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Abstract: Increase in severity and frequency of drought events is altering plant community com-
position, exposing biomes to a higher risk of biodiversity losses. This is exacerbated in the most
fragile areas as Mediterranean biome. Thus, identifying plant traits for forecasting species with a
high risk of drought-driven mortality is particularly urgent. In the present study, we investigated the
drought resistance strategy of two Mediterranean native species: Salvia ceratophylloides Ard. (Sc) and
Salvia officinalis L. (So) by considering the impact of drought-driven water content decline on plant
hydraulics. Well-watered samples of Sc displayed higher leaf and stemsaturated water content and
lower shoot biomass than So samples, but similar root biomass. In response to drought, Sc showed a
conservative water use strategy, as the prompt stomatal closure and leaves shedding suggested. A
drought-tolerant mechanism was confirmed in So samples. Nevertheless, Sc and So showed similar
drought-driven plant hydraulic conductance (Kplant) recover ability. Root hydraulic traits played a
key role to reach this goal. Relative water content as well as loss of cell rehydration capability and
membrane damages, especially of stem and root, were good proxies of drought-driven Kplant decline.

Keywords: climate change; Mediterranean species; membrane damages; plant hydraulic
conductance; rehydration capacity; water content

1. Introduction

In the last decades, the increase in severity and frequency of drought events is exposing
vegetation to a higher risk of drought-driven die-off [1–3]. According to climate projections,
global warming is not expected to be homogeneous: higher increase in temperature and
drought events have been forecasted for the Mediterranean region e.g., [4–6]. This, in turn,
may lead to more relevant negative feedback on biodiversity richness of the Mediterranean
biome, exacerbating the recorded ongoing vegetation pattern shifts [7–10] and increasing
the extinction risk of endemic flora [11–13]. Mediterranean region shows high levels of
plant diversity and endemism, as a result of different co-occurring factors [14,15]. The high
numbers of endemic plant species are adapted to cope with warm and frequently long
dry periods that typically occur in the Mediterranean biome. Thus, the Mediterranean
biodiversity hotspot is coupled to different specific adaptive strategies for delaying and/or
tolerating tissue dehydration i.e., [16–21]. However, increasing temperature and drought
events may lead to exceeding the species-specific drought resistance threshold. Vegetation
responses to ongoing climate change is a complex process involving the coordination
of different and not well-understood physiological mechanisms. Plant hydraulics play
a critical role in vegetation ability to cope with drought [22] and hydraulic failure is
considered the major driver of vegetation die-off [23,24]. Nevertheless, many questions on
plant hydraulics remain unresolved [22,25] and looking for a robust proxy for predicting
plant die-back is urgent.

Changes in plant water content in response to drought have recently received a re-
newed attention [26]. Plant water status is linked to different key physiological mechanisms,
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including water transport and its regulation as well as carbon metabolism [27,28]. On
this view, the relative water content (RWC) has been suggested as a simple indicator of
plant mortality risk. However, the species-specific cell desiccation tolerance is still largely
unknown. To the best of our knowledge, only few studies have investigated water content
thresholds leading drought-induced mortality risk and it is unclear if a specific organ
(leaf, stem, root) or whole plant water content can be an actual proxy of mortality risk.
Rosner et al. [29] reported good correlations between stem RWC and the loss of hydraulic
conductivity in certain tree species. However, in a most recent study, Mantova et al. [30]
indicated that stem RWC is useful for predicting the loss of hydraulic conductivity in
woody angiosperms but not in conifers.

