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Abstract: The effect of cultivation practises on both the phytochemical profile and biological activity
of aqueous ethanol extracts of Chelidonium majus L. was studied. Extracts were prepared from
aerial parts of the same plant population collected in the wild and grown under organic farming
conditions. Both qualitative and quantitative analyses of alkaloids and flavonoid derivatives were
performed by LC/MS methods, and the cytotoxicity of lyophilised extracts was studied in B16-
F10, HepG2, and CaCo-2 cells. Coptisine was the dominant alkaloid of extracts prepared from
wild-grown plants, whereas after cultivation, chelidonine was the most abundant alkaloid. The
total alkaloid content was significantly increased by cultivation. Ten flavonol glycoconjugates
were identified in C. majus extracts, and quantitative analysis did not reveal significant differences
between extracts prepared from wild-grown and cultivated specimens. Treatment with C. majus
extracts resulted in a dose-dependent increase in cytotoxicity in all three cell lines. The extracts
prepared from cultivated specimens showed higher cytotoxicity than the extracts prepared from
wild-grown plants. The strongest cytotoxic effect of cultivated C. majus was observed in B16-F10 cells
(ICs59 = 174.98 + 1.12 pug/mL). Cultivation-induced differences in the phytochemical composition of
C. majus extracts resulted in significant increases in the cytotoxic activities of the preparations.
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1. Introduction

Greater celandine, Chelidonium majus L. (Papaveraceae Juss), is a valuable medicinal
plant that is widely distributed throughout Europe, Asia, Northwest Africa, and North
America [1]. In Latvia, it is considered a native species occurring throughout the country
from solitarily specimens to dense growths [2]. In traditional medicine, C. majus has
been used to treat bile and liver disorders [3]. Fresh latex from plants has been used
externally for the treatment of warts, corns, fungal infections, eczema, and tumours of
the skin [4,5]. In Latvian folklore materials, fresh latex and tea made from C. majus were
reported to be used for treating diarrhoea, eye problems, and skin diseases such as lichen
and warts [6]. The treatment of ophthalmological problems and gastrointestinal and skin
disorders are mentioned among many other ethnobotanical studies across Europe [7-10].
The European Medicines Agency (EMA) has proposed two possible therapeutic indications
in the monograph on Chelidonii herba: for symptomatic relief of digestive disorders such
as dyspepsia and flatulence (oral intake), as well as for treatment of warts, calluses, and
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corns (cutaneous use) [11]. However, these indications were not supported due to a lack
of information on clinical safety. From a research point of view, this plant is still very
interesting because it is widely used in folk medicine, but it has not yet acquired the status
of an officially approved and evidence-based herbal medicine.

This species is known to produce a broad range of secondary metabolites, ensuring its
therapeutic properties. The main constituents of C. majus responsible for biological proper-
ties are isoquinoline alkaloids such as chelidonine, chelerythrine, sanguinarine, coptisine,
berberine, allocryptopine, and protopine [1]. They are reported to have anti-inflammatory;,
antimicrobial, antibacterial, antiviral, immunomodulatory, anticancer, choleretic, hepato-
protective, and analgesic properties [1,3]. C. majus alkaloids are a subject of interest due to
their cytotoxic effects against various types of cancer cell lines [12-14]. The well-known
product Ukrain®, a preparation consisting of a mixture of C. majus alkaloids, is marketed
for its anticancer properties. However, many previous clinical studies are considered un-
trustworthy [15]. Most in vitro anticancer activity studies of C. majus refer to sanguinarine,
chelidonine, chelerythrine, and berberine. Sanguinarine, which interacts strongly with
DNA, has been shown to be the most potent anticancer agent obtained from C. majus. The
IC50 values of sanguinarine in leukaemia cell lines are reported to be up to 0.10 uM [12]
and 0.2 uM in human keratinocyte (HaCaT) cell lines [14]. Chelerythrine, berberine, and
chelidonine are also active, but are less potent as cytostatic agents [12].

Comprehensive reports on the alkaloid profile of C. majus [16-19] are available. More
than 50 alkaloids have been detected in greater celandine [17,20]. Quantitative analyses
of the main alkaloids chelerythrine, sanguinarine, and coptisine in C. majus extracts were
performed by HPLC-DAD and LC-MS/MS, and tentative identification of minor alkaloids
was performed with data from the literature [16,19,21-23]. In contrast, data on flavonoid
composition and content in C. majus are fragmented and mainly qualitative. Grosso
et al. [16] quantified the flavonoid content with HPLC-DAD for the first time, and MRM
methods were used for the determination of quercetin and phenolic acids [23].

