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Abstract: Soil contamination with toxic cadmium (Cd) is becoming a serious global problem and
poses a key hazard to environments and the health of human beings worldwide. The present study
investigated the effects of foliar applications of three forms of silicate chemicals (calcium silicate,
sodium silicate, and potassium silicate) at four rates (0.25%, 0.5%, 0.75%, and 1.0%) at tillering stage
on rice growth and the accumulation of Cd under Cd stress (30 mg kg−1). The results showed that Cd
stress reduced the yield-related traits and enlarged Cd contents in different rice organs. The leaf gas
exchange attributes and yield traits were enhanced, and the Cd accumulation and bioaccumulation
factor in rice organs were reduced, especially in grains, through silicon application. In shoots, roots,
and grains, foliar spray of Si reduced Cd contents by 40.3%, 50.7%, and 47.9%, respectively. The
effectiveness of silicate compounds in reducing Cd toxicity varied with the kind of chemicals and
doses of foliar applications. Foliar application of potassium silicate, at a rate of 0.5%, at tillering
stage, showed the best effectiveness in improving grain yield, while mitigating Cd accumulation in
rice grains. The outcome of this study provides a promising practicable approach in alleviating Cd
toxicity in rice and preventing the entrance of Cd into the food chain.

Keywords: cadmium accumulation; Cd stress; grain yield; physiological traits; rice; silicon fertilizer

1. Introduction

In terrestrial ecological systems, soil is a critical supporting medium, as well as a
key source of essential minerals and nutrients for plants growth; additionally, it is a
part of material and energy diffusion [1]. Environmental contamination, due to heavy
metals pollution, has become an alarming issue in many countries. Cadmium (Cd), lead
(Pb), chromium (Cr), and nickel (Ni) are normally the presented toxic heavy metals in
agricultural lands [2,3]. Soil contamination, through heavy metals, is a main environmental
issue and contamination of agricultural fields with Cd is of greater concern [4–6]. Cd is a
highly toxic metal for plants, animals, and human beings [7,8]. Cadmium is very mobile,
which is why it can enter into our food chain and pose adverse health-related effects [9]. For
many countries, these agricultural soils have been contaminated with Cd from irrigation,
due to waste, effluent from different kinds of chemical and fertilizers industries, mining,
and landfills [10,11]. Cadmium toxicity resulted in harmful effects in plants, such as
growth inhibition, deficiency of photosynthesis pigments, leaf chlorosis, carbohydrate
alteration, oxidative stress, imbalance of homeostasis, and lower crops yields [12]. Thus,
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Cd stress adversely influences plant growth, grain yield, and food quality [13,14]. On the
other hand, when raw-effluent, polluted with metals, is applied to food crops, these toxic
metals enter into plants’ edible parts and cause adverse effects to those who consume such
contaminated crops [15,16].

Among cereal crops, Rice is a major crop, and about half world population depends
on rice as its basic food [17–21]. Cd enters plants through the root cortical tissues and
travels into the xylem via a symplastic and/or apoplastic pathway before entering the
xylem part of the roots. Consequently, Cd is translocated towards the shoots and grains,
causing toxicity to human beings who consume Cd-contaminated grains [22–24]. Therefore,
there is an urgent need to take measures, so Cd could not be taken up by plants and to
prevent its translocation towards grains.

Some cost-effective and environmentally friendly approaches, such as biochar, farm-
yard manure, organic acids, nano-materials, etc., have been attempted metal contaminated
soil reclamation, in order to diminish Cd accumulation in plant tissues, in particular grains,
under Cd-contaminated land [25–29]. The use of silicon (Si) shows promise in elevating
plant responses to abiotic stress, including metal toxicity [15,30]. Silicon is abundant in
our soils, but it is not bioavailable, so the use of bioavailable forms of Si is essential to
cope with plant stress (when grown in Cd-contaminated soil) [31]. Previous findings have
been shown that Si-mediated metal toxicity alleviation can mainly attribute to reduced
intake and transportation of Cd among plant organs in cotton [32], Chinese cabbage [33],
wheat [12], peanut [34], and rice [35]. Si decreases the toxicity and Cd accumulation in rice,
typically, Si-accumulating crop variety. Calcium silicate decreased the Cd concentration in
straw and grains of rice [36], such as 24% deduction in rice shoots [37].

