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Abstract: Diabetes mellitus (DM) is a serious chronic degenerative disease characterized by high
levels of glucose in the blood. It is associated with an absolute or relative deficiency in the production
and/or action of insulin. Some of the complications associated with DM are heart disease, retinopathy,
kidney disease, and neuropathy; therefore, new natural alternatives are being sought to control the
disease. In this work, we evaluate the antidiabetic effect of Spondias purpurea seed methanol extract
(CSM) in vitro and in a glucose-induced diabetic zebrafish model. CSM is capable of lowering
blood glucose and cholesterol levels, as well as forming advanced glycation end-products, while
not presenting toxic effects at the concentrations evaluated. These data show that CSM has a
promising antidiabetic effect and may be useful in reducing some of the pathologies associated with
diabetes mellitus.
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1. Introduction

In recent decades, the impact and affection that diabetes mellitus (DM) has gener-
ated in the world has been alarming. In 2019, the number of people with diabetes was
463 million and is projected to reach 700 million by 2045 [1]. In Mexico, it is considered
the second biggest cause of mortality [2]. DM is a chronic-degenerative disease related to
elevated blood sugar levels; this causes damage to cells, organs, and systems [3]. Excess
glucose in the blood results in the development of reactive oxygen species [4], inducing the
proliferation of oxidative stress [5], which induces the formation of advanced glycation end
products (AGEs) [6], the development of dyslipidemia [7], as well as a series of metabolic
disorders linked to the disease. There are different types of diabetes, including type 1 dia-
betes (DM1), which is caused by insulin dependence. There is also type 2 diabetes (DM2),
which is the most predominant and is related to the increase in glucose concentration and
insulin resistance or sensitivity [8].

DM is complex and difficult to treat. There are different treatments that seek to regulate
the concentration of glucose in the blood. Today, new alternatives capable of controlling
the development of diabetic pathologies continue to be researched. Medicinal plants
have traditionally been used as therapeutic systems [9], and ethnobotanical extracts have
been analyzed for their richness in phytochemical compounds [10] due to their beneficial
biological activities [11]. These bioactive agents have been isolated from different parts of
plants (bark, lumen, branches, leaves, flowers, fruits, roots, and seeds) [12].

S. purpurea, better known as the Mexican plum, is a fruit tree belonging to the genus
Spondias, which is made up of 17 species from the Anacardiaceae family [13]. Usually
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it grows on stony, sloping sandy or clayey soils with good surface drainage, although it
has been reported that it can develop in soils with difficult drainage, which is why it is
considered a robust species with high resistance to drought [14]. There are several reasons
that justify its study and conservation, among which are: it is a native plant of Mexico, wild
and cultivated specimens can be found, it is used as food by rural inhabitants, it adapts to
low precipitation and high temperature conditions, and it produces at the dry time of the
year when there are normally no fruits. It is a species that can subsist without cultivation
and has the ability to survive without the presence of man [14].

S. purpurea is a deciduous tree with a height of 3 to 8 m, although it can measure
up to 15 m [15]. Its endocarp is 0.5 to 0.75 cm long, it is large and fibrous, and inside it
contains from 1 to 5 seeds. Its fruit is an ovoid drupe of red, orange, yellow, and green
color with dimensions of 1.5 cm wide and 3 cm long [16]; it contains a yellow, juicy and
bittersweet mesocarp [17] which is consumed fresh or processed (dehydrated, pickled
or in brine). It is also used to make jellies and beverages, among other products [18].
Various studies have been carried out to determine the chemical composition [19] of the
fruit [20], the rind [21], and the leaf [22], finding phenolic compounds, flavonoids [23],
tannins [21], polysaccharides, essential oils, triterpenes saponins, sterols [24], and amino
acids [25]. In addition, its antioxidant [16], antimicrobial [26], antifungal [27], antiulcer [28],
photoprotective [23], and anti-glycation potential has been evaluated [29].