Greater celandine, like other wild plants, shows interesting features with potential
commercial viability. The market demand for biologically active ingredients from plants is
increasing, and the cultivation of medicinal plants offers several benefits over collection of
wild plants, e.g., reliable supply, standardised and improved production, and certainty of
botanical identity. It is well known that the content of biologically active components of
celandine is significantly affected by growing conditions [1,24]. Therefore, it is important to
assess the influence of cultivation practices (growing in the wild or under organic farming
conditions) on the phytochemical composition of C. majus populations.

The aim of this study was to investigate how growing conditions affect both the
phytochemical compositions and cytotoxic activities of aqueous ethanol extracts of C.
majus. Aerial parts of wild populations of C. majus originating from different regions
of Latvia were harvested. Plantlets from the same wild populations were planted and
cultivated under organic farming conditions. Aqueous ethanolic extracts were prepared
from both wild-grown and cultivated plants. High-resolution mass spectrometry was
applied for the identification of phytochemical compounds, and quantitative analyses of
major components were performed by UPLC-MS/MS. CaCo-2, HepG2, and B16-F10 cell
lines were selected for cytotoxicity analysis because in traditional medicine, aerial parts of
C. majus have often been used to treat gastric and liver diseases, and locally for various
skin disorders [1,17]. The cytotoxic activities of the lyophilised extracts were determined in
these three cancer cell lines.

2. Results and Discussion

2.1. Alkaloid Profile and Quantitative Analysis of Aqueous Ethanol C. majus Extracts
LC/MS-TOF analyses of aqueous ethanol C. majus extracts revealed the presence of 12

alkaloids. The identities of chelidonine, sanguinarine, and chelerythrine were confirmed

with available reference standards. Tentative identification of other alkaloids was per-
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formed by comparison of their chromatographic retention times and detected m/z values
with literature data [19,25]. A summary of the identification results is shown in Table 1.

Table 1. List of tentatively identified alkaloids in the ethanol extracts of aerial parts of C. majus.

RT, min m/z Compound MW (Monoisotopic) Calculated Elemental Composition
18.02 354.134 Protopine 1 353.126 CyoH19NOs5
18.81 354.133 Chelidonine 353.126 CoH19NO5
19.00 370.163 Allocryptopine ! 369.158 Cy1Hp3NO5
19.09 320.092 Coptisine ! 320.092 C19H14NO4*
20.2 370.165 Allocryptopine 1 369.158 Cy1Hp3NOs5
20.33 340.118 Norchelidonine ! 339.111 C19H17NO5
20.56 340.153 Canadine ! 339.147 CyoHy1NO4
21.05 340.118 Norchelidonine ! 339.111 C19H17NOs5
21.28 332.091 Sanguinarine 332.092 CyoH14NOy*
21.87 336.122 Berberine ! 336.124 CooH1gNO4™*
23.462 348.122 Chelerythrine 348.124 Cy1HigNOy*
23.46 2 382.128 6,10-Dihydroxyl 382.129 Cy HpoNOg*

chelerythrine 3

1119], 2 overlapping chromatographic signals, 3 [25], bold—identified by comparison with reference compounds.

The results of quantitative determinations of major alkaloids revealed coptisine as the
predominant compound in C. majus extracts prepared from wild-grown celandine (Table 2,
Supplementary Materials Table S1).

Table 2. Content of alkaloids (ng/g of dry material) in the ethanol extracts of aerial parts of wild-
grown and cultivated C. majus.

Average Alkaloid Content (n = 5)

Compound p Value
Wild 2019 Cultivated 2020
Sanguinarine 19+21 128 £ 3.6 0.0004
Chelerythrine 35+13 175+ 85 0.007
Chelidonine 63.6 + 35.4 2522 +133.2 0.02
Coptisine ! 138.5 + 35.6 1435 +32.2 0.8
Berberine ! 9.4 £6.6 128 £ 84 0.6
Allocryptopine ! 52+3.0 119+74 0.1
Total Content 222.0 450.6 0.02

1 Coptisine, berberine, and allocryptopine quantified as chelidonine.

Coptisine, as the predominant alkaloid, was also found by Sarkozi et al. [21]; however,
the extracts in their study were prepared using methylene chloride. Chelerythrine and
sanguinarine were found to be the dominant alkaloids in methanol extracts [19]. In aqueous
ethanol extracts, coptisine was found to be the dominant alkaloid; moreover, an increase
in ethanol content from 25% to 45% resulted in a more than fivefold increase in coptisine
recovery [26].

