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Abstract: Background: In the 1960s, research into plant adaptogens began. Plants with adaptogenic
properties have rich phytochemical compositions and have been used by humanity since ancient
times. However, it is not still clear whether the adaptogenic properties are because of specific
compounds or because of the whole plant extracts. The aim of this review is to compare the bioactive
compounds in the different parts of these plants. Methods: The search strategy was based on studies
related to the isolation of bioactive compounds from Rhaponticum carthamoides, Lepidium meyenii,
Eleutherococcus senticosus, and Panax ginseng. The Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines were followed. Results: This review includes data from 259
articles. The phytochemicals isolated from Rhaponticum carthamoides, Lepidium meyenii, Eleutherococcus
senticosus, and Panax ginseng were described and classified in several categories. Conclusions: Plant
species have always played an important role in drug discovery because their effectiveness is based
on the hundreds of years of experience with folk medicine in different nations. In our view, there
is great potential in the near future for some of the phytochemicals found in these plants species to
become pharmaceutical agents.

Keywords: adaptogen; adaptogens; plant adaptogens; Rhaponticum carthamoides; Leuzea; ecdysterone;
Lepidium meyenii; Maca; Eleutherococcus senticosus; Panax ginseng

1. Introduction

The term adaptogen was introduced for the first time in the 1940s by Dr. Nikolai
Lazarev [1]. The classical definition of adaptogens is related to their ability to increase the
organism’s resistance to stress factors (“stressors”) [2,3]. These stressors have different na-
tures: chemical, physical, or other [2,3]. Examples of such stress factors include unfavorable
atmospheric temperature, intense physical activity, high-altitude hypoxia, etc. According
to the definition, the adaptogens should not only protect the organism from damage from
stress situations/factors, but should also not increase the oxygen consumption and not
disturb the normal functions of the organism [2]. Adaptogens are also called metabolic
regulators [2]. However, the adaptogenic effect is described as “nonspecific” [2].

I. I. Brekhman and I. V. Dardymov are the researchers who first classified the plants
with adaptogenic properties: Panax ginseng C. A. Mey., Eleutherococcus senticosus Max.
and Rhaponticum carthamoides (Wild.) Iljin from Araliaceae family, Rhodiola rosea L. from
Crassulaceae family and Schisandra chinensis from Schisandraceae family are plants with
adaptogenic properties [4]. Later, the “family of plant-adaptogens” was expanded to
include: Bryonia alba L. (Cucurbitaceae), Tribulus terrestris L. (Zygophyllaceae), Bacopa
monnieri L. Pennell (Plantaginaceae), Lepidium meyenii Walp. (Brassicaceae) and Withania
somnifera (L.) Dunal (Solanaceae) [3,5–10].
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Plants with adaptogenic properties have rich phytochemical compositions and different
applications [3,11–20]. However, it is not still clear whether the adaptogenic properties are
because of specific compounds or because of the whole plant extracts. Studies that compare the
biological activities of the different compounds and the whole extracts are limited. There is no
study that compares the phytochemical compositions of the most important plant adaptogens.

There is great potential for some of the phytochemicals found in Rhaponticum carthamoides,
Lepidium meyenii, Eleutherococcus senticosus and Panax ginseng to become pharmaceutical
agents. The aim of this review is to compare the bioactive compounds in the different
parts of these plants (roots, leaves, seeds, etc.), which will support the study, evalua-
tion, and extraction of specific molecules from Rhaponticum carthamoides, Lepidium meyenii,
Eleutherococcus senticosus, and Panax ginseng.

2. Materials and Methods

The search strategy was to seek studies related to the isolation of bioactive compounds
from Rhaponticum carthamoides, Lepidium meyenii, Eleutherococcus senticosus, and Panax ginseng
and their activities. This was conducted following the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) guidelines, presented in Figure 1. This search
was performed using the following databases: PubMed, Sci Finder, and Web of Science.
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The keywords included in the search were: “phytosteroids”, “bioactive compounds”,
“phenolic acids”, “flavonoids”, “content of ecdysterone”, “phytochemicals”, “chemical
compounds”, “Lepidium meyenii”, “Eleutherococcus senticosus”, “Rhaponticum carthamoides”,
“Panax ginseng”, “Maca root”, “ecdysterone”, “macamides and macaenes”, “polysaccha-
rides”, “glucosinolates”,”eleutherosides”,”ginsenosides”, “structure-activity relationship”,
“animal studies”, “human studies” and “cell culture studies”.

In the final step, the selected articles were read and identified. In total, 259 studies
were selected and included in the present review.

3. Results and Discussion

The main phytochemical classes isolated from different plant parts of Rhaponticum
carthamoides, Lepidium meyenii, Eleutherococcus senticosus, and Panax ginseng were phytos-
teroids, phytosterols, flavoloids, flavolignans, alkaloids, glucosinolates, saponins, phenolic
acids and others [12,13,22,23]. Phytosteroids are the main bioactive compounds isolated
from Rhaponticum carthamoides roots, leaves, and seeds, and they are not found in Panax
ginseng, Eleutherococcus senticosus, and Lepidium meyenii [12,13,22,23]. Flavonoids are also
detected in Rhaponticum carthamoides leaves and roots, but they are not detected in Lepid-
ium meyenii, Eleutherococcus senticosus or Panax ginseng plant parts [12,22–26]. Macaenes,
macamides, alkaloids, glucosinolates and sterols are isolated from Lepidium meyenii tuber,
but are not detected in the other adaptogens, such as Panax ginseng, Eleutherococcus senti-
cosus, and Rhaponticum carthamoides [12,13,22,23]. The main phytochemicals isolated from
Panax ginseng and Eleutherococcus senticosus are saponins and their glycosides, which are
not detected in Rhaponticum carthamoides and Lepidium meyenii [12,13,22,23]. Phenolic acids
are detected in Rhaponticum carthamoides roots and Eleutherococcus senticosus roots, but not
in Lepidium meyenii and Panax ginseng [22,23,27–29]. The isolated nutritional ingredients
differentiate Maca from other plants with adaptogenic properties [12,13,22,23,30]. Maca is
the only plant among these that is considered not only a medicinal plant, but also a food.

3.1. Rhaponticum carthamoides

Rhaponticum carthamoides (Wild.) Iljin is an endemic plant, naturally grown in South
Siberia [13]. Humans have known of the plant since ancient times, and its various ap-
plications have been described in Eastern folk medicine [13]. It had been used for the
treatment of fever, cardiovascular diseases, fatigue, kidney diseases, reproductive and
sexual disfunction, quinsy, etc., [13,31,32].

Rhaponticum carthamoides is a perennial plant [13,31,33]. It can reach up to 150 cm in
height [13]. It is a semi-rosulate plant [31]. The main parts utilized for the production
of extracts are roots and rhizomes [13]. Rhaponticum carthamoides rhizome cum radicibus
are included in Russian pharmacopoeia [34]. However, the plant is not included in the
European, British, or USA pharmacopeias. The rhizome (shown in Figure 2) is dark black,
vertical, branched, and wrinkled, and can reach up to 36 cm in length. The roots are smooth
and elastic with numerous branches [34].
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Nowadays, Rhaponticum carthamoides extract is included in numerous dietary supple-
ments. Its intake is associated with not only adaptogenic activity, but also with antimicro-
bial, anti-oxidative, neuroprotective, antidiabetic, and anabolic activity [13,31]. The intake
of Rhapoticum carthamoides extract is not associated with side effects [13,35–38]. The main
bioactive compounds detected in Rhaponticum carthamoides are phytosteroids, flavonoids,
and phenolic acids. The plant is also a source of essential oil [13,39,40]. The plant is
a rich source of phytoecdysteroids—a large class of steroid compounds [41,42]. Their
structures are composed by 27–29 C-atoms, with a four-ring steroid skeleton [39,42–44]
and contain polyhydroxyl groups (4–7 hydroxyl groups) [45]. Nowadays, more than
200 ecdysteroid compounds are described [41,46], 50 of which are isolated from Rhapon-
thicum carthamoides [13]. These compounds are found in the roots, leaves, and seeds of the
plant [47–56]. The content of 20-hydroxyecdysterone, which is the main ecdysteroid, is
higher in roots than in leaves and seeds [47–56].