In recent years, interest has increased in developing reproducible animal models to
evaluate molecules for the treatment of various diseases [30]. An example of this is the
zebrafish model, which has been widely used for in vivo studies that include diabetes,
cardiovascular disease, oxidative stress, melanoma, the immune system, and cancer [31].
The zebrafish (Danio rerio) is an emerging model of great importance in biomedicine [32];
in the last 60 years, it has allowed the identification, study, and evaluation of drugs,
bioactives, natural extracts, or harmful substances capable of inducing therapeutic action
or toxic to living beings [33]. This organism has approximately a 70% physiological and
genetic similarity with humans [34], which has motivated its use in the development of
research related to metabolic diseases [35] such as diabetes mellitus [36]. Zebrafish have
the capacity to develop diabetes mellitus and its complications [37]. This condition can
be induced by exposing the fish to a medium with a high glucose concentration [38]. The
objective of this study is to evaluate the effect of the methanol extract from S. purpurea
(CSM) seeds on the regulation of blood glucose, triglyceride, and cholesterol levels, as well
as to determine whether the extract is capable of inhibiting the protein glycation reaction
using a glucose-induced diabetic zebrafish model.

2. Results
2.1. Inhibition Tests for the Formation of Advanced Glycation End Products In Vitro
2.1.1. Glycation of Bovine Albumin

The intensity in the fluorescence indicates the formation of AGEs. The fluorescence
in the BSA/glucose system during 1, 2, 3 and 4 weeks of incubation is shown in Figure 1.
A concentration-dependent decrease in fluorescence intensity is observed in the samples
incubated with BSA/glucose/CSM. The concentration of 5 mg/mL at 4 weeks of incubation
was the one that showed a greater decrease (90.45%) compared to glycated BSA over the
same time interval. The BSA/glucose/AG system used as a control showed a decrease
of 91.8%.
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Figure 1. Effects of CSM extract on formation of fluorescent advanced glycation end products 
(AGEs) in BSA incubated with glucose. Each value represents the mean ± SE. a p ≤ 0.05 when com-
pared to BSA/glucose at week one; b p ≤ 0.05 when compared to BSA/glucose at week two; c p ≤ 0.05 
when compared to BSA/glucose at week three; d p ≤ 0.05 when compared to BSA/glucose at week 
four. Different letters indicate significant differences between the weeks evaluated. CSM; methanol 
extract from the seed of S. purpurea, AG; aminoguanidine. 

2.1.2.  Determination of Fructosamine 
Fructosamines are precursors to the formation of AGEs, therefore it is important to 

reduce their formation. In Figure 2, the effect of CSM at different concentrations on fruc-
tosamine levels can be observed during 1, 2, 3, and 4 weeks of incubation. A significant 
increase in glycated BSA was observed during the duration of the experiment. The 
BSA/glucose/CSM system at different concentrations decreased fructosamine levels over 
the weeks, with the concentration of 5 mg/mL showing a value of 59.85 mM in the fourth 
week of incubation compared to glycated BSA, which showed values of 119.6 mM over 
the same time interval. 

Figure 1. Effects of CSM extract on formation of fluorescent advanced glycation end products (AGEs)
in BSA incubated with glucose. Each value represents the mean ± SE. a p ≤ 0.05 when compared to
BSA/glucose at week one; b p ≤ 0.05 when compared to BSA/glucose at week two; c p ≤ 0.05 when
compared to BSA/glucose at week three; d p ≤ 0.05 when compared to BSA/glucose at week four.
Different letters indicate significant differences between the weeks evaluated. CSM; methanol extract
from the seed of S. purpurea, AG; aminoguanidine.

2.1.2. Determination of Fructosamine

Fructosamines are precursors to the formation of AGEs, therefore it is important
to reduce their formation. In Figure 2, the effect of CSM at different concentrations on
fructosamine levels can be observed during 1, 2, 3, and 4 weeks of incubation. A signifi-
cant increase in glycated BSA was observed during the duration of the experiment. The
BSA/glucose/CSM system at different concentrations decreased fructosamine levels over
the weeks, with the concentration of 5 mg/mL showing a value of 59.85 mM in the fourth
week of incubation compared to glycated BSA, which showed values of 119.6 mM over the
same time interval.
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mation. Figure 3 shows the effect of CSM on the inhibition of Nε-(carboxymethyl) lysine 
(CML) after four weeks of incubation. It can be seen that the decrease in the concentration 
of CML in the BSA/glucose/CSM system is dependent on the concentration. The greatest 
decrease is observed when using a concentration of 5 mg/mL of CSM (1.3 ng/mL). In com-
parison, glycated BSA presented a CML concentration of 10.8 ng/mL over the same time 
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Figure 2. Effect of CSM on fructosamine levels during four weeks of incubation using the
BSA/glucose system. Results are expressed as mean ± SE. a p ≤ 0.05 when compared to BSA/glucose
at week one; b p ≤ 0.05 when compared to BSA/glucose at week two; c p ≤ 0.05 when compared
to BSA/glucose at week three; d p ≤ 0.05 when compared to BSA/glucose at week four. Different
letters indicate significant differences between the weeks evaluated. CSM; methanol extract from the
seed of S. purpurea, AG; aminoguanidine.