Previous studies involving Si are often limited to the use of one type of Si salts
and a single dose. Whether other forms of Si salts are advanced and whether combined
use of multiple Si salts, under appropriate levels, are more effective for alleviating Cd
stress in rice remains unknown. Hence, the objectives of the current study were: (1) to
evaluate the impact of different silicate chemicals (calcium silicate, sodium silicate, and
potassium silicate), under varying dose levels, on the growth and productivity of rice in
Cd-contaminated soils; and (2) to assess the efficiency of these chemicals for the alleviation
of Cd stress and reduction of Cd accumulation in rice grains.

2. Results
2.1. Growth Attributes

Analysis of variance showed that various types of silicate chemicals (C), different
levels (T), and the interactive effect of C × T meaningfully (p ≤ 0.01) affected the root, shoot
length, and rice plants height grown in Cd-spiked soil (Table 1). For silicate chemicals,
maximum root length (6.8 cm), shoot length (17.6 cm), and plant height (75.8 cm) were
observed in the treatment of potassium silicate, followed by sodium silicate and then
calcium silicate. Different foliar application treatments also showed variation in all growth
attributes. Maximum increases in the root length (76.9%), shoot length (78.9%), and plant
height (53.0%) were observed where foliar application of 0.50% of potassium silicate
solution was applied, as compared to the control (Table 1).

2.2. Photosynthetic Attributes

The exogeneous application of Si significantly improved the photosynthetic attributes
(i.e., transpiration rate, photosynthetic rate, stomata conductance, and chlorophyll contents)
in the plants of rice grownup within Cd-spiked soil (Figure 1). Maximum increases in
chlorophyll contents (15.7%), photosynthetic rate (0.79%), transpiration rate (2.15), and
stomatal conductance (19.51%) were observed when sodium silicate was applied at the rate
of 0.50%, as compared to calcium silicate. However, potassium silicate, when applied at
same concentration, improved the chlorophyll contents (31.7%), photosynthetic rate (2.05%),
transpiration rate (4.50%), and stomatal conductance (34.1%), as compared to calcium
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silicate. However, application of potassium silicate, at the rate of 0.50%, significantly
improved the photosynthetic attributes, as compared to the control.

Table 1. Effect of silicate chemicals, with various doses of foliar applications, on the growth attributes
of rice grown in Cd-contaminated soil.

Treatments Root Length
(cm)

Shoot Length
(cm)

Plant Height
(cm)

Silicate Chemicals (C)
C1 = Calcium Silicate 5.7 C 12.5 C 66.9 C
C2 = Sodium Silicate 6.5 B 14.9 B 70.8 B

C3 = Potassium Silicate 6.8 A 17.6 A 75.8 A
HSD (C) (p ≤ 0.01) 0.31 0.30 0.29

Foliar Application Treatments (T)
T1 = 0 (Control) 4.7 E 11.4 E 55.3 E

T2 = 0.25% 7.4 B 18.2 B 79.5 B
T3 = 0.50% 8.4 A 20.4 A 84.6 A
T4 = 0.75% 6.8 C 14.6 C 72.1 C
T5 = 1.00% 5.9 D 12.8 D 64.6 D

HSD (T) (p ≤ 0.01) 0.47 0.46 0.44
Significance Level (C) 40.2 ** 860 ** 2849 **
Significance Level (T) 280 ** 1564 ** 11,697 **

Significance Level (C × T) 4.15 ** 98.5 ** 219 **
Within each column, mean data followed by the same letters are not statistically different (p ≤ 0.01 HSD test).
**, p < 0.01.
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Figure 1. Effect of silicate chemicals, with various doses of foliar applications, on the photosynthetic
attributes of rice grown in Cd-contaminated soil.
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2.3. Yield Attributes