In the present study, we reported the hydraulic performance, including changes in
relative water content, of two native Mediterranean species, Salvia ceratophylloides Ard. (Sc),
a perennial herbaceous species [31–33], and Salvia officinalis L. (So), a perennial evergreen
subshrub [34], experiencing mild and severe drought events and then rewatering. In
detail, we compared the drought resistance strategy of Sc versus So (i.e., a drought-tolerant
species [35,36]) and the plant recovery ability of the two Salvia species in order to investigate
if and how mild or severe leaf hydraulic impairment and/or loss in cell rehydration ability
can affect the whole plant hydraulics. Similar whole-plant drought vulnerability is expected
on species with similar leaf hydraulic safety [37–39]. However, to the best of our knowledge,
no study has focused on—species showing a moderate succulence syndrome. Recently,
Abate et al. reported higher leaf succulence in Sc versus So [40]. This, in turn, led to different
RWC thresholds but similar leaf water potential and leaf water content for leaf dehydration
vulnerability in the two Salvia species [40]. On this basis, we tested the impact of leaf
hydraulic impairment on the whole plant drought vulnerability in Sc and So. Moreover, we
checked: (i) possible relations between leaf, stem and root drought-driven water content
and/or loss in cell rehydration ability and plant hydraulics of the two Salvia species in
order to test possible tool(s) for monitoring the plant die-back and, then, for predicting
the drought-driven risk of mortality; (ii) if hydraulic traits and/or drought resistance
mechanism of Sc may expose this species to potentially higher risk of extinction under
predicted climate change scenario. S. ceratophylloides is a rare endemic perennial herbaceous
species of southern Italy [31]. Until 2008, such a species had been considered “extinct in
the wild” but most recent studies documented the presence of natural populations in its
native area (i.e., Calabria, Italy), suggesting that the vulnerability of S. cerathophylloides has
been likely induced by anthropogenic causes (as an improper use of the soil) more than an
unsuited species-specific water use strategy [32,33].

2. Results

S. ceratophylloides and S. officinalis differed strongly in biomass and structural traits
(Table 1). So showed higher shoot biomass compared to Sc. Significantly higher values
of number of leaves per plant (about 165 versus 50), whole plant leaf area (2800 versus
800 cm2), leaves dry weight (13 versus 2 g), and stem dry weight (1.1 versus 0.3 g) were
recorded in So versus Sc. Moreover, a different shoot biomass allocation was recorded: Sc
showed a statistically significant two-fold higher stem/leaf ratio than So (Table 1). The
two study species showed similar root dry mass (i.e., about 1.3 g) but a 3-times higher
root/shoot ratio value was recorded in Sc compared to So plants. Sc showed a higher
leaf and stem-saturated water content (SWC) values than So. By contrast, not statistically
significant different values of root SWC were recorded in the two species.
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Table 1. Mean values ± SD of structural and biomass data and water storage traits as measured
in well-watered samples of S. ceratophylloides and S. officinalis plants (n = 10). Differences between
species were statistically analyzed and corresponding p values are reported.

Parameters S. ceratophylloides S. officinalis p Value

Structural and biomass data
N leaves/plant 47.7 ± 7.7 164.7 ± 59.3 <0.001

AL (cm2) 776 ± 80 2788 ± 976 <0.001
LDMC 0.16 ± 0.01 0.25 ± 0.03 <0.001

DW leaves, g 2.2 ± 0.9 12.7 ± 1.9 <0.001
N shoots/plant 2.4 ± 0.5 2.5 ± 1.3 0.411

DW stem, g 0.3 ± 0.1 1.1 ± 0.2 <0.001
SDMC 0.22 ± 0.03 0.31 ± 0.03 <0.001

Stem/leaf ratio 1.78 ± 0.95 0.95 ± 0.02 0.007
DW root, g 1.1 ± 0.4 1.4 ± 0.4 0.104

RDMC 0.14 ± 0.03 0.18 ± 0.01 0.004
Root/shoot ratio 2.2 ± 0.9 0.6 ± 0.3 <0.001

Water storage traits
SWCleaf, g g−1 4.8 ± 0.4 2.7 ± 0.3 <0.001
SWCstem, g g−1 3.3 ± 0.6 2.4 ± 0.6 <0.001
SWCroot, g g−1 5.2 ± 1.4 4.4 ± 0.5 0.061

N leaves/plant: number of leaves per plant; AL: whole plant leaf area; LDMC: leaf dry mass content; DW leaves:
leaves dry weight per plant; N shoots/plant: number of shoots per plant; DW stem: stems dry weight per plant;
SDMC and RDMC: stem and root dry matter content, respectively; DW root: root dry weight; Stem/leaf ratio and
Root/shoot ratio: stem/leaf dry weight ratio and root/shoot dry weight ratio; SWCleaf, SWCstem and SWCroot
leaf: stem and root saturated water content, respectively.