The structure–activity relationship of ecdisteroids is still not well clarified. Some
researchers suggest that the presence of hydroxyl groups on C-5, C-14, and C-22 positions
is very important for the biological activity of these compounds as well the presence of
double bond at C-7 and keto-group at C-6 (example: ecdisterone) [57–59]. The presence
of 2,3-diol system, hydroxyl group at C-20 in ecdysteroids structures is important for the
anabolic activity [60].

Some of the beneficial effects related to phytoecdysteroids are anabolic, hypocholes-
terolemetic, neuroprotective, hypoglycemic, and metabolism regulation [60,61]. However,
Rhaponthicum carthamoides is not the only source of ecdysteroids. There are other plants that
contain 20-hydroxyecdysterone. These are Achyranthes bidentata Blume, Achyranthes japonica
(Miq.) Nakai, Ajuga iva (L.) Schreb, Boerhaavia diffusa L. nom. cons., Diploclisia glaucescens
(Blume) Diels, Pfaffia glomerata (Spreng.) Pedersen, Spinacia oleracea L., Polypodium japonicum
Makino, and some others [62–64].

Since 2020, ecdysterone has been included in the World Anti-doping Agency (WADA)
monitoring program [65]. According to different studies in mammals, ecdysterone has a
wide variety of pharmacological effects: anabolic, anti-diabetic, anti-inflammatory, cardio-
protective, hypolipidemic and others [62,66–70].

However, studies that investigated ecdysterone’s activity in humans are limited [36–38,71–73].
There are data about the intake of Rhaponticum carthamoides extract, which contains ecdys-
terone [38,71,73]. The intake of Rhaponticum carthamoides extract is associated with decreased
body weight; increased resistance to disease; physical and mental endurance; improvement
in cardiac and cognitive functions [35,36,72–74]. Studies that investigate ecdysterone activ-
ity in cell cultures are also limited [75–79]. According to data obtained from cell culture
studies, ecdysterone has great potential to be used for the treatment of diabetes, breast
cancer, Alzheimer’s disease, and osteoporosis [75–79].

In the near future, it is highly likely that ecdysterone will become a drug molecule,
used for obesity management, reducing fatigue or the management of glucose levels. It
is also highly likely to be included in WADA’s prohibited list if researchers prove it has
the potential to improve athletes’ performance. However, its biological activity should be
studied in more detail in cell cultures and mammals, and in randomized clinical trials.

Rhaponthicum carthamoides is also a source of flavonoids, which are mainly found in
the roots and leaves [24,25]. Flavonoids are substances with a phenolic structure, and over
8000 flavonoids are known [80,81]. Flavonoids are divided into the subclasses flavonols,
flavones, flavanones, catechins, and their glycosides [25]. The presence of flavonoids in
Rhaponticum carthamoides extracts determines the hypolipidemic and antioxidative effects
of the extract [81,82]. Antioxidant activity is associated with the presence of a large number
of hydroxyl groups in flavonoids [83].

The plant is also a source of essential oil [40,84,85], which has antimicrobial, antioxi-
dant, and anti-inflammatory activities [40,84]. Table 1 presents the bioactive compounds
isolated from different plant parts of Rhaponticum carthamoides.
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Table 1. Rhaponticum carthamoides bioactive compounds.

Biological Active Compound Plant Part References

Phytosteroids

20-Hydroxyecdysone
Roots

Leaves
Seeds

[47–52,55,86]
[53,55,87,88]

[53,54,56]

20-Hydroxyecdysone 2-acetate Roots [50]

20-Hydroxyecdysone 3-acetate Roots [50]

20-Hydroxyecdysone 2,3-monoacetonide Roots [48,49,86]

20-Hydroxyecdysone 20,22-monoacetonide Roots [48,49,86]

20-Hydroxyecdysone 2,3;20,22-diacetonide Roots [48,49]

2-Deoxyecdysterone Roots [86]

3-epi-20-Hydroxyecdysone Roots [49]

5-α-20-Hydroxyecdysone Roots [49]

22-Oxo-20-Hydroxyecdysone Roots [49]

Leuzeasterone Roots [49]

Polypodine B Roots
Seeds

[48,49,51,86]
[54]

Polypodin B-22-O-benzoate Seeds [56]

Polypodine B-20,22-acetonide Roots [48]

Inokosterone Roots [50,89]

Inokosterone 20,22-acetonide Roots [50]

Integristerone A Roots [49,50,86]

Integristeone A 20,22-acetonide Roots [50]

Integristerone B Roots [49]

14-epi-Ponasterone A 22-glucoside Roots [50]

15-Hydroxyponasterone A Roots [50]

Makisterone Roots [51]

Makisterone A Roots
Seeds

[48,49]
[90]

Makisterone C Roots [49,50]

24-epi-Makisterone A Roots [50]

24(28)-Dehydromakisterone A Roots
Seeds

[50,51,86]
[54]

26-Hydroxymakisterone C Roots [50]

1-Hydroxymakisterone C Roots [50]

(24Z)-29-Hydroxy-24(28)-dehydromakisterone C Roots [49,50]

22-Deoxy-28-hydroxymakisterone C Roots [50]

Isovitexirone Roots [48,49]

Rhapisterone Roots [86]

Rhapisterone B Seeds [91]

Rhapisterone C Seeds [92]

Rhapisterone D Seeds [93]
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Table 1. Cont.

Biological Active Compound Plant Part References

Rhapisterone D 20-acetate Seeds [90]

Kaladasterone Roots [45]

5-Deoxykaladasterone Roots [45,51]

Munisterone A Roots [45]

Taxisterone Roots [49]

Rubrosterone Roots [49]

Dihydrorubrosterone Roots [49]

Carthamosterone Roots [49–51]

Carthamosterone A Seeds [54]

Ajugasterone C Roots [45,48–51]

Amarasterone A Roots [50]

24(28)-Dehydroamarasterone B Roots [50]

Turkesteron Roots [50]

Poststerone Roots [49]

Eriodictyol-7-β-glucopyranoside Leaves [24]

Flavonoids

Quercetin 5-O-galactoside Roots [26]

Isorhamnetin 5-O-rhamnoside Roots [26]

Patuletin 3′-β-xylofuranoside Leaves [25]

6-Hydroxykaempferol-7-O-(6”-O-acetyl-β-D-
glucopyranoside) Leaves [24]

Phenolic acids

Protocatechuic acid
Benzoic acid

o-Hydroxyphenylacetic acid
p-Hydroxyphenylacetic acid

m-Hydroxybenzoic acid
p-Hydroxybenzoic acid

Salicylic acid
Gentisic acid
Elagic acid

Chlorogenic acid
Vanillic acid

o-Coumaric acid
p-Coumaric acid

Synapic acid
Caffeic acid
Ferulic acid
Gallic acid

Syringic acid

Roots [27]

Essential oil-components

Geraniol Roots and
leaves [85]

α-Pinene Roots [40,84]
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Table 1. Cont.