Applications of Si in rice showed a significant impact (p ≤ 0.01) on yield attributes
of rice, as compared to non-Si treatment (Table 2). All the interactive effects were non-
significant results for all the yield attributes, except for panicle length, 100-kernels weight,
and grain yield. Maximum panicle length (17.5 cm), number of kernels per panicle (49.3),
100-kernels weight (16.8 g), yield of straw (20.6 g plant−1), grain yield (10.55 g plant−1),
biological yield (31.1 g plant−1), and harvest index (32.4%) were observed where potassium
silicate was applied, as compared to sodium and calcium silicate, while the minimum of all
yield attributes was observed where calcium silicate was applied in Cd-spiked soil. For
foliar application rates, the maximum increases in number of tillers per hill (80.6%), panicle
length (59.4%), number of kernels per panicle (53.3%), 100-kernels per panicle (59.1%),
straw yield (88.2%), and grain yield (95.8%) were noticed where 0.50% foliar application
was applied in the soil, as compared to the control.

Table 2. Effect of silicate chemicals, with various doses of foliar applications, on the yield attributes of rice grown in
Cd-contaminated soil.

Treatments
Number of

Tillers
per Hill

Panicle
Length (cm)

Number of
Kernels per

Panicles

100-Kernels
Weight (g)

Straw Yield
(g pant−1)

Grain Yield
(g plant−1)

Biological
Yield

(g plant−1)

Harvest
Index (%)

Silicate Chemicals (C)
C1 = Calcium

Silicate 6.20 14.5 C 43.7 B 14.5 C 16.5 B 7.22 C 23.7 B 29.7

C2 = Sodium
Silicate 8.13 16.3 B 45.7 B 15.6 B 18.0 AB 8.95 B 27.0 AB 31.9

C3 = Potassium
Silicate 8.93 17.5 A 49.3A 16.8 A 20.6 A 10.6 A 31.1 A 32.4

HSD (C)
(p ≤ 0.01) 2.96 0.31 3.13 0.34 3.78 1.15 4.18 4.25

Foliar Application Treatments (T)
T1 = 0 (Control) 5.66 B 12.8 E 37.1 D 12.3 E 13.1 C 6.71 E 16.8 C 22.1 C

T2 = 0.25% 9.44 AB 18.2 B 51.4 B 17.6 B 21.7 AB 12.2 B 33.9 A 36.3 A
T3 = 0.50% 10.2 A 20.4 A 56.9 A 19.6 A 24.7 A 13.1 A 38.8 A 36.7 A
T4 = 0.75% 7.22 AB 15.4 C 45.2 C 15.3 C 17.8 BC 9.70 C 26.5 B 33.2 AB
T5 = 1.00% 6.22 AB 13.6 D 40.3 D 13.5 D 14.6 C 7.79 D 20.4 BC 28.3 BC

HSD (T)
(p ≤ 0.01) 4.50 0.47 4.75 0.52 5.74 0.74 6.35 6.45

Significance
Level (C) 2.73 NS 284 ** 9.97 ** 2.73 ** 3.63 * 25.4 ** 9.62 ** 1.39 NS

Significance
Level (T) 3.30 * 736 ** 48.3 ** 3.30 ** 11.8 ** 103 ** 34.8 ** 15.2 **

Significance
Level (C × T) 1.03 NS 36.7 ** 1.66 NS 1.03 ** 0.33 NS 2.26 * 0.79 NS 0.59 NS

Within each column, mean data followed by the same letters are not statistically different (p ≤ 0.01 HSD test). *, p < 0.05; **, p < 0.01;
NS, not significant.