The higher biomass values recorded in So versus Sc was likely due to the result of
higher photosynthesis rate (An) and water use efficiency (WUE) values as recorded in
well-watered samples of So versus Sc (Figure 1). In response to mild (SP50) and severe (SP88)
drought events, strong decreases in stomatal conductance to water vapor (gL), transpiration
rate (EL) and photosynthetic rate (An) were recorded in the two study species. However,
in response to mild water stress, higher values of gas exchange and WUE occurred in So
versus Sc. Moreover, a different drought sensitivity of the two Salvia species was recorded.
In response to water shortage, a prompt stomatal closure occurred in Sc but not in So
(Figure S1). As a consequence, at SP50 (i.e., ΨL~−2 MPa), So showed gL loss of about 70%,
while in Sc samples, cuticular conductance values were already recorded. SP50 treatment
did not induce permanent damages in the two Salvia species. After a week of re-irrigation,
SP50 samples showed all measured parameters statistically similar to values recorded before
drought. By contrast, no full recovery of gas exchange and WUE was recorded after the
applied severe water stress, despite the full recovery of the leaf water potential.

Applied drought treatments strongly affected the relative water content of leaf, stem
and root samples of the two Salvia species (Figure 2). However, after the rewatering, a
full recovery of root RWC values was recorded, including when a severe water stress was
experimented by Sc and So samples. This recovery was coupled to new roots growth,
as observed in both species (data not shown). A different behavior was observed in the
stem and leaf samples of the two Salvia species, especially in response to severe drought
treatment. Water stress inducing 50% loss of leaf hydraulic conductance (KL, i.e., SP50)
did not affect the leaf and stem cell ability to recover water content in Sc and So samples
and no permanent damage was recorded after rewatering in the two Salvia species. By
contrast, experiencing about 88% loss of leaf hydraulic conductance (i.e., SP88), only a partial
recovery of leaf RWC values in Sc as well as So samples was recorded. The inability to
recover the leaf water content was likely induced by a residual 20% loss in cell rehydration
capability, as recorded in the two species even after rewatering. However, leaf Sc samples
were more severely affected by SP88 treatment. In accordance, SP88 leaf samples of Sc
showed higher leaf cell membrane damages (i.e., REL ~ 70% versus 40%, respectively)
and higher percentage loss of cell rehydration capability (PLRC) values (i.e., 80% versus
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20%, respectively) compared to So SP88 leaf samples. Moreover, So stem samples were not
permanently affected by experiencing severe water stress. By contrast, in RecSP88 Sc stem
samples, a residual 20% PLRC and REL values as high as about 35% were recorded.
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Figure 1. Effect of experimental treatments on gas exchange and water potential. Mean ± SD (n = 6) values of: (a) midday
leaf conductance to water vapor, gL; (b) transpiration rate, EL, (c) photosynthetic rate, An, (d) water use efficiency, WUE,
(e) leaf water potential, ΨL and (f) soil water potential, Ψsoil as recorded in well-watered (W, none pattern), water–stressed
(S, slanting dash) and re-irrigated (Rec, mesh dash) plants of S. ceratophylloides (Sc, blue columns) and S. officinalis (So, green
columns) submitted to two different water stress levels, i.e., SP50 and SP80 (for details, see the text). p values as obtained by
the two-way ANOVA analysis are reported. Different letters indicate statistically significant differences between groups.
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Figure 2. Effect of experimental treatments on water content and drought-driven damages. Mean ± SD (n = 5) values of
relative water content (RWC); percentage loss of rehydration capability (PLRC) and relative electrolyte leakage (REL) as
recorded in leaf (a,d,g), stem (b,e,h) and root (c,f,i) samples of well-watered (W, none pattern), water-stressed (S, slanting
dash) and re-irrigated (Rec, mesh dash) plants of S. ceratophylloides (Sc, blue columns) and S. officinalis (So, green columns)
submitted to two different water stress levels, i.e., SP50 and SP80 (for details, see the text). p values as obtained by the
two-way ANOVA analysis are reported. Different letters indicate statistically significant differences between groups.

So and Sc well-watered samples showed similar plant hydraulic conductance (Kplant)
values (Figure 3). Moreover, similar Kplant values were recorded when the two Salvia
species were submitted to the two drought treatments and then re-irrigated (Figure 3).