Biological Active Compound Plant Part References

β-Pinene Roots [84]

Limonene Roots [40,84]

β-Caryophyllene Roots and
leaves [84,85]

13-Norcypera-1(5),11(12)-diene Roots [40]

Cyperene Roots [40,84]

2,5,8-Trimethyl-1-naphthol Roots [40]

Cadalene Roots [40]

Cyclosativene Roots [40,84]

β-Elemene Roots [40,84]

3.1.1. Phytochemical Composition of Rhaponticum carthamoides Roots

The main compounds found in roots are phytoecdysteroids, flavonoids, phenolic
acids, monoterpenes, and sesquiterpenes [26,27,40,45,47–52,55,84,86,89]. Some of the phy-
toecdysteroids and their derivatives isolated from the roots of Rhaponticum carthamoides
include 20-hydroxyecdysone, leuzeasterone, polypodine B, rhapisterone, makisterone,
carthamoleusterone, turkesteron, 20-hydroxyecdysone 2-acetate, 20-hydroxyecdysone 2,3,
20,22-diacetonide, 20-hydroxyecdysone 2,3-monoacetonide, 15-hydroxyponasterone A and
14-epi-ponasterone A 22-glucoside. The average concentration of 20-hydroxyecdysone
(structure shown in Figure 3), also known as β-ecdysone, ecdysterone, and polypodine
A, is 0.049–1.74% [51,54,80]. The flavonoids detected in Rhaponticum carthamoides roots
are quercetin 5-O-galactoside and isorhamnetin 5-O-rhamnose [26]. Moreover, phenolic
acids are detected in the roots of Rhaponticum carthamoides [27]. These include benzoic
acid, salicylic acid, vanillic acid, chlorogenic acid, caffeic acid and gallic acid [27]. Es-
sential oil is also isolated from Rhaponticum carthamoides roots [40,84,85]. Monoterpenes
and sesquiterpenes are the main phytochemical elements of essential oil derived from
Rhaponticum carthamoides [40,84]. Monoterpenes include α-pinene, β-pinene, geraniol,
and limonene [40,78]. The isolated sesquiterpenes include β-caryophyllene, 13-norcypera-
1(5),11(12)-diene, cyperene at a concentration of 18.2%, cadalene with a concentration of
9.6%, cyclosativene, and β-elemene [40,84]. The concentrations of extracted essential oil
varied from 0.07 to 0.11% [85]. There are limited studies on the composition of Rhaponticum
carthamoides essential oil and its therapeutic effects [3,40,84,85]. In near future, studies on
essential oil and its bioactivity may increase in number.
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3.1.2. Phytochemical Composition of Rhaponticum carthamoides Leaves

The main bioactive compounds discovered in the leaves of Rhaponticum carthamoides
are phytoecdysone (20-hydroxyecdysone) and flavonoids (patuletin 3′-β-xylofuranoside
and 6-hydroxykaempferol-7-O-(6”-O-acetyl-β-D-glucopyranoside)) [24,25,53,55,87,88]. The
concentration of 20-hydroxyecdysone in leaves varied from 0.02 to 0.71% [53,55,87,88].

3.1.3. Phytochemical Composition of Rhaponticum carthamoides Seeds

The phytochemicals isolated from the seeds of Rhaponticum carthamoides are phy-
tosteroids and their derivates, such as 20-hydroxyecdysone, polypodine B, polypodine
B-22-O-benzoate, makisterone A, 24(28)-dehydromakisterone A, rhapisterone, rhapisterone
D 20-acetate, and carthamosterone A [53,54,56,90–93]. The average concentration of ecdys-
terone discovered in seeds is 0.57% [53,56,94].

3.2. Lepidium meyenii

Lepidium meyenii, known as “Maca”, is naturally grown in Peru [89]. Maca has been
cultivated for more than 2000 years [18,95]. Humans have utilized the extract for the
management of different conditions, such as: menopausal syndrome, impaired fertility,
anemia, tuberculosis, and fatigue [95–102]. Nowadays, the plant extract is used as an
aphrodisiac, anti-fatigue remedy, neuroprotector, antioxidant, memory enhancer, hormone
secretion regulator, etc. [18,30,96,103–105]. The antiviral activity of the extract is also well-
known, but its potential should be explored in more detail in the near future. The intake of
Maca extract is not associated with serious side effects [101,106–109].

Maca is a perennial plant. Its overground part consists of 12–20 basal frost-hardy
leaves forming a rosette, the height of which can reach 20 cm [98,110,111]. Its flowers are
whitish with a length of 5 mm [98]. The fruits are two-celled [98]. The seeds are smooth
and reddish with an ovoid shape [98]. The underground part—the tuber—is composed
of roots and seedling stems (hypocotyl) [98,110–112]. The tuber color varies from white to
purple; its size is usually about 10–14 cm, with different shapes [98,110,111]. The weight of
the Maca tuber varies from 1 to 5 kg [111].

The bioactive compounds detected in Maca are alkaloid-like compounds, macamides,
macaenes, glucosinolates, sterols, and polysaccharides [22,105,111,113]. Alkaloids are natu-
ral compounds containing basic nitrogen atoms [113]. Macamides are bioactive secondary
benzylalkylamides [114]. Macaenes and macamides are polyunsaturated fatty acids and
their amides [100]. They are isolated only from Maca [115,116]. The well-known bioactiv-
ities of macamides and macaenes are antitumor and antioxidant [113,117]. Phytosterols
are cholesterol-like compounds isolated from plants [118]. They have a steroid structure,
containing 28–29 carbon alcohols with a side chain with 9–10 carbon atoms [119]. Sterols
decrease the plasma concentration of cholesterol [119]. Polysaccharides are carbohydrates.
They consist of monosaccharides linked with glycoside bonds [113,120,121]. Polysac-
charides are important substances with nutritional value [120,121]. The polysaccharides
isolated from Lepidium meyenii correspond to immunomodulatory, anti-oxidant, anti-fatigue,
anti-viral, anti-tussive, and anti-tumor effects [120,122]. Glucosinolates are sulfur- and
nitrogen-rich organic compounds [123–125]. They are secondary metabolites in plants [125].
They are divided into two groups: aromatic and indolic [126,127]. Glucosinolates provide
antitumor, antioxidant and fungitoxic activity [128–130].

Several studies involving animals have investigated the Maca extract’s biological
activity, and reported some beneficial effects such as improvement of memory and cognitive
functions, neuroprotective effects, regulation of sexual hormones and spermatogenesis,
antioxidant activity, and improvement of lipide and glucose profiles [131–137]. Studies
involving humans are limited. However, the data provided by these trials suggest beneficial
effects of Maca extract in postmenopausal women, with the management of sexual functions
and mood regulation [138–141].

The compounds isolated from Maca with the greatest potential for use as therapeutic
agents are macamides and macaenes. Studies that investigate macamides’ and macaenes’
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activity in humans are also limited. However, according to data obtained from animal
studies, these compounds have great potential to be used for the treatment of ulcerosis, the
management of exercise-induce fatigue, and the management of oxidative stress [142–144].
According to data obtained from cell cultures studies, macaenes and macamides have great
potential to be used as antioxidants, anticancer drugs, neuroprotectors, and metabolism
and inflammatory regulators [117,145].