2.4. Cd and Si Accumulations

In roots, shoots, and grains of rice, significant differences in Cd and Si contents were
observed (Table 3). The interactive effect of C × T was significant for Cd content in
roots and shoots, respectively. For silicate chemicals, the maximum Cd concentration in
roots (7.77 mg kg−1), shoots (6.85 mg kg−1), and grains (1.80 mg kg−1) was observed
in C1 (calcium silicate) and minimum Cd concentration in roots (7.16 mg kg−1), shoots
(5.14 mg kg−1), and grains (1.54 mg kg−1) was noticed in C3 (potassium silicate). Maximum
decrease of Cd contents in roots (50.7%), shoots (40.3%), and grains (47.9%) were noticed,
where foliar application of Si was performed at the rate of 1.00% of potassium silicate. Simi-
larly, maximum Si contents were observed, where Si foliar application was performed at the
rate of 1.00%, using the same chemical. The decreasing order for the reducing Cd contents
and improving Si contents for the silicate compounds was potassium silicate > sodium
silicate > calcium silicate (Table 3). In the treatment where Si application was performed
(at the rate of 0.50%), under the Cd-spiked soil, the lowermost concentrations of Cd in rice
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grains, shoots, and roots were found (Table 3). The results showed that exogeneous applied
Si diminished the concentration of Cd in the roots, shoots, and grains of rice.

Table 3. Effect of silicate chemicals, with various doses of foliar applications, on the Cd and Si contents (mg kg−1) in rice
organs grown in Cd-contaminated soil.

Treatments Cd in Root Cd in Shoot Cd in Grain Si in Root Si in Shoot Si in Grain

Silicate Chemicals (C)
C1 = Calcium Silicate 7.77 A 6.85 A 1.80 A 2.17 C 1.76 C 0.36 B
C2 = Sodium Silicate 7.38 AB 5.77 B 1.68 B 2.27 B 1.81 B 0.44 A

C3 = Potassium Silicate 7.16 B 5.14 C 1.54 C 2.37 A 1.98 A 0.51 A
HSD (C) (p ≤ 0.01) 0.57 0.34 0.08 0.05 0.05 0.07

Foliar Application Treatments (T)
T1 = 0 (Control) 10.1 A 7.76 A 2.17 A 1.56 E 1.27 E 0.18 E

T2 = 0.25% 7.97 B 6.59 B 1.97 B 1.86 D 1.46 D 0.30 D
T3 = 0.50% 7.23 BC 5.88 C 1.71 C 2.14 C 1.87 C 0.41 C
T4 = 0.75% 6.82 C 4.74 D 1.41 D 2.69 B 2.13 B 0.58 B
T5 = 1.00% 5.00 D 4.63 D 1.13 E 3.10 A 2.52 A 0.71 A

HSD (T) (p ≤ 0.01) 0.87 0.52 0.12 0.08 0.08 0.10
Significance Level (C) 3.46 * 77.7 ** 28.5 ** 51.6 ** 39.4 ** 12.3 **
Significance Level (T) 76.1 ** 107 ** 176** 599 ** 949 ** 63.7 **

Significance Level (C × T) 15.4 ** 14.2 ** 1.97 NS 3.33 ** 1.16 NS 0.78 NS

Within each column, mean data, followed by the same letters, are not statistically different (p ≤ 0.01 HSD test). *, p < 0.05; **, p < 0.01;
NS, not significant.

2.5. Health Risk Index

The health risk index (HRI) values of Cd, by the food chain for adults, were decreased
with Si application, as compared to the control (Table 4). With respect to adults, the HRI
values ranged from 0.20 to 0.44, as maximum value for the control and the smallest value
for Si application, in the form of potassium silicate, at a spray rate of 1.00%.

Table 4. Effect of silicate chemicals, with various doses of foliar applications, on the HRI of rice
grown in Cd-contaminated soil.

Treatment Calcium Silicate Sodium Silicate Potassium Silicate

T1 0.44 0.44 0.43
T2 0.41 0.40 0.38
T3 0.37 0.36 0.31
T4 0.34 0.27 0.25
T5 0.26 0.23 0.20

T1 = control; T2 = foliar application of Si @ 0.25%; T3 = foliar application of Si @ 0.50%; T4 = foliar application of Si
@ 0.75%; T5 = foliar application of Si @ 1.00%.