Our study shows that the chelidonine content in extracts of cultivated specimens
was approximately four times higher than that in wild-grown plant preparations, and
chelidonine became the dominant alkaloid. It should be noted that the variability of
chelidonine content in extracts prepared from both cultivated and wild-grown C. majus
specimens was very high (RSD > 50% in both cases, n = 5, Supplementary Materials
Table S1). The total content of alkaloids in extracts prepared from cultivated C. majus
specimens was significantly higher than that in extracts prepared from wild-grown C.majus
specimens (Table 2). The contents of both sanguinarine and chelerythrine were significantly
increased in extracts prepared from cultivated C. majus specimens. Coptisine, berberine,
and allocryptopine contents also showed increasing tendencies in extracts of cultivated C.
majus plants; however, the concentration variability between individual samples was still
very high, and the differences were not statistically significant.
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Wide variation in the alkaloid content in C. majus has been reported previously by
other authors [18,27,28]. Many factors, such as genotype, plant age, developmental phases,
harvesting time, and environmental conditions, can affect the alkaloid content in raw plant
material.

2.2. Flavonoid Profile and Quantitative Analysis of Aqueous Ethanol C. majus Extracts

C. majus contains minor amounts of quercetin, kaempferol, and isorhamnetin glyco-
conjugates [16,29]. Recently, a small phenolic acids content [23] was discovered. Several
studies [18,24] have focused on the total phenolics content or total flavonoids content. Mass
spectrometry was sporadically applied for the identification of individual compounds [16].

To achieve nontarget identification of flavonoid derivatives, we screened the cor-
responding aglycone masses of quercetin, isorhamnetin, and kaempferol on an HRMS
instrument and then performed MRM analyses on a tandem mass spectrometer (Supple-
mentary Materials Figure S1). The identified key flavonols quercetin, kaempferol, and
isorhamnetin were found to be present in various glycosylated forms. In contrast to roots
showing the presence of only quercetin aglycone [23], in aerial parts we identified 10 mono-,
di-, and triglycosides of flavonols, as shown in Table 3.

Table 3. List of tentatively identified flavonoids in the ethanol extracts of aerial parts of C. majus.

e .. MW Calculated Parent Scan of
. Characteristic Characteristic .
Peak # RT, min . 1 + . 1 _ Compound (Monoiso- Elemental Aglycone Fragment
ions ' ESI*, m/z ions * ESI—, m/z . e 2
topic) Composition Ion, m/z
Quercetin 3
1 11.2 627.144 Triglycoside 772.206 C33Hy0071 773, 627,465 (303)
Kaempferol
2 13.0 755.201 Triglycoside 756.211 C33Hy0099 757,611, 449 (287)
Isorhamnetin
3 13.6 479.119 Triglycoside 786.222 C34Hy Oy 787,641,479 (317)
Quercetin
4 16.8 611.159 609.143 3-O-Rutinoside 610.153 Co7H3901¢ 611, 465 (303)
Quercetin
5 17.0 465.101 3-O-Galactoside 464.100 Cy1Hp9O12 465 (303)
Kaempferol
6 17.4 287.056 593.147 Diglycoside 594.158 Co7H30015 595, 449 (303)
Kaempferol
7 18.4 287.054 593.147 3-O-Rutinoside 594.101 Cy7H30015 595, 449 (287)
Kaempferol
8 18.8 449.104 447.089 Clucoside 448.101 C1Hp0011 449 (287)
Isorhamnetin
9 19.0 625.173 623.158 3-O-Rutinoside 624.169 CosH3,016 626,279 (317)
Isorhamnetin
10 19.4 479.119 477.102 Glycoside 478.111 CyoHy, 010 479 (317)

1 HRMS data, 2 mass difference within + 5 mDa, 3 m/z of aglycone fragment in brackets, bold—identified by comparison with reference
compounds.