Table 2 presents bioactive compounds and nutritional ingredients isolated from differ-
ent plant parts of Lepidium meyenii.

Table 2. Bioactive compounds in Lepidium meyenii.

Biological Active Compound Plant Part References

Sterols

Brassicasteryl acetate Tuber [22]

Ergosteryl acetate Tuber [22]

Campesteryl acetate Tuber [22]

∆22-Ergostadienyl acetate Tuber [22]

Sitosteryl acetate Tuber [22]

Campesterol Hypocotyls and Leaves [146]

β-Sytosterol Hypocotyls and Leaves [146]

Glucosinolates

Glucosinolate Root [30]

Benzyl Glucosinolate (Glucotropaeolin)

Hypocotyls
Root/Tuber

Fresh hypocotyls; Fresh leaf;
Seed; Sprout; Dry

hypocotyls

[114,126,147]
[102,148,149]

[150]

Desulfoglucotropaeolin Root [148]

m-Methoxybenzylglucosinolate Tuber [102,149]

5-Methylsulfinylpentyt glucosinolate
(glucoalyssin)

Fresh hypocotyls; Fresh leaf;
Seed; Sprout; Dry

hypocotyls
[150]

p-Hydroxybenzyl
glucosinolate/4-Hydroxybenzyl glucosinolate

(glucosinalbin)

Fresh hypocotyls; Fresh leaf;
Seed; Sprout; Dry

hypocotyls
[150]

p-Hydroxybenzyl
glucosinolate/4-Hydroxybenzyl glucosinolate

(glucosinalbin)
Hypocotyls [126]

m-Hydroxybenzyl-glucosinolate Fresh hypocotyls; Fresh leaf;
Seed [150]

Pent-4-enyl glucosinolate (glucobrassicanapin) Fresh hypocotyls; Fresh leaf [150]

Indolyl 3-methyl glucosinolate (glucobrassicin) Fresh hypocotyls; Fresh leaf;
Dry hypocotyls [150]

p-Methoxybenzylglucosinolate Fresh hypocotyls; Fresh leaf;
Sprout; Dry hypocotyls [150]

4-Methoxyindolyl-3-methyl glucosinolate
(4-methoxyglucobrassicin)

Fresh hypocotyls; Fresh leaf;
Seed [150]

4-Methoxyindolyl-3-methyl glucosinolate
(4-methoxyglucobrassicin) Hypocotyls [126]

4-Hydroxy-3-indolylmethyl glucosinolate
(4-Hydroxyglucobrassicin) Hypocotyls [126]
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Table 2. Cont.

Biological Active Compound Plant Part References

3-Methoxybenzyl glucosinolate
(Glucolimnanthin) Hypocotyls [126]

5-Methylsulfinylpentyl glucosinolate
(Glucoalyssin) Hypocotyls [126]

Alkaloids

Total Alkaloids Root
Hypocotyls

[30]
[147]

Imidazole alkaloids

Lepidiline A
(1,3-dibenzyl-4,5-dimethylimidazolium chloride) Root [151]

Lepidiline B
(1,3-dibenzyl-2,4,5-trimethylimidazolium

chloride)
Root [148,151]

Pyrrole alkaloids

Macapyrrolins A Root [123]

Macapyrrolins B Root [123]

Macapyrrolins C Root [123]

Macamides

Macamides (benzylalkamides)
Root/Tuber [30,97]

Hypocotyls [114]

Total macamides
Hypocotyls [115]

Hypocotyls and Leaves [146]

N-benzylhexadecanamide Hypocotyls [104,115,147]

N-benzyl-(9Z)-octadecanamide Hypocotyls [104,115]

Methoxy-N-benzyl-(9Z,12Z)-
octadecadienamide Hypocotyls [104]

N-benzyloctadecanamide Hypocotyls [104,115]

N-Benzylhexadecanamide Hypocotyls
Tuber

[115]
[97]

N-benzyl-(9Z,12Z)-octadecadienamide Hypocotyls [104,115]

N-benzyl-(9Z,12Z,15Z)-octadecatrienamide Hypocotyls [104,115]

Methoxy-N-benzyl-(9Z,12Z,15Z)-
octadecatrienamide Hypocotyls [104]

N-benzyl-5-oxo-6E,8E-octadecadienamide Tuber [97]

Makamide 1 (N-benzyl palmitamide) Hypocotyls and Leaves [146]

Makamide 2 (N-benzyl-5-oxo-6E,
8E-octadecadienamide) Hypocotyls and Leaves [146]

Macaridine (benzylated derivative of
1,2-dihydro-N-hydroxypyridine) Tuber [97]
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Table 2. Cont.

Biological Active Compound Plant Part References

Makaenes

Makaene (5-oxo-6E,8E-octadecadienoic acid) Tuber [97]

Makaene (5-oxo-6E, 8E-octadecadienoic acid) Hypocotyls and Leaves [146]

Flavolignans

Tricin 4′-O
[threo-β-guaiacyl-(7”-O-methyl)-glyceryl] ether Root [148]

Tricin 4′-O-(erythro-β-guaiacyl-glyceryl) ether Root [148]

Others

Alkamides Tuber [103]

Total Phenols Hypocotyls and Leaves [146]

Benzylamine Hypocotyls [114]

Tricin Root [148]

Pinoresinol Root [148]

4-Hydroxycinnamic acid Root [148]

Guanosine Root [148]

3-Hydroxybenzylisothiocyanate Root [148]

5-(Hydroxymethyl)-2-furfural Root [148]

Vanillic acid 4-O-β-D-glucoside Root [148]

Malic acid Tuber [102]

Malic acid benzoate Root [148]

Benzoyl derivative of malic acid Tuber [102]

Uridine acid Tuber [102]

Benzoyl derivates of uridine acid Tuber [102]

(1R,3S)-1-Methyltetrahydro-β-carboline-3-
carboxylic

acid
Tuber [102]

Benzylisothiocyanate Tuber
Hypocotyls

[102]
[114]

Polysaccharide MC-1 Root [127,152]

3.2.1. Phytochemicals Isolated from Maca Root

The main compounds isolated form this part of the plant are the macamides, im-
idazole alkaloids, pyrrole alkaloids, glucosinolates, flavolignans, polysaccharides, and
others [30,123,127,148,151]. The main imidazole alkaloids detected in Maca root are lepidi-
line A and lepidiline B [148,151]. Macapyrrolins A, macapyrrolins B and macapyrrolins C
are the pyrrole alkaloids detected in Maca root [123]. Glucotropaeolins, known as benzylglu-
cosinolate and desulfoglucotropaeolin are the glucosinolates isolated from Maca root [148].
The flavolignans detected in Maca root are tricin 4′-O [threo-β-guaiacyl-(7”-O-methyl)-
glyceryl] ether and tricin 4′-O-(erythro-β-guaiacyl-glyceryl) ether [148]. The polysaccharide
MC-1 contains the following monosaccharides (with the given concentrations): arabinose—
26.21%, mannose—11.81%, galactose—8.32% and glucose—53.66% [127].