3. Discussion

Globally, agricultural soils contaminated by Cd, lead to a greater reduction in growth
and productivity of plant [38]. In plants, Cd toxicity varies with the growth conditions,
experimental settings, and depends on the availability of Cd, exposure time, and of the
plant growth stages [39]. The present study revealed that the growth attributes of rice
plants were considerably suppressed by the cadmium stress. However, the exogenous Si
(potassium silicate) application, at the rate of 0.50% at tillering stage, improved the growth
attributes under Cd stress. However, application rates above 0.50% cause toxic effects
on leaves. These same observations were recorded in previous studies [40]. Under Cd
stress, the application of Si may improve the plant growth in various ways, such as through
increasing nutrient levels, chlorophyll contents, root exudates of organic acids, root volume,
and overall root growth [15]. The simulated root growth by potassium silicate could be due
to the reason that potassium is more effective for the activation of enzymes, which enhanced
plant growth and development, compared with other forms of silicate salts. In addition,
Si would reduce the Cd toxic impacts, as well as additional metals, through improving
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the defense mechanisms of the plant. It is enhanced through decreasing the production
of reactive oxygen species (ROS) and the antioxidant defense system improvement [41].
However, in rice, the ultrastructure changes of chloroplast, posed with Cd stress, were
positively affected by Si [40]. To mitigate Cd stress in plants, Si treatment played vital role
by improving the growth of rice.

Among the foremost physiological processes that are extremely sensitive to metal
stress, photosynthesis is one of the major one [7]. In the current investigation, under
Cd stress, total chlorophyll contents and photosynthesis attributes were reduced in the
plants grown in non-Cd-contaminated soil (Figure 1). Findings of the earlier research also
documented that photosynthesis inhibited by Cd in plants [40,42]. In the presence of Cd,
the reduction in photosynthetic attributes might be by the reason of the Cd negative con-
sequences on photosynthetic machinery [7,40]. With the exogeneous application of Si the
negative effect on photosynthesis is mitigated. In plants, improvements in concentrations
of chlorophyll and light use efficiency might be the reason for the increase in photosynthetic
performance in Si-mediated plants [40]. It has been documented that, due to the formation
of double layer in the plant leaves, the transpirations reduced, and the water use efficiency
boosted [43]. Therefore, by the Si application, rice Cd toxicity is decreased, thus improving
the photosynthetic capacity of plants.

Yield of rice plants involve a long-term, continuous method. Through this method,
the plants in nature rely mostly on their own ability to resist the toxic effect from Cd [44].
Application of Si improved the yield attributes of rice by reducing the Cd toxicity (Table 2).
These same observations were recorded in previous studies [45]. The improvement in
the yield attributes might be due to enhancement in the essential nutrient’s elements
in root volume, chlorophyll contents, and discharge of organic acids and histological
features improved by the silicon application under metal stress [46]. Cd toxicity and
toxic consequences on rice can be alleviated by Si binding protein and mainly reduced
antioxidant activity [37]. The toxic effect of Cd (by enhancing the antioxidant defense
system) and plant protection (by decreasing Si and increasing ROS production) ultimately
results in the best yield performance under the Cd stress [47]. The yield improvement in
rice plants could be attributed to the potential of Si to increase growth and concentration
of photosynthetic pigments and photosynthesis by induced Si [48]. The stunted growth
of rice plants and increased the number of empty grains in kernels significantly deceased
grain yield and might be the reason of Cd stress and silicon deficiency [49].

Greater metals and metalloids accumulation in roots, rather than in other plant organs
in the crops, are observed in previous studies [50–53]. In the roots by many factors, such as
compartmentalization of vacuolar sequestration, apoplastic barriers, and chelation restricts
the translocation of Cd by the higher amount in the shoot and grain portion of rice plant [54].
The translocation of Cd from roots to shoots can be reduced by the increase in production
of thiol in roots [46,55]. The process of Cd-alleviation by Si has been studied, and it appears
that a large deposition of Si near endodermis may contribute to increased Cd-retention
in cell walls [56]. According to a recent study, the complexation and co-deposition of
Si-hemicellulose with Cd may occur, resulting in Cd uptake inhibition in rice cells [57].
Furthermore, the role of Si in reducing the deleterious effects of Cd-stress on plants involves
changes in the expression of multiple genes, as well as the metabolism [10].