Robust correlations were recorded between Kplant and leaf, stem and root relative water
content in the two Salvia species (Figures 4 and 5). Drought-driven Kplant decline was clearly
strongly related to the cell loss rehydration capability as well as to drought-driven cell
membrane damages. RWC, PLRC and REL thresholds of Kplant impairment were similar
among the three plant organs as well as between Sc and So (Figures 4 and 5, Table S1). Only
leaf RWC value leading to 80% loss of Kplant was significantly lower in Sc versus So, as well
as no confidence intervals overlapping being recorded between Sc leaf versus So root REL
value leading to 50% loss of Kplant (Figures 4 and 5, Table S1). Nevertheless, overall, in all
three plant organs, RWC values as low as about 65% as well as PLRC values of about 15%
led to Kplant loss of 50% in the two Salvia species.
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Figure 3. Effect of experimental treatments on plant hydraulic conductance. Mean ± SD (n = 6) values
of plant hydraulic conductance (Kplant) as recorded in well-watered (W, none pattern), water–stressed
(S, slanting dash) and re-irrigated (Rec, mesh dash) plants of S. ceratophylloides (Sc, blue columns) and
S. officinalis (So, green columns) submitted to two different water stress levels, i.e., SP50 and SP80 (for
details, see the text). p values as obtained by the two-way ANOVA analysis are reported. Different
letters indicate statistically significant differences between groups.
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It can be noted that large confidence intervals were recorded between leaf PLRC and
REL values and the corresponding plant hydraulic conductance declines. By contrast, most
robust correlations were recorded between Kplant and stem and root samples.

3. Discussion

S. ceratophylloides and S. officinalis exhibited different resistance mechanisms for coping
with drought but a similar plant hydraulics recovery ability, especially in response to severe
drought. In detail, recovery from mild water stress led to similar water content values in
the three plant organs of the two Salvia species. However, different gas exchange and water
use efficiency values occurred in Sc versus So. By contrast, experiencing about 80% of KL
loss caused different residual leaf and stem cell damages in Sc versus So samples but similar
impact on gas exchange. Nevertheless, a similar Kplant recovery was recorded in Sc and
So in response to the two drought recovery treatments and no plant death was recorded
after a month by the end of the experimental period (personal observation). Hydraulic
recovery was obtained by new roots production and, then, renewed root functioning in
Sc and So samples. This avoided permanent loss in root cell rehydration capability and
cell membrane damages in fine roots (i.e., site of water and nutrient uptake). Overall,
these results strongly suggest that root hydraulics plays a key role in whole-plant recovery
ability of the two Mediterranean native Salvia species. Moreover, our findings highlight that
drought-driven changes in leaf RWC and PLRC values do not always provide proxy of plant
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hydraulic failure, especially when succulent and/or water saving species are considered. In
accordance, likely as a consequence of relevant cell damages, a consistent leaf shedding in S.
ceratophylloides SP88 samples occurred (Figure 6). Nevertheless, after a week of rewatering,
new sprouting leaves were observed in Sc RecSP88 samples (Figure 6). On this view, leaf
hydraulic impairment weakly affected plant hydraulic conductance decline in Sc (i.e.,
a water saver species showing a moderate succulence syndrome). Drought resistance
strategy shown by Sc may affect its survival under frequent and extreme drought events.
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(n = 8) was re-irrigated at field capacity (i.e., Rec SP50 and Rec SP88 samples) and then measured.