3.2.2. Bioactive Compounds Detected in Lepidium meyenii Tuber

The Lepidium meyenii tuber contains sterols, glucosinolates, macamides, macaenes, alka-
mides, and others [22,97,102,103,149]. Brassicasteryl acetate, ergosteryl acetate, campesteryl
acetate, ∆22-ergostadienyl acetate, and sitosteryl acetate are sterols isolated from the Lepid-
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ium meyenii tuber [22]. Benzylglucosinolate and its derivate m-methoxybenzylglucosinolate
are also isolated [95,143]. The alkamides discovered in tuber Lepidium meyenii are N-benzyl-
9-oxo-12Z-octadecenamide, N-benzyl-9-oxo-12Z,15Z-octadecadienamide, N-benzyl-15Z-
tetracosenamide, N-(m-methoxybenzyl) hexadecanamide and N-benzyl-13-oxo-9E,11E-
octadecadienamide [103].

3.2.3. Bioactive Compounds Isolated from Lepidium meyenii Hypocotyls

The hypocotyls are rich in benzylamine, benzyl glucosinolates, and their derivates, al-
kaloids, macamides, sterols, and phenols [104,114,115,126,146,147,150]. Some of the isolated
glucosinolates and their derivatives include benzyl glucosinolate, glucoalyssin, glucosinl-
bin, glucobrassicin and glucobrassicanapin [150]. Some of the detected macamides are N-
benzylhexadecaanamide, N-benzyloctadecanamide, N-benzyl-(9Z,12Z)-octadecadienamide,
N-benzyl-(9Z,12Z,15Z)-octadecatrienamide, and methoxy-N-benzyl-(9Z,12Z,15Z)-octadeca
trienamide [104,115,147]. The concentration of total macamides varies from 0.0016 to
0.0123% [109] Sterols isolated from Maca hypocotyls include campesterol and β-sytosterol;
their structures are shown in Figure 4 [146].
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3.2.4. Nutritional Ingredients Isolated from Maca

Lepidium meyenii contains some essential nutrients, such as amino acids, fibers, fatty acids,
lipids, proteins, and minerals [18,22]. Because of its unique nutritional and phytochemical
composition, Maca is considered a “super food” [95,111,153]. Different Maca extracts, such as
the tuber and starch, are used as food [154–156]. The term “super foods” includes products
that are used as foods and medicine, which are edible [153]. In the last few decades, research
into superfoods has increased [157]. Super foods may contain chemical-free proteins, amino
acids, fatty acids, vitamins, minerals, polysaccharides, and other natural ingredients [158].
The intake of super foods provides essential nutrients and antioxidants, and it also supports
the immune system, the endocrine system, and the cardiovascular system [159]. The most
important nutrients from in Lepidium meyenii are described in Table 3.

The nutritional ingredients isolated from Lepidium meyenii’s roots/tuber and its hypocotyls
are: proteins, oil, amino acids, fatty acids, and minerals [22,30,114]. The protein concen-
trations in roots and tubers varied from 10.2 to 13.42% [22,30], and the content of oil in
the tuber is 1.42% [30]. The lipids concentration in the tuber is 2.2%, the concentration
of hydrolysable carbohydrates is 59%, and the concentration of fibers is 8.5% [22]. The
concentration of proteins in hypocotyls varied from 9.31 to 21.02%, and that in fibers
varied from 17.82 to 26% [147]. The essential amino acids discovered in Maca root/tuber
and hypocotyls are histidine, threonine, phenylalanine, D-phenylalanine, valin, methio-
nine, isoleucine, leucine and lysine [22,30,155]. Non-essential amino acids isolated from
Maca roots include aspartic acid, glutamic acid, serine, glycine, cysteine, alanine, arginine,
tyrosine and proline [22,30,155]. Fatty acids such as lauric, C13:1 tridecanoic, myristic,
palmitoleic, palmitic, linoleic, oleic, stearic, arachidic, behenic, lignoceric and nervonic are



Plants 2022, 11, 64 13 of 32

isolated from Maca root/tuber and hypocotyls [114]. The main detected minerals are Fe,
Mn, Cu, Na, K, Ca, Mg, and Zn [22,30,155].

Table 3. Nutritional ingredients in Lepidium meyenii.

Nutritional Ingredient Plant Part References

Proteins Root/Tuber
Hypocotyls

[22,30]
[147]

Oil Root [30]

Lipids Tuber [22]

Hydrolyzable carbohydrates Tuber [22]

Whole fibre Tuber [22]

Total dietary fibre Hypocotyls [147]

Amino acids Root/Tuber [22,30]

Aspartic acid
Root/Tuber [22,30]

Hypocotyls [147]

Glutamic acid
Root/Tuber [22,30]

Hypocotyls [147]

Serine
Root/Tuber [22,30]

Hypocotyls [147]

Glycine
Root/Tuber [22,30]

Hypocotyls [147]

Cysteine
Root/Tuber [22,30]

Hypocotyls [147]

Alanine
Root/Tuber [22,30]

Hypocotyls [147]

Arginine
Root/Tuber [22,30]

Hypocotyls [147]

Tyrosine
Root/Tuber [22,30]

Hypocotyls [147]

Hydroxy-Proline Tuber [22]

Proline
Root/Tuber [22,30]

Hypocotyls [147]

Histidine
Root/Tuber [22,30]

Hypocotyls [147]

Threonine
Root/Tuber [22,30]

Hypocotyls [147]

Phenylalanine Root/Tuber
Hypocotyls

[22,30]
[147]

D-phenylalanine Root [148]

Valine Root/Tuber
Hypocotyls

[22,30]
[147]

Methionine Root/Tuber
Hypocotyls

[22,30]
[147]
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Table 3. Cont.

Nutritional Ingredient Plant Part References

Isoleucine Root/Tuber
Hypocotyls

[22,30]
[147]

Leucine Root/Tuber
Hypocotyls

[22,30]
[147]

Lysine Root/Tuber
Hypocotyls

[22,30]
[147]

Tryptophan Tuber [22]

Sarcosine Tuber [22]

Fatty acids Root/Tuber [22,114]

C12: 0 dodecanoic (lauric) Tuber [22]

C13:0 tridecanoic Tuber [22]

C13:1 7-tridecenoic Tuber [22]

C14:0 tetradecanoic (myristic) Tuber [22]

C15:0 pentadecanoic Tuber [22]

C15:1 7-pentadecenoic Tuber [22]

Cl6:0 esadecanoic (palmitic) Tuber [22]

C16:1 9-esadecenoic
(palmitoleic) Tuber [22]

C17:0 heptadecanoic Tuber [22]

C17: l 9-heptadecenoic Tuber [22]

C18:0 octadecanoic (stearic) Tuber [22]

C18:1 9-octadecenoic (oleic) Tuber [22]

C18: 2 9, 12-octadecadienoic
(linoleic)

Root/Tuber
Hypocotyls

[22,114]
[104]

C19:1 11-nonadecenoic Tuber [22]

Cl9:0 nonadecanoic Tuber [22]

C20: l 15-eicosenoic Tuber [22]

C20:0 eicosanoic (arachidic) Tuber [22]

C22:0 docosanoic (behenic) Tuber [22]

C24:0 tetracosanoic
(lignoceric) Tuber [22]

C24:1 15-tetracosenoic
(nervonic) Tuber [22]

Linolenic acid Hypocotyls
Root

[104]
[114]

Minerals
Root/Tuber [22,30]

Hypocotyls [147]

Fe Root/Tuber
Hypocotyls

[22,30]
[147]

Mn Root/Tuber
Hypocotyls

[22,30]
[147]

Cu Root/Tuber
Hypocotyls

[22,30]
[147]
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Table 3. Cont.