2.1.3. Determination of Nε-(carboxymethyl) Lysine

CML is a non-fluorescent type of AGE; therefore, it is important to quantify its for-
mation. Figure 3 shows the effect of CSM on the inhibition of Nε-(carboxymethyl) lysine
(CML) after four weeks of incubation. It can be seen that the decrease in the concentration
of CML in the BSA/glucose/CSM system is dependent on the concentration. The greatest
decrease is observed when using a concentration of 5 mg/mL of CSM (1.3 ng/mL). In
comparison, glycated BSA presented a CML concentration of 10.8 ng/mL over the same
time interval.
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Figure 3. Effect of CSM on the inhibition of Nε-(carboxymethyl) lysine (CML) after four weeks of
incubation. Each value represents the mean ± SE. a p ≤ 0.05 when compared to BSA/glucose. The
letters indicate significant differences between the different treatments. CSM; methanol extract from
the seed of S. purpurea, AG; aminoguanidine.
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2.1.4. BSA-Methylglyoxal Assay

Methylglyoxal is a precursor in the formation of AGEs, and reducing their formation
reduces the formation of these compounds. In Figure 4, the percentage of inhibition in
the formation of methylglyoxal can be observed when using CSM at different concen-
trations. The highest percentage of inhibition was obtained in the BSA/glucose/CSM
system at a concentration of 5 mg/mL, showing an inhibition of 85.3% compared to the
BSA/glucose/AG system, which showed an inhibition of 93%.
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age of glycation inhibition. CSM; methanol extract from the seed of S. purpurea. AG; aminoguanidine.

2.2. In Vivo Experiments
2.2.1. Toxicity Test of the Methanolic Extract of Spondias purpurea

The zebrafish has been used as an experimental model due to the great physiological
similarity that it presents with mammals, in addition to having a small body size, low
cost, and large clutch size [39]. Therefore, this model presents significant potential for
pharmacological and toxicological studies. In the toxicological test, CSM did not show
a toxic effect at the evaluated concentrations, and there were no significant differences
in survival rates between treatment groups (p ≤ 0.05). Zebrafish survival rates in the
CSM-treated groups were 100% at the end of the trial (96 h), compared with the group
treated with 3,4-dichloroaniline, which presented 60% and 40% survival rates at 24 and
48 h, respectively. Regarding the results obtained, there is 99.9% confidence that the LC50 is
greater than 100 mg/L [40].

2.2.2. Hyperglycemia Induction

The induction of diabetes in zebrafish by means of 111 mM glucose is shown in
Figure 5. At the beginning of the test, the fish showed blood glucose values of 88 mg/dL;
on day 14 the fish treated with glucose showed blood glucose values of 310 mg/dL
compared to the control group (water without glucose), which maintained glucose levels
at 88 mg/dL.
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Figure 5. Elevation of blood glucose levels in zebrafish. Each value represents the mean ± SE.
a p ≤ 0.05 when compared to normoglycemic control group. The letter indicates significant difference.

2.2.3. Effect of CSM in Blood Glucose Levels

Figure 6 shows the blood glucose levels of diabetic zebra fish treated with CSM. When
administering the CMS extract, a concentration-dependent decrease in blood glucose was
observed. The group treated with CSM (90 mg/L) and the one treated with glibenclamide
showed blood glucose values of 110 mg/dL, while the normoglycemic group showed
values of 80 mg/dL, compared to the diabetic group, which showed values of 310 mg/dL.
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Figure 6. Effect of CSM on blood glucose levels of glucose-induced diabetic zebrafish. Each value
represents the mean ± SE. a p ≤ 0.05 when compared to normoglycemic control group. The letter
indicate significant differences between the different treatments. CSM; methanol extract from the
seed of S. purpurea, Gli; glibenclamide.