Several potential mechanisms have been proposed for the function of Si in the allevia-
tion of Cd stress in plants: (i) Si-induced decrease in Cd accumulation, including decreased
apoplastic transport of Cd, due to Si deposition in the endodermis and epidermis cell
wall [37], (ii) the formation of a [Si–hemicellulose matrix] Cd complex and succeeding
co-precipitation [57], (iii) down-regulation of genes involved in Cd accumulation [57], and
(iv) reduce supply of Cd soil due to pH increase after application of silicate compounds for
achieving the good quality grains for achieving the best health [58] as depicted in (Figure 2).
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The health risk of any toxic chemical can be assessed by quantifying the possible
quantity and route of entry to the target organisms. There are several routes through which
Cd can be enter to humans but the major pathway of Cd entry is the food chain [7]. With
respect to the critical Cd limits (0.2 mg kg−1) in cereal grains, the exogeneous application
of Si reduced the concentration of Cd in the grains below the threshold level under the
conditions of experiment (Table 4). These findings verified Si application may result in the
reduction of the Cd concentration in grains. Si reduced the HRI for Cd, as shown in the
results (Table 4). These outcomings showed that supply of Si not only enhances rice grains
quantity but also the health rick lessened by it by the use of food with contamination of
Cd. Our findings showed that HRI values are lower than one even for control, but that
they may exceed the stated limit if Cd-contaminated rice grains are consumed for a longer
period of time. As a result, there is a need to address metal-contaminated areas, and the
exogeneous application of Si could be a viable solution in this regard.

4. Materials and Methods
4.1. Experimental Design and Treatments

The pot experiment was carried out in a naturally-lit glasshouse at the Department of
Environmental Sciences, The University of Lahore, Pakistan. A completely randomized
design (CRD) was used in this study comprised of two factors: silicon compounds (cal-
cium silicate [Ca2O4Si], sodium silicate [Na2SiO3], and potassium silicate [K2O3Si]) and
application doses (0, 0.25%, 0.50%, 0.75% and 1.0%), with three replications.
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4.2. Plant Materials, Experiment Setup, and Maintenance

A local wide-planted rice cultivar Super Basmati was used as test cultivars. Sodium
hypochlorite (2.6% active chloride) was used to surface sterilize rice seeds for 2 min and
then using deionized water washed carefully for three times. Seeds were sown in farm
soil without Cd amendment in a nursery for 25 days before transplanted in to pots (15 cm
diameter and 20 cm depth) filled with 10 kg of air-dried farm soil with CdCl2 amendment
(at the rate of 30 mg kg−1). Initially, ten uniform seedlings were transplanted into each
pot and thinned to six per pot after 7 days. Fertilizers containing N: P: K at suggested
doses rate (140:90:60 kg ha−1) were applied before to transplantation by mixing to the
soil, i.e., 1.61 g pot−1 diammonium phosphate (DAP), 0.63 g pot−1 sulfate of potash (SOP),
and 0.20 g pot−1 urea (first N split), though residual N application, was performed at
tillering and booting initiation (0.2 g pot−1), respectively. Pots were irrigated with tap
water throughout the whole growth period, and a 2 cm layer of water was sustained on
soil surface, excluding in latter growth periods.

For silicon treatments, solution of each silicon compound was prepared based on the
required amount foreach treatment by adding the chemical in a flask containing small
amount of distilled water dispersed for about 30 min using ultra-sonication. The final
volumes were made of each treatment to get the desired concentrations of each treatment.
After transplanting the first exogeneous application of silicate chemicals was performed
20 days after transplanting and remaining three foliar applications were performed at
1-week intervals using a small hand sprayer. For each foliar spray to subsequent treatments
freshly prepared 2.0 L of Si solution was used. Distilled water was used for the foliar spray
of control plants. Rice plants were assessed at the vegetative (55 days after transplanting,
DAT) and at physiological maturity stages (four months after transplanting).