Nutritional Ingredient Plant Part References

Na Root/Tuber
Hypocotyls

[22,30]
[147]

K Root/Tuber
Hypocotyls

[22,30]
[147]

Ca Root/Tuber
Hypocotyls

[22,30]
[147]

Mg Root
Hypocotyls

[30]
[147]

Zn Root/Tuber
Hypocotyls

[22,30]
[147]

3.3. Eleutherococcus senticosus

Eleutherococcus senticosus (Araliaceae) is a small, woody shrub, known also as “Siberian
ginseng”, which naturally grows in East Russia, Korea, China, and Japan [12,160]. It is a
perennial plant and an important herb in Eastern folk medicine [12,161].

Nowadays, Eleutherococcus senticosus rhizome and radices are also considered espe-
cially valuable, and are included in the European and Russian pharmacopoeias [34,162].

The knotty Eleutherococcus senticosus rhizome has a diameter of 4.0 cm with an irregular
cylindrical shape. The bark thickness is 2 mm with a greyish brown to blackish-brown
color. The roots can be up to 15 cm in length with a diameter of 0.3 to 1.5 cm [162].

The intake of Eleutherococcus senticosus extract is associated with antioxidant, anti-
inflammatory, adaptogenic, antidiabetic, and choleretic effects [12,160,163–165]. The most
well-known activities of Eleutherococus senticosus are immunoregulation, hepatoprotec-
tion, antiviral, and antibacterial effects [12,160,163–165]. The intake of this extract is not
associated with adverse effects [35,166–168].

The phytochemicals of Eleutherococcus senticosus roots are composed of phenylpropanoids,
saponins, coumarins, lignans, polysaccharides, phenolic acids, and provitamins [164,165,169].
Saponins are natural compounds that contain an isoprenoidal-derived aglycone linked with
sugar [170]. Eleutherosides provide anti-fatigue, anti-stress, anti-inflammatory, and heart-
protective effects [171,172]. Coumarins are phenolic derivates with antioxidant, anti-HIV,
spasmolytic, and vasodilating activity [124,125,173]. The main effect of polysaccharides is
immunostimulation [169,174].

Although all parts of this plant have rich phytochemical compositions, the roots are
the most utilized. Roots are used in the form of liquid extracts, powders, etc. [160,175].
According to data from human studies, Eleutherococcus senticosus extract has the potential to
improve oxygen consumption, mental health, lipid, and glycemic profile [167,168,176,177].
Data obtained from animal studies suggests antidiabetic, antifatigue, neuroprotective, and
nootropic activity [171,172,178,179].

The molecules isolated from Eleutherococcus senticosus with the greatest potential to
become novel drug molecules are Eleutheroside B and Eleutheroside E.

Studies investigating Eleutheroside B and Eleutheroside E activity in humans are lim-
ited. However, according to data obtained from animal studies, they have great potential to
be used for the treatment of inflammation, cancer, osteoporosis, and diabetes [172,180–184].
Studies investigating Eleutheroside B and Eleutheroside E activity in cell cultures are
sparse [185]. According to data obtained from cell culture studies, they have great potential
to be used for the treatment of cardiovascular diseases [185].

Table 4 shows the bioactive compounds isolated from different plant parts of Eleuthe-
rococcus senticosus.
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Table 4. Bioactive compounds in Eleutherococcus senticosus.

Biological Active Compound Plant Part References

Saponins and their glycosides

Eleutheroside A Roots [186]

Eleutheroside B (syringine) Stem
Roots

[187]
[28,29,187–189]

Eleutheroside B1 (isofraxidine glucoside) Roots [28,29,186]

Isofraxidine—aglykone of Eleutheroside B1 Roots [28,29]

Eleutheroside C Roots [186]

Eleutheroside D (syringaresinol diglucoside) Roots [29]

Eleutheroside E
((-)syringaresinoldiglucoside)

Stem
Roots

[187]
[28,187,188]

Eleutheroside E (syringaresinol
di-O-β-D-glucoside; liriodendrin) Roots [189]

Eleutheroside E2 Roots [190]

Syringaresinol (aglykone of Eleutherosde E) Roots [28,29]

Eleutherans A, B, C, D, E, F, G Roots [191]

Phenolic acids

Chlorogenic acid Roots [28,29]

p-Hydroxybenzoic acid Roots [29]

Vanillic acid Roots [29]

Syringic acid Roots [29]

p-Coumaric acid Roots [29]

Caffeic acid Roots [29]

Ethyl ester of caffeic acid Roots [28]

Ferulic acid Roots [29]

Triterpene glycosides

Inermoside Leaves [192]

1-Deoxychiisanoside Leaves [192]

24-Hydroxychiisanoside Leaves [192]

11-Deoxyisochiisanoside Leaves [192]

Others

Chiisanoside Leaves [193]

Chiisanogenin Leaves [193]

Hyperin Leaves [193]

Isomaltol 3-O-alpha-D-glucopyranoside Roots [190]

(-) Sesamine Roots [28,194]

Sytoterole Roots [28]

Coniferine Roots [29]

Coniferylaldehyde Roots [28]

Coniferyl alcohol Roots [29]

Cumarine Roots [28]

Oleanolic acid Roots [28]

Polysaccharides Roots [174]
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3.3.1. Phytochemical Compounds Isolated from Eleutherococcus senticosus Roots

The main detected compounds are saponins and their glycosides, polysaccharides,
phenolic acids, and others [28,29,174,186–191,194]. Saponins and their glycosides isolated
from Eleutherococcus senticosus include eleutheroside A, eleutheroside B (chemical structure
shown in Figure 5) with an average concentration 0.045%, eleutheroside C, eleutheroside D,
eleutheroside E with an average concentration of 0.056%, eleutheroside F and eleutheroside
G [28,29,186–191]. The identified phenolic acids are chlorogenic, p-hydroxybenzoic, p-
coumaric, caffeic, vanillic, and ferulic acid [28,29]. Sesamin (lignan), sytosterole (sterole)
and cumarine are also isolated [28,29,194].
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3.3.2. Phytochemicals Isolated from Eleutherococcus senticosus Stem and Leaves

The main bioactive compounds are eleutheroside B, with an average concentration of
0.1203%, and eleutheroside E, with an average concentration of 0.085% [187]. Chiisanoside,
hyperin, and triterpene glycosides, such as inermoside, 24-hydroxychiisanoside and 11-
deoxyisochiisanoside, are the main phytochemical compounds isolated from Eleutherococcus
senticosus leaves [192,193].

3.4. Panax ginseng

Panax ginseng has always been considered an important medicinal plant. Initially, it
was an important part of Eastern folk medicine, and nowadays it is an essential pharma-
copeial plant. Furthermore, in the past it was considered the most valuable of all medicinal
herbs for the people of Korea, China, and Japan [195].

Brekhman was among the first researchers to introduce the novel pharmacological
concept of the tonic effect of ginseng, resulting in the association of the plant with adaptogen
effects [195].

Brekhman found out ginseng intake can increase non-specific resistance to various
pathological or stress factors. According to his findings, the adaptogenic effect lasts for a
long time, and work better under abnormal conditions (stress factors) [4,195,196].

Panax ginseng naturally grows in Korea and China [197,198]. The genus name “Panax”
originates from Greek. The word is composed of the words “pan”, which means “all”, and
“axos”, which means “treat”. The literal translation is “cure all diseases”, “cure everything”
or “appropriate for treatment of every condition” [195]. The word “ginseng” has an Eastern
origin [195].