Three intense peaks for flavonol 3-O-diglycosides consisting of both rhamnoside and
glucoside fragments were observed. Peak 4 yielded a precursor ion with an m/z 611 [M
+ HJ" along with a fragment with m/z 465 for the loss of rhamnosyl, indicating that it
is quercetin 3-O-rhamnosylglucoside, while peaks 7 and 9 with similar fragmentation
patterns (595—449 and 625—479) were identified as kaempferol 3-O-rhamnosylglucoside
and isorhamnetin 3-O-rhamnosylglucoside. The identities were confirmed by comparison
with reference standards.

Along with monoglycosides and diglycosides (peaks 4-10), carbohydrate residues
with three saccharide moieties were identified in extracts. Peak 2 showed a precursor
ionatm/z 757 [M + H]* (C33H49Oyp), and its MS/MS spectrum presented a product ion
at m/z 611 attributed to the elimination of a glycosyl residue and a product ion at m/z
449 produced after loss of a rutinoside residue. Based on aglycone formation at m/z
287, this compound was tentatively identified as kaempferol 3-O-rhamnosylglycoside-7-O-
glucoside [30]. Similarly, quercetin 3-O-triglycoside consisting of one rhamnosidylglycoside
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and one glucoside (peak 1) and isorhamnetin 3-O-rhamnosylglycoside-7-O-glucoside (peak
3) were identified. The identification of peak 3 was based on the MRM parent scan, as HR
full scan mass spectra did not yield protonated molecular ions. These three glycosides
(peaks 1, 2, and 3) were formed from the same carbohydrates attached to the same positions
of the three different flavonols and have not been previously reported in C. majus.

Two peaks with molecular masses equivalent to that of kaempferol diglycoside were
detected (peaks 6 and 7). Although both molecular and aglycone ions coincided, retention
times were different. The later eluting peak (7) was identified as kaempferol-3-rutinose by
comparison with the reference compound.

Quantitative analyses of flavonoids showed the predominance of rutinoside-type
glycoconjugates (Table 4, Supplementary Materials Table S2), similar to the findings of
Grosso et al. [16] and Parvu et al. [29]. Quercetin 3-O-rutinoside (rutin) was the pre-
dominant compound in extracts prepared from both wild-grown and cultivated C. majus
specimens. The next most abundant flavonol glycosides were isorhamnetin 3-O-rutinoside
and kaempferol 3-O-rutinoside. The total flavonol glycoside content was slightly higher
in extracts prepared from cultivated C. majus specimens; however, the major contribution
was the increase in rutin content, and the changes were not statistically significant.

Table 4. Content of flavonoids (ug/g of dry material) in the ethanol extracts of aerial parts of
wild-grown and cultivated C. majus.

Compound Average Flavonoid Content (n = 5) p Value
Wild 2019 Cultivated 2020

Kaempferol 13.1+9.2 6.9 +4.2 0.2
Isorhamnetin 8.8+ 6.7 40+£1.6 0.2
Quercitrin 14+12 20+ 09 0.4
Isorhamnetin 3-O-Rutinoside 1612.7 + 7229 1857.2 4+ 326.0 0.5
Kaempferol 3-O-Rutinoside 653.8 £ 377.4 600.7 + 216.4 0.8
Quercetin 3-O-Rutinoside 3007.2 + 1270.1 4385.1 4+ 1150.8 0.1
Quercetin 3-O-Galactoside 220.2 +269.9 1959 +114.0 0.9
Kaempferol Glucoside 1 135.9 4+ 130.8 53.5+12.9 0.2
Total 5653.1 7105.3 0.3

I Kaempferol glucoside—quantified as luteolin 7-O-glucoside.

2.3. Cytotoxic Activity of Extracts from C. majus

The cytotoxic activities of extracts towards B16-F10, HepG2, and CaCo-2 cell lines
were evaluated by determination of ICsg values in the MTT assay. Treatment with C. majus
extracts resulted in dose-dependent increases in cytotoxicity in all three cell lines (Figure 1).
The strongest cytotoxic effect of C. majus was observed in B16-F10 cells. The ICs, values of
the cultivated samples on B16-F10 cells ranged between 174.98 = 1.12 pg/mL and 318.42 &
1.08 ug/mL. HepG2 and CaCo-2 cells were less sensitive than the melanoma cells, and the
IC50 values of the cultivated samples ranged between 226.46 + 1.66 ng/mL and 448.75 +
1.34 ug/mL and from 291.07 & 1.10 ug/mL to 406.44 & 1.08 ug/mL, respectively (Table 5).