3.1. Two Different Drought Resistance Strategies but a Similar Root Hydraulics Recovery Ability

S. ceratophylloides invested less in biomass accumulation than S. officinalis, as lower
LDMC, SDMC and RDMC values suggested. This was likely the result of lower stomatal
conductance, photosynthesis rate and WUE as recorded in well-watered Sc versus So
samples. These findings, along with the different leaf and stem SWC values recorded in the
two Salvia species, confirmed a more pronounced succulent syndrome in S. ceratophylloides
than in S. officinalis [40]. Overall, our results lead to consider S. ceratophylloides a resource-
conserving species. By contrast, S. officinalis exhibited a resource acquisitive strategy [41].
Well-watered samples of So showed higher An, WUE as well as leaf, stem and root dry
matter content values than Sc plants. Moreover, So showed a lower stomatal conductance
reduction in response to mild drought: this led to higher gas exchange than Sc. Thus,
our data confirmed a drought-tolerant mechanism in So samples [35,36]. By contrast, a
water-saving strategy was recorded in Sc. In response to mild stress, full stomatal closure
was recorded in this species, and in response to severe stress, leaves shedding occurred. To
avoid losses in carbon gain, species adapted to water shortage can increase their water-use
efficiency (WUE) i.e., [42]. This strategy can be coupled to specific anatomical traits (as
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high vessel density and fibers and then high leaf mass per area) aimed at minimizing water
loss i.e., [43]. In accordance, leaf mass area (LMA) increases along aridity gradients at a
global scale [41]. However, Sc showed a lower LMA value than So [40] as well as a relevant
reduction in WUE values in response to mild drought. Thus, the strategy adopted by Sc to
cope with drought may explain the limited diffusion of this species in the Mediterranean
region. The prompt stomatal closure, typically recorded in the water-saving species, as well
as the inability to improve WUE under mild stress led to an unavoidable decrease in carbon
uptake. In the long term, especially after several severe drought events, this reduction
in carbon assimilation may limit the sustainability of plant metabolism and its ability to
recover from drought. This, in turn, may increase the chance of plant die-back. On this
view, water-saving strategy is actually less efficient than drought-tolerant mechanisms [44].

Nevertheless, similar plant hydraulic conductance declined, and mainly, similar
hydraulic recovery ability in response to drought-re-irrigation treatment was recorded in
the two Salvia species. In response to a mild drought, no permanent damages of Kplant
were recorded. Moreover, drought-driven relevant leaf hydraulic dysfunction (i.e., KL loss
~88/%) led to similar residual Kplant loss of about 40% in Sc and So. The recovery of the two
Salvia species was obtained mainly by root hydraulics recovery. Sc and So root hydraulics
did not remain negatively affected, including by a severe drought event. Root hydraulic
conductance recovery can be obtained with the growth of new roots thus by-passing
the irreversible and permanent drought-driven damages occurring at root level [45–49].
However, root hydraulics can be restored before growing new roots by renewing the
permeability of damaged roots, as documented in succulent Agave and Opuntia [45,49].
Our results strongly confirm that a high root biomass allocation, as recorded in both
species, plays a key role in coping drought [50–52], and highlight the urgency to fill gaps
in our knowledge on the relevance of root hydraulics in regulating whole plant hydraulics,
especially under drought [47,53–56]. Additional experiments aimed to investigate coupled
physiological and morphological root traits, and especially their changes in response to
drought, are needed to improve our lacking knowledge on this topic.

3.2. Water Content and Loss in Rehydration Capability Actually Drive Plant Hydraulics

Water content, but also loss of rehydration capability and cell membrane damages,
were actually a proxy of the drought-driven plant hydraulic conductance decline in the two
Salvia species. However, despite robust correlations occurring in all three organs, higher
correlation values were recorded in root samples of the two Salvia species. Moreover, the
recorded large confidence intervals in the relationships between the drought-driven leaf
PLRC and REL increases and the corresponding Kplant declines suggested a low reliability
of these leaf parameters as indicator of plant hydraulic failure. Conversely, in water saving
species, such as Sc, leaf shedding occurs promptly to reduce water loss, and at the same time,
can limit xylem embolism spread. This, in turn, avoids that hydraulic failure extends to the
more carbon-expensive organs, according to the “hydraulic segmentation hypothesis” [57].
As a consequence, in this case, the leaf hydraulic failure may not necessarily lead to
unavoidable plant hydraulic failure, but it may be the signal of the implementation of
an adaptive strategy aimed to maintain adequate plant water content and/or tolerate
substantial water losses and tissue dehydration. On this basis, this specie-specific drought-
resistance strategy may overshadow link(s) between drought-driven plant decline and leaf
hydraulics traits.

4. Materials and Methods
4.1. Plant Material and Growth Conditions

Experiments have been performed on 48 samples per species of S. ceratophylloides (Sc)
and S. officinalis (So) plants. Seeds were planted in greenhouse trays in October 2019, after
maintaining them immersed in water for 24 h. A month from sprouting, each seedling was
transferred to a 3.4 L-pot, filled with forest soil collected from Colli San Rizzo (Messina,
Italy) and grown in a greenhouse until the beginning of May 2020. The greenhouse received
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natural light, with maximum daily values of photosynthetic photon flux density (PPFD)
averaging 810 ± 260 µmol s−1 m−2, air temperature ranging from 21 ± 2 ◦C to 17 ± 2 ◦C
(day/night), and air relative humidity of 55 ± 3%.