It is a perennial, self-pollinating plant. It has one stalk and palmate leaves at its end.
The flowering starts in its third-year growth stage. Panax ginseng seeds are obtained from
plants no less than four years old. Panax ginseng roots may be white or pale yellow, and
grow upright. There is one stout primary root and two or five rootlets and root hairs.
The size and shape of the rootlets depends on water content, soil quality, weather, and
other factors. Ginseng roots are considered most valuable between 4 and 6 years of age.
Roots younger than 4 years are considered immature, and should not be used for medical
purposes [195].

Panax ginseng radix is included in the European pharmacopoeia [199]. According to
the European pharmacopeia, the root should have a cylindrical or fusiform shape with



Plants 2022, 11, 64 18 of 32

a length of 20 cm and a 2.5 cm diameter. The root surface should be pale yellow to
brownish-red [199].

Nowadays, Panax ginseng extract is associated with antitumor, anti-fatigue, antioxida-
tive, immunostimulating, anti-inflammation, anti-obesity, cardioprotective, antimicrobial
and neuroprotective activities. The extract is also used because of its adaptogenic proper-
ties, as an antioxidant and as an aphrodisiac [195,198,200–202]. The intake of this extract is
not associated with side effects [35,203–206].

The main active ingredients in Panax ginseng are saponins, also known as ginseno-
sides [201]. They include tetracyclic triterpenoid saponins of the dammarane type (four-ring
carbon skeleton) and oleanane type (five-ring carbon skeleton) [198,201,202,207,208]. They
consist of gonane, with 17 carbon atoms arranged in four rings [209]. Over 30 ginsenosides
have been isolated from Panax [210]. It is considered that ginsenosides are responsible for
the adaptogenic properties of Panax ginseng [198]. Other well-known effects of ginseno-
sides are related to anti-inflammatory activity, neuroprotective activity, antidiabetic effects,
nootropic activity, and many other factors [207,211,212]. The variety of these activities of
ginsenosides is based on the quantity and the positions of hydroxyl groups [213]. Ginseno-
sides can be isolated not only from Panax ginseng, but also from all of Panax species, such
as Panax quinquefolius L., Panax notoginseng (Burkill) F. H. Chen, Panax japonicas (T. Nees) C.
A. Mey. and Panax zingiberensis C. Y. Wu and K. M. Feng [207,214–216].

According to studies involving humans, ginsenosides may improve calmness, mental
health, and the overall quality of life. Moreover, their intake is associated with antihyper-
lipidemic, antidiabetic, and anti-fatigue effects [203,206,217–220]. The data obtained from
animal studies suggest that ginsenosides could be included in the management of diabetes
and cardiovascular diseases, in the treatment of impaired immunity, or could be used as
hepatoprotectors [203,221–226].

Although Panax ginseng is a source of plenty of biological active compounds, the
molecules with the greatest potential to become drug molecules are ginsenosides. Ac-
cording to data obtained from animal studies, ginsenosides have great potential to be
used for the treatment of cardiovascular diseases, hepatic disorders and obesity [227–233].
According to data obtained from cell culture studies, ginsenosides have great potential to
be used for the treatment cardiovascular diseases, hypercholesterolemia, and some types of
cancer [234–237].

Table 5 shows the isolated bioactive compounds from Panax ginseng.

Table 5. Bioactive compounds in Panax ginseng.

Biological Active Compound Plant Part References

Saponins and their glycosides

Ginsenoside Ra1 (20(S)-protopanaxadiol
3-O-β-D-glucopyranosyl(1–2)-β-D-

glucopyranoside-20-O-β-D-xylopyranosyl(1–4)-α-
L-arabinosyl(1–6)-β-D-glucopyranoside)

Roots [238,239]

Ginsenoside Ra2 Roots [238,239]

Ginsenoside Ra3 Roots [240,241]

Ginsenoside Rb1 Roots [239–244]

Ginsenoside Rb2 Roots [239–244]

Ginsenoside Rb3 Roots [240–242]

Malonyl-Rb Roots [241]

Malonyl-Rb1 Roots [240,241]

Ginsenodide Rc Roots [239–244]
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Table 5. Cont.

Biological Active Compound Plant Part References

Ginsenoside Rd Leaves
Roots

[245]
[239–244]

Malonyl-Rd Roots [240]

Ginsenoside Re Roots
Leaves

[239–243,246]
[245]

Ginsenoside Rf Roots [239–243,246,247]

20-Glc-Rf Roots [240]

Ginsenoside Rg1 Roots
Leaves

[239–243,247]
[245]

Ginsenoside Rg2 Roots [239,241,246,247]

20(S)-Ginsenoside-Rg2 Roots [240,242]

20(R)-Ginsenoside-Rg2 Roots [242]

Ginsenoside Rg3 Roots [239]

20(S)-Ginsenoside-Rg3 Roots [243]

20(R)-Ginsenoside-Rg3 Roots [242,243]

Rg3/isomer Roots [240]

Ginsenoside Rg5 Roots [243]

Ginsenoside Rg6 Roots [243]

Ginsenoside Rg7 (3-O-β-D-glucopyranosyl
3β,12β,20(S),24(R)-tetrahydroxy-dammar-25-ene

20-O-β-D-glucopyranoside)
Leaves [248]

Ginsenoside Rh Roots [239,242]

Ginsenoside 20(S)-Rh1 Roots [240,242]

Ginsenoside Rh4 Roots [240,243]

Ginsenoside Rh5 (3β,6α,12β,24xtetrahydroxy-
dammar-20(22),25-diene

6-O-β-D-glucopyranoside)
Leaves [248]

Ginsnoside Rh6 (3β,6α,12β,20(S)-tetrahydroxy-25-
hydroperoxy-dammar-23-ene
20-O-β-D-glucopyranoside)

Leaves [248]

Ginsenoside Rh7
(3β,7β,12β,20(S)-tetrahydroxy-dammar-5,24-diene

20-O-β-D-glucopyranoside)
Leaves [248]

Ginsenoside Rh8
(3β,6α,20(S)-trihydroxy-dammar-24-ene-12-one

20-O-β-D-glucopyranoside)
Leaves [248]

Ginsenoside Rh9 (3β,6α,20(S)-trihydroxy-12b,23-
epoxy-dammar-24-ene

20-O-β-D-glucopyranoside)
Leaves [248]

Ginsenoside Rk1 Roots [243,249]

Ginsenoside Rk2 Roots [249]

Ginsenoside Rk3 Roots [243,249]

Ginsenoside Ro Roots [239,241,242,244]

Ginsenoside Ro isomer Roots [240]

Polyacetyleneginsenoside-Ro Roots [247]
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Table 5. Cont.

