosynthetic Pigments

Chlorophyll content in fresh leaves of canola plants was estimated according to
methods described by [83]. In this method, 100 mL of acetone (80%) were used for pigments’
extraction from fresh leaves (1 g). Then, the extract was filtered and the green color was
measured at 470, 649, and 665 nm using spectrophotometer. Photosynthetic pigments
calculated according to the following equations: Chl a (mg g−1 FW) = 11.63(A665) −
2.39(A649), Chl b (mg g−1 FW) = 20.11(A649) − 5.18(A665); Chl a + b (mg g−1 FW) =
6.45 (A665) +1 7.72(A649); carotenoids’ contents (mg g−1 FW) = {(1000 ×A470) − (1.82 ×
Chl a) − (85.02 × Chl b)}/198, according to [84].

4.5. Determination of Osmolyte Contents

Soluble sugars’ content of dried canola plants’ shoot was estimated according to [85].
One g from the dried sample was placed with 5 mL of 2% phenol and 10 mL of 30%
trichloroacetic acid for extraction. Two mL of the filtered extract were mixed with 4 mL
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of anthrone reagent (2 g anthrone/L of 95% sulfuric acid). At 620 nm we measured the
developed blue-green color.

Soluble proteins’ content was estimated according to methods of [86] in the dried
shoot of canola plants. Sample (0.1 g) was extracted in 5 mL of 2% phenol and 10 mL of
distilled water. One mL of extract was added to 5 mL of alkaline reagent (50 mL from
2% Na2CO3 prepared in 0.1 N NaOH and 1 mL from 0.5% CuSO4.5H2O prepared in 1%
sodium potassium tartrate) and mixed thoroughly. Then, 0.5 mL of folin reagent (diluted
1:3 v/v) was added. The developed color after 30 min was measured at 750 nm.

The described method of [87] was used for determination of proline contents. In
such method, a half gram of the dried shoot of canola plants was homogenized in 10 mL
(3%) sulfosalicylic acid. The homogenate was filtered and 2 mL of it were reacted with
2 mL of acid ninhydrin (warm 1.25 g ninhydrin in 30 mL glacial acetic acid and 20 mL 6M
phosphoric acid) and 2 mL of glacial acetic acid for one hour in a boiling water bath. Then,
the reaction was placed in an ice bath. Four mL of toluene was added to the mixture 4.
Then, we read the absorbance at 520 nm.

4.6. Estimation of Malondialdehyde Content

MDA content in canola fresh leaves was estimated according to the described method
of [88]. In this method, fresh leaf samples (0.5 g) were extracted with 5% trichloroacetic
acid and centrifugated at 4000× g for 10 min. Then, 2 mL of the extract were mixed with
2 mL of 0.6% Thiobarbituric acid (TBA) solution. Then, the mixture was placed in a water
bath for 10 min. After cooling, the absorbance of the devolved color was at 532, 600, and
450 nm subsequently. MDA content was calculated according to the following equation:
6.45 × (A532 − A600) − 0.56 × A450.

4.7. Determination of Hydrogen Peroxide (H2O2) Content

Estimation of hydrogen peroxide content in the leaves of canola plants was according
to methods described by [89], in which fresh samples (0.05 g) were extracted with 4 mL
cold acetone. An aliquot (3 mL) of the extracted solution was mixed with 1 mL of 0.1%
titanium dioxide in 20% (v:v) H2SO4 and the mixture was then centrifuged at 6000 rpm for
15 min. The intensity of the yellow color of the supernatant was measured at 415 nm.

4.8. Extraction and Assay of Antioxidant Enzymes

For the extraction of antioxidant enzymes, terminal buds with first true leaves of
canola plants were used, according to methods described by [89], for the extraction of POD
and SOD. A method described in [4] was used to extract ascorbate peroxidase (APX).

The activity of SOD was estimated according to methods described by [90]. The
solution (10 mL) consisted of 3.6 mL of distilled water, 0.1 mL of enzyme, 5.5 mL of 50 mM
phosphate buffer (pH 7.8), and 0.8 mL of 3 mM pyrogallol (dissolved in 10 mM HCl). The
rate of pyrogallol reduction was measured at 325 nm with UV-spectrophotometer.

The described method of [91] was followed to estimate APX activity, in which 0.5 mM
AsA, 0.8 mL of potassium phosphate buffer (50 mM, pH 7), 0.1 mM H2O2, and 0.2 mL
enzyme extract were mixed. The changes in absorbance were read at 290 nm.

The activity of POD was estimated according to methods described by [92]: 5.8 mL of
50 mM phosphate buffer (pH 7.0), 0.2 mL of the enzyme extract, and 2 mL of 20 mM H2O2
after addition of 2 mL of 20 mM pyrogallol. The rate of increase in absorbance as pyrogallol
was determined spectro-photometrically by UV-visible spectro-photometer within 60 s at
470 nm.

4.9. Determination of Mineral Contents

Dry shoot samples (0.1 g) were acid digested with 80% perchloric acid (HCLO4) and
sulfuric acid (H2SO4) 1:5 solution for 12 h. A method described by [93] was used to
determine Na, K, Ca, and Mg in the digested sample. Nitrogen content was determined in
digested sample according to a modified micro-Kjeldahl method [94].
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4.10. Statistical Analysis

Data were statistically analyzed by analysis of variance (ANOVA), to determine a sig-
nificant difference between different treatments using CoStat (CoHort software, Monterey,
CA, USA). Least significant difference (LSD) at p ≤ 0.05 was used to indicate a significant
difference among treatments. Results were shown as mean ± standard error (SE) of three
independent replications for each treatment (n = 3).

5. Conclusions

From the outcome of the obtained results, it seems likely to conclude that using of
Azotobacter chroococcum and Alcaligenes faecalis brought about enhancements in different
growth indices of canola plants grown in saline soil. The co-inoculation with both bacterial
isolates brought about significant improvements in most morphology parameters, photo-
synthetic pigments and carotenoids, soluble sugars, and soluble protein contents. Also,
proline, malondialdehyde, and hydrogen peroxide contents were inhibited, indicating less
salt-stress toxicity. Additionally, ascorbate peroxidase, peroxidase, and superoxide dis-
mutase activities were promoted as a reason for the single inoculation and co-inoculation
with the mentioned isolates, thus boosting the tolerance of plants to cope with salinity
stress. Moreover, mineral contents (except Na+) were enhanced in salinity-stressed canola
plants in response to inoculation with Azotobacter chroococcum, Alcaligenes faecalis, and
their co-inoculation. We suggest using the co-inoculation with Azotobacter chroococcum and
Alcaligenes faecalis producing IAA, solubilizing phosphate, and containing ACC-deaminase
as an effective and important approach for ameliorating salinity stress.
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