In May 2020, the samples were transferred to a garden of the Department CHIBIO-
FARAM, University of Messina, Italy, and regularly irrigated at field capacity for a month.
Then, in June 2020, Sc and So plants were randomly divided into two groups (Figure 6).
One group (n = 16) was regularly irrigated at field capacity during the entire experimen-
tal period (i.e., watered samples, W). The second group (i.e., water-stressed samples, S,
n = 32) was further divided into two groups (n = 16) submitted to two different levels of
water stress (Figure 6). Specifically, water stress was induced by withdrawing irrigation
until the two Salvia species reached the leaf water potential (ΨL) inducing about 50% (i.e.,
ΨL~−2.0 MPa, SP50 samples) and 88% (i.e., ΨL~−3.1 MPa, SP88 samples) loss of leaf hy-
draulic conductance, KL, as recorded by some of us in a precedent study [40]. Then, a
subset of SP50 (n = 8) and SP88 samples (n = 8) was measured (see below) and the other
subset of SP50 (n = 8) and SP88 samples (n = 8), was re-irrigated and measured after 7 days
(i.e., RecSP50 and RecSP88 samples, respectively).

During the experimental period, no rainy events occurred. The temperature ranged
from 18 to 26 ◦C and the mean relative humidity was 65 ± 3.2% (weather station of Torre
Faro, Messina, Italy).

4.2. Gas Exchange and Water Status

Preliminary measurements on plants of similar age and growth conditions of those
used in this study showed that SP50 value was reached after 5–6 days and 3–4 days from
withholding water in Sc and So, respectively, while SP88 value was recorded after 10–11 days
in Sc and after 7–8 days in So from suspending irrigation. To avoid defoliation, we monitored
the leaf water potential (i.e., ΨL) declines on two leaves per day, as collected from different
plants, starting from the 4th and 2nd day from withholding irrigation in SP50 Sc and So
samples, respectively. Similarly, ΨL value of SP88 samples were measured starting from the
8th and 5th day from suspending irrigation in Sc and So, respectively. This experimental
procedure led us to remove no more than 2 leaves per sample.

Leaf water potential was measured by a portable pressure chamber (3005 Plant Water
Status Console, Soilmoisture Equipment Corp., Goleta, CA, USA).

ΨL as well as leaf conductance to water vapor (gL), transpiration rate (EL) and pho-
tosynthetic rate (An) were measured at midday in W, S and re-irrigated samples using a
portable LCi Analyzer System (ADC Bioscientific Ltd., Herts, UK). The water use efficiency
(WUE) of each measured plant was estimated by the ratio: An/EL. At least six plants per
species and per treatment were measured.

4.3. Estimating the Relative Water Content, Rehydration Capacity and Cell Membrane Integrity of
Leaf, Stem and Root Samples Experiencing Drought-Recovery Treatment

Immediately after gas exchange and water status measurements and on the same W, S
and Rec measured samples, the soil was gently removed from the root system and at least
2 samples of about 2 cm-long root, stem samples, and 2 leaves per plant and treatment
were collected for RWC, PLRC and REL measurements.

RWC was calculated as: 100 × [(FW − DW)/DW]/SWC and PLRC as: 100 × 100 −
[(TW− DW)/DW]/SWC where FW is the fresh weight (i.e., the sample weight as measured
immediately after sampling), TW is the turgid weight (i.e., the sample weight as measured
after maintaining the petiole or the whole stem and root sample immersed in deionized
water for at least 8 h), DW is the dry weight (i.e., the oven-dried sample weight) and
SWC is the saturated water content (i.e., TW/DW, g g−1) of sample at full turgor. Applied
formula for estimating RWC allowed us to avoid mistakes as caused by cell loss rehydration
ability, especially in low water status samples [40]. Cell membrane integrity was indirectly
estimated by electrolyte leakage test measurements [58]. Leaf discs of about 0.5 cm2 as
well as 2 cm long root and stem samples were cut with a razor blade and inserted into
a test tube containing 8 mL of distilled water. Samples were stirred for 30 min at room
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temperature; then, the initial electrical conductivity of the solution (ECi) was recorded by a
conductivity meter (Cond 5, XS instruments, Carpi, Italy). Samples were then subjected to
three freeze-thaw cycles (−20 ◦C, +20 ◦C) to induce complete membrane disruption and
processed as above to measure the final electrical conductivity of the solution (ECf). The
relative electrolyte leakage (REL) was calculated as: (ECi/ECf) × 100.