Biological Active Compound Plant Part References

Ginsenoside-Ro methyl ester Roots [247]

Ginsenoside Rs1 Roots [242]

20(S)-Ginsenoside Rs3 Roots [243]

20(R)-Ginsenoside Rs3 Roots [243]

Ginsenoside Rs4 (3β,12β-dihydroxydammar-
20(22),24-diene-3-O-β-D-glucopyranosyl(1→2)-P-D-

6”-O-acetylglucopyranoside)
Roots [243,250]

Ginsenoside Rs5 (3β,12β-dihydroxydammar-20(21),
24-diene-3-O-β-D-glucopyranosyl(1→2)-β-D-6”-O-

acetylglucopyranoside)
Roots [243,250]

Ginsenoside Rs6 (3β,
6α,12p-trihydro-xydammar-20(22),24-diene-6-O-β-

D-6′-O-acetylglucopyranoside)
Roots [250]

Ginsenoside Rs7 (3β,6α,
12β-trihydroxydam-mar-20(21),24-diene-6-O-β-D-

6′-O-acetylglucopyranoside)
Roots [250]

Ginsenoside F1
(20-O-β-glucopyranosyl-20(S)-protopanaxatriol) Leaves [245]

Ginsenoside F2 (3,
20-di-O-β-glucopyranosyl-20(S)-protopanaxadiol) Leaves [245]

Ginsenoside F3 (20-O-(α-arabinopyranosyl-(1→6)-β-
glucopyranosyl)-20(S)-protopanaxatriol) Leaves [245]

Ginsenoside I Flower buds [251]

Ginsenoside II Flower buds [251]

Ginsenoside F4 Roots [243]

Malonyl-Ra1/Ra2 Roots [241]

Malonyl-Rb2/Rb3/Rc Roots [241]

Malonyl-Rd Notoginsenoside R2/F3 Roots [241]

Malonyl-Rd isomer Roots [241]

Ra1/Ra2/isomer Roots [240,241]

Gingerglycolipid B Roots [247]

Quinginsenoside R1 Roots [242]

Koryoginsenoside-R1 (6-O-[trans butenoyl-(1→6)-β-
D-glucopyranosyl]-20-O-β-D-glucopyranosyl

dammar-24-en-3β, 6α,12β,20(S)-tetrol)
Roots [239]

Koryoginsenoside-R2 3-O-[β-D-glucopyranosyl-
(1→2)-β-D-glucopyranosyl]-20-O-[β-D-

glucopyranosyl-(1→6)-β-D-glucopyranosyl]
dammar-22-en-3β, 12β, 20(S), -25-tetrol

Roots [239]

Notoginsenoside R1 Roots [239]

Notoginsenoside R2 Roots [240]

Notoginseng R2 Roots [252]

Malonyl-Rg1 Roots [240]

Malonyl-Rc/Rb2/Rb3 Roots [240]

Rg6/F4 Roots [240]

Rg5/Rk1 Roots [240]
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3.4.1. Phytochemicals Isolated from Panax ginseng Roots

The main phytochemicals are ginsenosides and their isomers [238–244,246,247,249,
250,252]. Some of the ginsenosides isolated from Panax ginseng include ginsenoside Ra1,
ginsenoside Ra2, ginsenoside Rb1, ginsenoside Rb2, ginsenoside Rb3, ginsenoside Rc,
ginsenoside Rd, ginsenoside Re, ginsenoside Rh, ginseoside Rg1, ginsenoside Rg2, gin-
senoside Rg5, ginsenoside Rf, ginsenoside F2, ginsenoside Rk1, ginsenoside Rs4, and
ginsenoside Rs6 [238–244,246,247,249,250]. The average concentration of ginsenoside Ra1
in Panax ginseng roots is 0.03%, and that of ginsenoside Ra2 is 0.02% [238]. Notogin-
senoside R1, notoginsenoside R2, and notoginseng R2 are also detected in Panax ginseng
roots [239,240,245].

3.4.2. Phytochemicals Isolated from Panax ginseng Leaves and Flower Buds

The main bioactive compounds are the ginsenosides ginsenoside Rd, ginsenoside
Rh5, ginsenoside Rh6, ginsenoside Rh7, ginsenoside Rh8, ginsenoside Rh9, ginsenoside
Rg1, ginsenoside Rg7 ginsenoside Re, ginsenoside F1, ginsenoside F2, and ginsenoside
F3 [245,246]. The ginsenosides isolated from Panax ginseng may be used as melanogenic
inhibitors [253]. The phytochemicals detected in flower buds are ginsenoside I and ginseno-
side II [251]. The ginsenosides isolated from flower buds may be used for hepatic diseases
and tumors [254,255].

4. Comparison between Rhaponticum carthamoides, Lepidium meyenii,
Eleutherococcus senticosus and Panax ginseng and Future Perspectives

Bioactive compounds and their concentration isolated from plants are not constant. For
example, the content of the phytochemicals varies in different parts of the species and also
depends on many factors like soil, soil management, climate, and pollutants [55,187,256–258].

For that reason, it is very important the feature research about these plants to be
focused mostly on their active molecules that to the whole extracts. However, comparison
between the biological activity of the extracts and the active molecules would provide
valuable data.

Although the four plants have quite different phytochemical composition (Table 6),
the future perspectives for introduction of their specific molecules/ plant extracts as
medi-cines are similar [12,13,22,23]. Most of them could be included in the management
of dia-betes, cardiovascular diseases, or used as nootropic agents and hepatoprotectors
(Table 7) [12,18,35,62,67,132]. Rhaponticum carthamoides is the only plant among these which
has the greatest potential to be used as a remedy for improvement physical performance,
because of potential ergogenic activity. Ecdysterone, which is one of its active compounds
is in process of monitoring by WADA as a doping compound [65]. Moreover, in near future
the extract or its active compounds could be applied for obesity/ overweight manage-
ment [259,260].

Table 6. Comparison between the main bioactive compounds in Rhaponticum carthamoides, Lepidium
meyenii, Eleutherococcus senticosus, and Panax ginseng.

Bioactive Compounds Rhaponticum
carthamoides Lepidium meyenii Eleutherococcus

senticosus Panax ginseng

Phytosteroids [24,47–56,86,87] - - -

Glucosinolates - [30,102,114,126,147–150] - -

Alkaloids - [30,123,147,148,151] - -

Macamides and makaaenes - [30,97,104,114,115,146–148] - -

Eleutherosides - [127,152] [28,29,186–188,190–
192] -

Ginsenosides - - - [238–252]
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Table 7. Effects and future perspectives of extracts/ bioactive compounds.

Effects/Activity Rhaponthicum
carthamoides Lepidium meyenii Eleutherococcus

senticosus Panax ginseng

Weight loss management + - - -

Lipid profile management + + + +

Nootropic activity + + + +

Diabetes management + + + +

Ergogenic activity
More data are needed.

In process of
monitoring

- - -

Hormones regulation + + - -

Antiviral activity More data are needed More data are needed More data are needed More data are needed

In term to establish the biological activity of Rhaponticum carthamoides, Lepidium meyenii,
Eleutherococcus senticosus, Panax ginseng/their active compounds, cell cultures research
would be especially useful to give the right direction for future investigations.

5. Conclusions

Plants have always played an important role in drug discovery, and their effectiveness
is based on hundreds of years’ experience in the folk medicines of different nations. In the
1960s, the first plants with adaptogenic activities were described: Rhaponticum carthamoides,
Eleutherococcus senticosus, and Panax ginseng. Later, Lepidium meyenii was also included in
the plant adaptogens family.

The main phytochemicals isolated from these plants are phytosteroids, phytosterols,
alkaloids, and saponins. These biologically active compounds determine the therapeutic
effects of plants not only as adaptogens, but also as antioxidants, hepatoprotectors, im-
munomodulators, hormone regulators, and others. Plants have always been an important
source of past and novel drug molecules. In our view, there is great potential for some
of the phytochemicals found in these plant species, such as ginsenosides, ecdysterone,
macamides, macaenes, and eleutherosides to become novel drug molecules. However, their
biological activity should be studied in more detail in cell cultures, in mammals, and in
randomized clinical trials.
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