The cytotoxicity data of this study showed activities for aqueous ethanol extracts
that are lower than those previously reported. Thus, the IC5p value for the methanol
extract on CaCo-2 cells was 166.06 + 15.71 pg/mL, and that on HepG-2 cells was 144.81 +
15.03 pg/mL [31]. In the study by Fadhil, [32], the cytotoxic effect (IC5¢ = 282.86 png/mL)
of C. majus on HepG-2 cells was in line with the present results. C. majus cultivated under
controlled environmental conditions exhibited higher cytotoxic activity against all studied
cell lines.
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Figure 1. Differences in cytotoxic activities between cultivated and wild-grown C. majus on B16-F10,
HepG2, and CaCo-2 cell lines measured by MTT assay. Values are the mean £ SD (n = 5). Differences
between the measurements were tested using the Mann-Whitney U-test. * Significantly different
from wild-grown C. majus (p < 0.05).

Table 5. Inhibitory effects on the growth of human hepatocellular carcinoma (HepG2), murine
melanoma (B16-F10), and human colorectal adenocarcinoma (CaCo-2) cells.

ICsp (ug/mL) &= SD

Sample
HepG2 B16-F10 CaCo-2
Wild 2019
CHMO01 422.67 +1.09 264.85 + 1.13 >500
CHMO02 >500 354.81 £ 1.22 >500
CHMO03 >500 496.59 + 1.05 >500
CHMO04 >500 389.94 + 1.12 >500
CHMO05 461.32 £ 1.13 394.46 4+ 1.08 >500
Cultivated 2020

CHMO01 351.56 4+ 1.38 279.25 4+ 1.08 361.41 + 1.84
CHMO02 241.55 +1.22 17498 + 1.12 291.07 £ 1.10
CHMO03 27227 +1.16 325.84 +£1.20 406.44 1+ 1.08
CHMO04 226.46 + 1.66 318.42 £1.08 389.94 +1.20
CHMO05 448.75 + 1.34 180.30 + 1.54 400.87 +1.18

The results of the present study showed that the cytotoxic effect in different cell lines
varies depending on the alkaloid assessed. In experiments with HepG2 cells treated with
various C. majus extracts, the strongest correlation was between the ICsy values and the
contents of chelerythrine, sanguinarine, and chelidonine. In the case of B16-F10 cells, there
was a correlation between the ICs values and sanguinarine, chelidonine, and total alkaloid
contents. Furthermore, the IC5 values for CaCo-2 were correlated with the sanguinarine,
chelerythrine, allocryptopine, and total alkaloid contents (Supplementary Materials Fig-
ure S2). Although the amount of chelidonine differed by up to four times between cultured
and wild-grown C. majus samples, this was not clearly reflected in the biological activity
results. Our data provide additional evidence that some alkaloids, such as chelerythrine,
sanguinarine, and berberine, are more important in causing apoptosis or stopping the
proliferation of cancer cells. Unlike the previously mentioned alkaloids, chelidonine is a
weak DNA intercalating agent and does not cause lethal mutations or DNA damage [1,33].
This relationship is very well demonstrated in the study [33], where all these substances
were tested on different cancer cells and chelerythrine, sanguinarine, and berberine showed
significantly higher cytotoxicity. In human pharyngeal squamous carcinoma cells (FaDu),
the difference between the ICsy values of sanguinarine and chelidonine was more than
500 times [33]. In our study, the cytotoxic activities of wild-grown and cultivated C. majus
extracts were evaluated for the first time in the B16-F10, HepG2, and CaCo-2 cell lines. Our
results confirmed the cytotoxicity of C. majus extracts towards the studied cell lines, which
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indicates the usefulness of compounds found in the extracts for the treatment of different
cancer types.

3. Materials and Methods
3.1. Chemicals and Reagents

HPLC gradient grade acetonitrile and formic acid were purchased from Sigma-Aldrich
(Schnelldorf, Germany). The reference substances sanguinarine, chelerythrine, and chelido-
nine were purchased from Biosynth Carbosynth (Compton, UK), Alfa Aesar Chemicals
(Heysham, UK), and Cayman Chemical (Ann Arbor, MI, USA), respectively. All flavonoid
reference substances were purchased from PhytoLab (Vestenbergsgreuth, Germany).