4.3. Measurements and Data Collection

On the 55 DAT, between 9:00 a.m. to 12:00 noon, the fully expanded upper most
leaves were used for stomatal conductance (gs), photosynthetic rate (A), and transpiration
rate (E), using a portable photosynthesis system infrared gas analyzer (IRGA) (Analytical
Development Company, Hoddesdon, England, UK). For chlorophyll contents, the protocols
of Nagata and Yamashita, [59] were used. Fresh leaves were cut into segments of 0.5 cm
and at −10 ◦C extracted overnight with 80% acetone. The extract was centrifuged for
5 min at 14,000× g rpm and supernatant absorbance was read at 645 and 663 nm using
a spectrophotometer (Halo DB-20/Db-20S, Dynamica Company, London, UK). On the
55 DAT, three plants from each treatment (one plant per pot) were randomly selected and
pulled out for measuring root and shoot length, with the help of measuring scale.

At the physiological maturity, three plants were randomly selected and tagged from
every pot for plant height measurements with a measuring scale. After harvesting of
all plants in each pot, the tagged plants were used for counting tiller number per pot.
Randomly selected five panicles of tillers from each pot were used counting of branches per
panicle. Kernels per panicle were counted and 100-grain weight of kernels was obtained
in grams by using an automatic electric balance after air drying. After threshing, the
clean rough rice grains were air-dried and weighed with 14% moisture content. Biological
yield per pot was determined by adding the grain yield and straw yield per pot. Straws
were sun-dried for one week and straw dry weight per pot was determined. Harvest
index was determined by the proportion of grain yield to biological yield and stated on a
percentage basis.

4.4. Quantification of Cd and Si Contents in Plant Tissues

For the measurement of Cd concentration in dried root, shoot, and grain tissues at
physiological maturity, a mixture of di-acid method was practiced by the subsequent pro-
cedures of Jones and Case, [60]. A Perkin-Elmer for atomic absorption spectrophotometer
(novAA ® 350- Analytik Jena, Jena, Germany) was used to evaluate the concentration of
Cd [61]. For the estimation of Si contents, the rice plant parts sample (<0.250 mm) was
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digested in a mixture of 62% (w/w) HNO3 (3 mL), 30% (w/w) hydrogen peroxide (3 mL), and
46% (w/w) HF (2 mL). After that, 4% (w/v) boric acid was used to dilute the digested sample
to 100 mL. Colorimetric molybdenum blue method at 600 nm was used to determine the Si
concentration in the digest solution [62].

4.5. Health Risk Index

The human health risk index (HRI) of Cd was calculated by measuring the daily intake
of metal (DIM) and dividing it with oral reference doses (RFD) of Cd.

HRI = DIM/RFD
The RFD value for Cd is reported as 0.001 mg kg−1 body weight/day [63]. Daily

intake of Cd was estimated by multiplying the concentration of Cd in grains with daily
food intake and conversion factor and dividing by average body weight of person. By
taking the average body weight in Pakistan (65 kg), the average rice consumption per
capita 0.15 kg day−1 [64].

DIM = Cd in grain × Daily Food intake of rice × conversion factor/average body weight.
A HRI index value of more than one is considered unsafe for human health [65].

4.6. Statistical Analysis

Statistical analysis of data was performed by using Statistix 8.1 (Tallahassee, FL, USA,
1985–2003). To compare the treatments means, the highest significance difference (HSD)
test, at a probability level of 5%, was applied. Graphs were made in Microsoft Excel
software using means ± S.E.

5. Conclusions

The current study revealed that the exogenous application of Si enhanced the rice
growth and biomasses, chlorophyll contents, photosynthesis, and antioxidants enzyme
activities by lowering the oxidative stress and Cd uptake of rice plants. Each single type of
Si salt restricted Cd uptake, with the potassium silicate the most efficient Si salt, compared
to calcium silicate and sodium silicate. Thus, we recommend that the optimum dose of
potassium silicate has the potential to minimize Cd uptake in rice. Moreover, reduction in
Cd accumulation in the grains ensures rice quality, which would further reduce the HRI.
These are amongst the main sustainable development goals (SDGs) for good health and zero
hunger. However, further studies, including field investigations in various environments,
are needed prior to the large-scale application of potassium silicate.
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