2.2.4. Effect of CSM in Triglyceride and Cholesterol Levels

The effect of CSM on triglyceride and cholesterol levels is shown in Figure 7. At
the end of the experimental period, it was observed that the administration of CSM did
not significantly decrease triglyceride levels. Regarding cholesterol levels, a significant
decrease was observed (a p ≤ 0.05), the concentration of 90 mg/L of CSM being that
which presented a greater effect with values of 300 mg/dL compared to the diabetic group,
which showed values of 380 mg/dL, while the normoglycemic group presented values of
200 mg/dL.
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Figure 7. Effect of CSM on glucose-induced zebrafish triglycerides and cholesterol levels at the end of
the experimental period (14 days). Data are expressed as the mean ± SE. a p ≤ 0.05. when compared
to normoglycemic control group. The letters indicate significant differences between the different
treatments. CSM; methanol extract from the seed of S. purpurea, Gli; glibenclamide.

2.2.5. Effect of CSM in the Inhibition of AGEs In Vivo

The inhibition percentages in the formation of AGEs when administering CSM are
shown in Figure 8. At the end of the experiment period, it was observed that all the
evaluated concentrations of CSM showed a significant inhibition in the formation of AGEs.
The concentration of 90 mg/dL of CSM showed the highest percentage of inhibition (98.5%).
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3. Discussion

Zebrafish are an ideal experimental model to mimic the human pathological condition,
since they have 70% of human genes that encode proteins and 70% to 84% of genes related
to human diseases [30,41]. The zebrafish has a short maturation period, easy reproduction,
good regeneration capacity, its development stages can be characterized, low maintenance
cost, high productivity, fewer ethical restrictions, etc. This makes the zebrafish an ideal
model for drug development and toxicity testing [42,43].

As many cellular processes are highly conserved between zebrafish and humans, as
well as the organization of the genome and the pathways involved in controlling signal
transduction, Zebrafish models have been developed to cover a wide range of human
diseases [44].
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The study of glucose metabolism is a good illustration of the metabolic models in
zebrafish [45]. Studies indicate that zebrafish regulate glucose metabolism through the
same enzymes and pathways as mice and humans. For example, high levels of glucose in
zebrafish stimulate insulin expression [46] and negatively regulate gluconeogenesis [47].
Adult zebrafish, like mammals, have been documented to be sensitive to antidiabetic
drugs that reduce glucose levels in blood [45], which further illustrates the physiological
preservation of glucose regulation [48]. As in mammals, the pancreas of the zebrafish
is made up of two types of tissues; exocrine and endocrine [49], which are responsible
for the regulation of glucose metabolism through the secretion of insulin, somatostatin,
and glucagon directly into the bloodstream [47]. Zebrafish also regulate the expression
of phosphoenolpyruvate and carboxykinase (the enzyme that catalyzes one of the key
stages of gluconeogenesis) by glucagon and insulin, like mammals [45]. The specification
and morphogenesis of the pancreas of zebrafish allows this organism to be used as a
physiological model of pancreatic function, as well as a model to study diabetes mellitus
and its complications.

Adult zebrafish readily absorb water molecules due to their ability to regulate their
internal water and total solute concentrations [50]. This is an osmoregulation strategy that
involves continuous water gain because of a higher internal salt concentration compared
to its freshwater environment. The constant entry of water results in the absorption of
molecules from their environment. It is for this reason that a hyperglycemia model was
proposed by immersing the zebrafish in a glucose solution, which is capable of generating
a diabetic condition, as well as diabetic retinopathy similar to that of humans [44,51]. A
diabetic condition is persistent after a period of glucose withdrawal, and zebrafish have
been reported to be sensitive to antidiabetic medications [52].

In zebrafish, glucose uptake/consumption occurs through a glucose transporter called
GLUT, which is expressed in the gills (GLUT 1–3, 6, 8, and 10–13) and intestine (GLUT 5
and 9) [53]. Our results show that exposure to a 111 mM glucose solution promotes an
elevation in blood glucose levels in zebrafish, as reported by Gleeson et al., 2007 [54], and
in turn, the glycosylation of protein is promoted in the eyes. Our results show that CSM
can counteract the hyperglycemic state most likely by stimulating pancreatic islet cells,
which causes an increase in insulin secretion. Furthermore, it has been reported that the
effect of natural products compared to high blood glucose levels is due to their antioxidant
effects [55,56]. However, studies are required to determine the action mechanism of CSM
in lowering blood glucose.