3.2. Plant Materials and Preparation of Aqueous Ethanol Extracts

Aerial parts from five populations of Chelidonium majus were collected from the wild
at the flowering stage (hereafter referred to as “wild”) for chemical analysis and biological
activity testing during May 2019 (Supplementary Materials Table S3). Voucher specimens
were deposited at the Institute for Environmental Solutions (IES) in Latvia under codes
CHMO01, CHM02, CHMO03, CHM04, and CHMO05. Ten randomly selected plantlets were
also collected from the same five populations in 2019 and planted in an organically certified
experimental field of IES (57°19'11.7” N 25°19'18.8” E, 115 m altitude). The plot size was
0.8 m?, and the plant spacing was 0.2 x 0.5 m. A year later, aerial parts were collected
during the flowering stage from the same populations in the experimental field (hereafter
referred to as “cultivated”). The collected plant material was dried at 55 °C for 14-29 h, and
then the plant material was powdered. Powdered dried samples of C. majus were macerated
with 70% ethanol solution in water at 1:10 w/v. Prepared solutions were incubated for
7 days in a dark, cool place and frequently shaken until extraction of the plant material was
completed. Afterwards, the material was pressed, and the remaining solid was squeezed
to remove all remaining solvent. The obtained solutions were clarified by decantation and
centrifugation.

3.3. Preparation of Lyophilised Extracts

For the biological activity assays, the aqueous ethanol extracts were concentrated with
a rotary evaporator and further lyophilised. The obtained powder was labelled and stored
in a refrigerator at —20 °C prior to further analysis.

In vitro experiments with C. majus extracts were carried out using lyophilised plant
material dissolved in dimethyl sulfoxide (DMSO). The final concentration of DMSO in each
well did not exceed 0.5% (v/v).

3.4. HRMS Analysis

The plant extracts were analysed on a Shimadzu LCMS hybrid IT-TOF system com-
bined with a Nexera X2 UPLC system. An Acquity UPLC BEH C18 (2.1 x 150 mm, 1.7 um
particle size) column was used with a flow rate of 0.4 mL/min. The column oven was set
at 40 °C, and the sample injection volume was 1 puL. The mobile phase consisted of a com-
bination of A (0.1% formic acid in water) and B (acetonitrile). Gradient: 2% B, 1 min—2% B,
4 min—5% B, 14 min—15% B, 36 min—50% B, 48 min—98% B, 55 min—98% B, 58 min—2%
B, 60 min—2% B.

The adjusted operating parameters of the mass spectrometer were set as follows:
detector voltage—1.5 kV, nebulizing gas (N2) flow—1.5 mL/min, mass scan range (m/z)
—120 to 1000, and ion accumulation time—10 ms. LCMSsolution software was used to
process LCMS data. UV /Vis spectra were recorded over the range 190 nm to 650 nm.

Aqueous ethanol extracts of dried plant material were injected into the chromato-
graphic system without further processing.
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3.5. UPLC-MS/MS Analysis of Alkaloids

UPLC separation of target compounds in plant extracts was performed on an Acquity
BEH C18 column (2.1 x 50 mm, 1.7 um, Waters) using a Waters Acquity UPLC system. A
linear gradient from 5% acetonitrile in 0.1% aqueous formic acid to 98% acetonitrile was
applied over 5 min. A Xevo TQ-Smicro tandem mass spectrometer (Waters) in positive
electrospray mode was used for quantification. Multiple reaction monitoring (MRM)
parameters are detailed in Supplementary Materials Table S4.

Aqueous ethanol extracts were diluted 10 or 100 times with 70% ethanol before MRM
analysis. Calibration concentrations ranged from 1 ng/mL to 250 ng/mL for all analytes.

3.6. UPLC-MS/MS Analysis of Flavonoids

UPLC separation of flavonoid glycoconjugates in plant extracts was performed on an
Acquity BEH C18 column (2.1 x 100 mm, 1.7 um, Waters) using a Waters Acquity UPLC
system. A linear gradient from 5% acetonitrile in 0.1% aqueous formic acid to 98% ace-
tonitrile was applied over 12 min. A Xevo TQ-Smicro tandem mass spectrometer (Waters)
in positive electrospray mode was used for quantification. Multiple reaction monitoring
(MRM) parameters are detailed in Supplementary Materials Table S5. Aqueous ethanol
extracts were diluted 100 times with reserpine (internal standard) solution (10 ng/mL) in
70% ethanol before MRM analyses. Calibration concentrations ranged from 50 ng/mL to
10 pg/mL for all analytes.