4.4. Structural Traits and Biomass Allocation

Watered samples used for estimating RWC values were also measured for estimating
leaf dry matter content, (LDMC) as well as stem (SDMC) and the root (RDMC) dry matter
content (as analogue of LDMC). LDMC, SDMC and RDM values were estimated by the
ratio between leaf, stem or root dry weight and the corresponding turgid weight. Moreover,
stem and leaf dry weight ratio and root and shoot dry weight ratio were also calculated.

Root, stem and leaves dry biomass was estimated by oven drying samples for 3 d
at 70 ◦C.

4.5. Plant Hydraulic Conductance Measurements by EFM

Plant hydraulic conductance (Kplant) values were measured in planta by the Evapora-
tive Flux Method, EFM (35) as:

Kplant: EL/(Ψsoil − ΨL)

where Ψsoil is the soil water potential estimated by a psycrometer (WP4, Decagon Devices,
Pullman, WA, USA). All hydraulic conductance values were corrected to a temperature of
20 ◦C to consider changes in water viscosity.

Hydraulic measurements were estimated in at least 6 samples per species (i.e., S.
ceratophylloides and S. officinalis) and per treatment.

The EFM is expected for providing relative values of hydraulic conductance due
to its intrinsic limit in estimating the transpiration of the whole plant. Nevertheless,
different studies have reported comparable data between EFM and other hydraulic mea-
surements [59–61]. Moreover, the method is considered suitable for comparing values
when recorded in similar environmental conditions. Thus, in order to perform reliable
hydraulic measurements, the water stress treatment was not imposed the same day in all
samples. This experimental procedure allowed us to perform measurements on the same
day (and then similar environmental condition) on at least 3 W, 3 S and 3 Rec samples per
species and treatment, thus avoiding, as possible, differences in transpiration rate values
induced by different boundary layer resistance. Nevertheless, temperature as well as RH
values (and then VPD) were similar during the entire experimental period.

4.6. Statistical Analysis

Data were analyzed with the SigmaStat 12.0 (SPSS, Inc., Chicago, IL, USA) statistics
package. To test leaf structural traits, plant biomass and water storage traits, a t test was
performed. To test the differences among species (S, i.e., Sc and So) and the effects of
the irrigation treatment (T, i.e., well-watered, W, water-stressed, S and re-irrigated, Rec,
samples) on gL, EL, An, WUE, ΨL, Kplant, RWC, PLRC and REL a two-way ANOVA test
was performed. When the difference was significant, a post hoc Holm–Sidak test was
conducted. The significance of correlations was tested using the Pearson product-moment
coefficient. Significance was evaluated in all cases at p < 0.05. Relationships between
Kplant and leaf, stem, and root RWC, PLRC and REL values and associate 95% confidence
intervals (C.I.s) were assessed in order to obtain species-specific and plant organ specific
thresholds. Specifically, values of RWC (RWC50K and RWC80K), PLRC (PLRC50K, PLRC80K)
and REL (REL50K and REL80K) corresponding to 50% and 80% loss of Kplant were estimated
for each plant organ in Sc and So.
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5. Conclusions

Results recorded in the present study highlight as root plays a key role in plant drought
resilience in the two measured Salvia species. Large biomass allocation into the root system
likely allows to higher accumulation of reserves for sustaining post-drought recovery.
Further studies monitoring leaf, stem and root water content and loss in cell rehydration
capability can provide important insights, enabling a comprehensive understanding of
drought resistance strategies of Mediterranean species, and more accurate prediction of
their fate in response to global warming.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10091888/s1, Figure S1: gL and ΨL relationships in Sc versus So samples; Table S1: RWC,
PLRC and REL thresholds of drought-driven Kplant decline of Sc and So.
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