The use of anesthetics such as MS-222 has been reported to affect blood glucose levels.
MS-222 blocks nerve ion channels and may directly affect the ion channels of β cells, and
therefore insulin secretion. Anesthetics generally alter glucose levels [57], and some have
been shown to alter insulin secretion by acting directly on the channels of β cells. For
example, tetracaine alters the absorption or Ca2+ flow of β cells depending on the dose, and
isoflurane decreases the secretion of insulin from β cells by opening potassium channels
that are sensitive to ATP [58,59]. Therefore, for studies involving glucose metabolism,
choosing the right anesthetic is crucial. In this regard, we used cold water as anesthesia in
this study, which has been reported to help keep blood glucose levels more stable at the
time of reading [60].

Diseases such as neuropathy, atherosclerosis, retinopathy, cataracts, and diabetic
nephropathy are promoted by AGEs [61]. The formation of reactive oxygen species (ROS)
is one of the suggested mechanisms of damage caused by AGEs, specifically hydrogen
peroxide and superoxide released by AGEs [62]. The oxidation of sugars and fructosamines
are associated with the formation of free radicals. The protein non-enzymatic glycation
reaction has been shown to increase free radical production 50-fold compared to non-
glycated proteins [63]. The process begins with the production of superoxide radicals
due to the autoxidation of proteins and sugars that bind to fructosamines, followed by
the dismutation of superoxide into hydrogen peroxide with the subsequent generation
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of hydroxyl radicals. The above can cause a specific attack on proteins resulting in lipid
peroxidation and protein damage [61].

The formation of AGEs can be detected in various proteins such as in the α- crystalline
structure of the ocular lens or in the collagen of connective tissue; these proteins are exposed
to glycation throughout their useful life. The sight impairment due to the opacity of the
lens (cataracts) is one of the most common affections of diabetes derived from the formation
of AGES [64].

A phytochemical sieve was made to CSM, which showed the presence of tannins,
flavonoids, phenols, and glycosides. These compounds have been reported to act as
antioxidants, helping to reduce the formation of free radicals and provide protection
against various diseases such as diabetes mellitus [29]. Our results show that the CSM
extract inhibits the formation of AGE in vitro and in vivo, probably due to the presence
of these metabolites and their antioxidant effect, which helps to reduce the formation
of ROS. The results obtained are comparable with those obtained when studying the
hexane extract of S. purpurea, where a significant decrease in the formation of AGEs, CML,
and fructosamine was observed [29]. It has been reported that the effects of most AGE
inhibitors can be mainly attributed to their chelating capacity, since they could inhibit
the autoxidation reactions that accompany glycation [65]. Therefore, discovering new
inhibitors of the formation of AGEs provides a therapeutic option to prevent or treat some
of the complications associated with diabetes mellitus.

Patients with type 2 diabetes present a group of lipid abnormalities that are associated
with the accumulation of cholesterol and fatty acids in pancreatic β cells, which can
contribute to the degeneration of pancreatic islets [65]. Excess cholesterol affects insulin
release stimulated by glucose located in the endoplasmic reticulum, the mitochondria,
and the cell membrane [66]. Our results indicate that CSM decreases cholesterol levels,
which was reflected in a decrease in blood glucose levels. This could be due to the fact that
CSM prevented the accumulation of cholesterol in the endoplasmic reticulum, favoring the
release of insulin [67,68]. However, studies are required to determine the specific route by
which CSM acts on cholesterol levels.

Both the fish and the zebrafish embryo are used to determine the acute toxicity of
various compounds (including heavy metals, pesticides, and numerous compounds that
cause environmental contamination). However, a similar approach can be used for the
detection of acute toxicity in drugs and new therapeutic compounds [69]. Our results
indicate that CSM does not present toxic effects at the concentrations evaluated, supporting
the biocompatible nature of the extract. The zebrafish (Danio rerio) is firmly recognized as a
powerful research model for many areas of biology and medicine. Zebrafish are especially
valuable for drug discovery, as they represent a model organism to demonstrate the efficacy
and toxicity of a new treatment before using more expensive mammalian models [45].