3.7. Cell Culture

The B16-F10 murine melanoma cell line (CRL-6475™), HepG2 human hepatocellular
carcinoma cell line (HB-8065™), and CaCo-2 human colorectal adenocarcinoma cell line
(HTB-37™) were purchased from ATCC® (American Type Culture Collection, Manassas,
VA, USA) and cultured in DMEM with Glutamax (Gibco, Darmstadt, Germany) supple-
mented with 10%-20% foetal bovine serum (FBS, Merck KGaA, Darmstadt, Germany) and
1% antibiotics (100 U/mL penicillin and 100 pg/mL streptomycin) at 37 °C in a humidified
incubator under 5% CO,. After reaching 80% confluence, the cells were subcultured in
96-well plates at a final concentration of 10 x 10* cells/mL (100 pL medium in each well).

3.8. Cytotoxicity Assay

To estimate the cytotoxicity of extracts against three cell lines, MTT (3-[4,5-diethylthiazol-
2-yl]-2,5-diphenyltetrazolium bromide) and a slightly modified method by Mosmann [34]
were used. Cells were seeded in 96-well plates at a final concentration of 10 x 10% cells/mL
(100 pL medium in each well) and incubated overnight for adherence. Then, 100 pL of
medium or extract dilution in medium (100 ng/mL-1200 pg/mL) was added to each well.
The medium with the tested extracts was added at different concentrations. After 24 h
incubation with the extracts, the medium was exchanged with 100 pL of MTT solution
(1 mg/mL in PBS) and incubated for 2 h at 37 °C. Thereafter, the solution was aspirated,
and isopropanol was added to each well to dissolve the formazan crystals formed during
the incubation period. The plate was placed in a shaker for dissolution. The absorbance
was determined spectrophotometrically at 570 nm using a reference wavelength of 650 nm
on a Hidex Sense microplate reader (Hidex, Turku, Finland).

3.9. Statistical Analysis

The data obtained from the biological activity assay were analysed using the log
(inhibitor) vs. response—variable slope (four parameters) analysis function and performed
with GraphPad Prism (GraphPad, Inc., La Jolla, CA, USA) computer software. ICsy values
were obtained from three independent experiments (n = 6) and are presented as the means
+ SD. The quantitative results (content of flavonoids and alkaloids) are presented as the
mean =+ standard deviation (SD). Statistical analysis was performed using Student’s ¢-test
(two tailed distribution, two sample equal variances). p < 0.05 was considered statistically
significant.
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4. Conclusions

The total content of alkaloids in aqueous ethanol extracts prepared from cultivated
C. majus specimens was higher than that observed in extracts prepared from wild-grown
plant material. Chelidonine, sanguinarine, and chelerythrine were the main contributors to
the total increase in alkaloid content. The cultivation of C. majus did not significantly affect
the total content of flavonol glycosides. The observed differences in the phytochemical
compositions of the C. majus extracts resulted in significant increases in the cytotoxic
activities of the preparations.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/plants10091971/s1, Table S1: Content of alkaloids (ug/g of dry material) in aqueous ethanol
extracts of wild and cultivated C. majus specimen, Table S2: Content of flavonoid (ug/g of dry
material) in aqueous ethanol extracts of wild and cultivated C. majus specimen, Table S3 Collection
site and geographical coordinates of Chelidonium majus populations, Table S4: MRM parameters
applied for the analysis of alkaloids in C. majus extracts, Table S5: MRM parameters applied for the
analysis of flavonoid glycoside in C. majus extracts, Figure S1: Flavonoid aglycone extracted mass
chromatograms (parent search): kaempferol (a), quercetin (b), isorhamnetin (c). Peak identification
in Table 3, Figure S2. Correlations between IC50 values of cytotoxic activities of C. majus extracts
measured by MTT assay in three cell lines (CaCo-2, B16-F10 and HepG-2) and concentration of the
alkaloids identified in the extracts by liquid chromatography-tandem mass spectrometry. The data
were analysed by the Pearson’s correlation test using GraphPad Prism 8.0. Statistically significant
correlations are shown in the figure. A value of p < 0.05 was considered to be statistically significant.
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