4. Materials and Methods
4.1. Raw Material Conditioning and Extract Preparation

The fruit of S. purpurea was collected in the State of Mexico (Cuautla), in April 2018.
The seed was extracted from the fruit, dried in an air stream stove, and later the particle
size was reduced in a manual mill. Two kilograms of dry and ground seed were extracted
using 4 l of methanol by maceration. The extract obtained (CSM) was filtered and fully
dried on a rotary evaporator to completely remove the solvent.

4.2. In Vitro Experiments
4.2.1. In Vitro Glycation of Bovine Albumin

DMSO was added to the CSM extract to dissolve it, followed by the addition of
10 mg/mL of BSA, a phosphate buffer at pH 7.4, 1.1 M glucose, and finally sodium azide
(0.2%). The previously prepared solution was incubated for 1, 2, 3, and 4 weeks at 37 ◦C.
The glycation reaction was evaluated at an emission wavelength of 460 nm and excitation
of 355 nm. Aminoguanidine (AG) was used as a positive control [70].
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4.2.2. Fructosamine Concentration

After incubation (1, 2, 3 and 4 weeks), the fructosamine concentration was evaluated
using the nitroblue tetrazolium (NTB) assay [71]. 10 µL of glycated 0.1 M BSA and 0.1 M of
carbonate buffer were added to 90 µL of 0.5 mM NTB at a pH of 10.4. The solution was
shaken and incubated at 37 ◦C. After 10 to 15 min, absorbance was read at 530 nm. The
concentration of fructosamine was calculated using the standard (1-deoxy-1-morpholino-
fructose (1DMF)).

4.2.3. BSA-Methylglyoxal Assay

To perform this test, 1 mL of catechin (1.5 mg/mL), sodium phosphate buffer (50 mM,
pH 7.4), sodium azide (0.02%) and methylglyoxal (60 mM, 1 mL) were added to different
CSM concentrations (0.30, 0.60, 1.2, 2.5 and 5 mg/mL) and incubated at 37 ◦C for 2 h.
Subsequently, BSA (30 mg/mL, 1 mL) was added to the above mixture and incubated for
six days at 37 ◦C. Phosphate buffer (1 mL) was used as a positive control. Aminoguanidine
was also used as a positive control (final concentration 10 mM). After the incubation time,
the samples were read at 380 nm of emission and 380 nm of emission [72]. The following
equation was used to calculate the percentage of inhibition of AGEs:

percentage inhibition = 1 −
(

fluorescent intensity with inhibitor
fluorescent intensity without inhibitor

)
×100

4.2.4. Determination of Nε-(carboxymethyl) Lysine

After 4 weeks of incubation, the concentration of Nε-(carboxymethyl) lysine (CML),
was evaluated using the enzyme linked immunosorbant assay (ELISA) kit. The CML-BSA
standard curve of the kit was used to calculate the CML concentration.

4.3. In Vivo Experiments
4.3.1. Conditioning of Adult Zebrafish

Adult zebrafish with a body length of 2.5–3.0 cm were used; these were acclimatized
for 15 days in 40 L tanks at 25 ± 2 ◦C, maintaining constant filtration and aeration. The fish
were kept in a photoperiod of 14 h of light, 10 h of darkness daily and fed twice a day with
commercial food (Azoo Plus, for tropical fish).

4.3.2. Toxicity Test of the Methanolic Extract of Spondias purpurea

The toxicity test was carried out by following the recommendations of Organization
for Economic Cooperation and Development (OECD) [40]. Different batches of 10 fish each
were placed in tanks with 6 L of water at 23 ± 2 ◦C and constant aeration. The batches
were formed as follows: batch 1: water (control); batch 2: water + 30 mg/L CSM, batch
3: water + 60 mg/L CSM; batch 4: water + 100 mg/L CSM; batch 5: water + 5 mg/L 3,4
dichloroaniline (positive control). The CSM extract and 3,4 dichloroaniline were renewed
every 24 h to maintain a constant concentration. The above conditions were maintained
for a period of 96 h; the fish from the different batches did not feed during this period.
During the development of the test, the fish were constantly observed to assess their way
of swimming, the movement of their gills, or the presence of deaths.

4.3.3. Hyperglycemia Induction

Five batches of 25 fish were placed in 20 L fish tanks for a period of 14 days; the tanks
contained a 111 mM glucose solution. The glucose solutions were interchanged every
third day to avoid contamination by microorganisms. The organisms were continuously
monitored for signs of stress, including excessive gill movement, as well as difficulty
swimming. The control group were kept in fish tanks without the addition of glucose.
During the development of the test, the fish were fed twice a day [54]. At the end of the
induction of diabetes, fish were taken at random from each batch to corroborate their
diabetic status, which was maintained throughout the experiment.
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4.3.4. Administration of the Methanol Extract of Spondias purpurea
Experimental Design

Twenty zebrafish in a diabetic state were taken at random to form the different
groups and placed in 15 L tanks. The methanol extract from the S. purpurea seed (CSM)
was dissolved and added to the tanks at different concentrations (30, 60 and 90 mg/L).
Glibenclamide (5 mg/L) was used as positive control and the negative control received no
treatment. The different treatments were administered daily for a period of 14 days. At the
end of the experimental period, the fish were slaughtered.

- group 1: normoglycemic fish (without treatment administration).
- group 2 (negative control): glucose-induced diabetic fish (without treatment adminis-

tration).
- group 3: glucose-induced diabetic fish administered with 30 mg/L CSM.
- group 4: glucose-induced diabetic fish administered with 60 mg/L CSM.
- group 5: glucose-induced diabetic fish administered with 90 mg/L CSM.
- group 6 (positive control): glucose-induced diabetic fish administered with 5 mg/L

glibenclamide.

4.3.5. Anesthesia and Sacrifice

The fish were placed in cold water at 4 ◦C to induce hypothermia; signs of having
reached stage III of anesthesia were monitored when loss of balance, loss of operculum
movements and loss of reactivity were observed [60]. Later, the sacrificing of the fish was
performed using a scalpel by making a cross-section cut in the back of the fish (tail) to
obtain blood, which was used immediately to carry out the various analyses.

4.3.6. Analysis of Blood Glucose, Triglycerides, and Total Cholesterol Levels

To measure the different biochemical parameters, the fish in each batch were fasted
for 12 h. These were subsequently transferred to fish tanks with glucose-free water for a
period of 15 min. Next, the fish in each batch were anesthetized and sacrificed (as shown
in the anesthesia and sacrifice section) to obtain blood, which was used to determine
the different parameters (glucose, triglycerides, and cholesterol). Glucose levels were
measured by means of a glucometer (Accu-Chek, Mannheim, Germany). An Accutrend
Plus (Roche, Mannheim, Germany) monitor was used to measure total cholesterol and
serum triglycerides, following each manufacturer’s instructions [39].

4.3.7. Evaluation of the Inhibition of Advanced Glycation End Products

The euthanized fish in each group had their eyes removed and a phosphate buffer
pH 7.0 was added; the eyes were then macerated followed by centrifugation at 9000 rpm
for 15 min. At the end of this period, the supernatant was placed in a 96-well plate for
subsequent reading on a fluorometer at an excitation wavelength of 355 nm and an emission
of 460 nm.

4.3.8. Statistical Analysis

All data are expressed as mean ± SE. One-way ANOVA analysis. Values of p ≤ 0.05
were considered statistically significant. Statistical analysis was performed using the
GraphPad Prism 9 software (GraphPad Software Inc., San Diego, CA, USA), version 9.0.2.
The experiments were performed in triplicate.

5. Conclusions

The methanol extract from S. purpurea (CSM) seeds is effective in reducing blood
glucose, hypercholesterolemia, and advanced glycation end products. Therefore, this study
shows the therapeutic potential of CSM, which can be useful in preventing or delaying
some of the symptoms associated with diabetes. As no toxic effects are found, CSM can be
used as a safe food supplement with antidiabetic potential, therefore the characterization
of its main bioactive components is in progress. It should be noted that the use of zebrafish
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as a pharmacological model promotes the development of new and effective therapeutic
alternatives, as they are used as an initial experimental stage to test new compounds and
to study different human diseases without replacing traditional mammalian models.
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