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Abstract: The beneficial properties of algae make them perfect functional ingredients for food prod-
ucts. Algae have a high energy value and are a source of biologically active substances, proteins, fats,
carbohydrates, vitamins, and macro- and microelements. They are also rich in polyunsaturated fatty
acids, proteins, mycosporine-like amino acids, polysaccharides, polyphenols, carotenoids, sterols,
steroids, lectins, halogenated compounds, polyketides, alkaloids, and carrageenans. Different extrac-
tion parameters are used depending on the purpose and the substances to be isolated. In this study, the
following parameters were used: hydromodule 1:10 and an extraction duration of 1–2 h at the extrac-
tion temperature of 25–40 ◦C. A 30–50% solution of ethanol in water was used as an extractant. Algae
extracts can be considered as potential natural sources of biologically active compounds with antimi-
crobial activity and antiviral properties. The content of crude protein, crude fat, and carbohydrates in
U. Prolifera, C. racemosa var. peltata (Chlorophyta), S. oligocystum and S. fusiforme (SF-1) was studied. It
was found that C. muelleri (Bacillariophyta), I. galbana (Haptophyta), and T. weissflogii (Bacillariophyta)
contain about 1.9 times more omega-3 than omega-6 fatty acids. N. gaditana (Ochrophyta), D. salina
(Chlorophyta), P. tricornutum (Bacillaryophyta) and I. galbana (Haptophyta) extracts showed inhibitory
activity of varying intensities against E. coli or P. aeruginosa. In addition, algae and algae-derived
compounds have been proposed to offer attractive possibilities in the food industry, especially in the
meat sector, to evolve functional foods with myriad functionalities. Algae can increase the biological
activity of food products, while the further study of the structure of compounds found in algae can
broaden their future application possibilities.
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1. Introduction—Characteristics of Algae

Algae are prokaryotic (cyanobacteria) or eukaryotic photoautotrophic organisms that
can convert nitrogen and phosphorus from the environment into biomass using light,
CO2, and water. The resulting biomass can subsequently be fractionated into various
bioproducts using a suitable process [1]. Algae can use sunlight for photosynthesis or can
exist as mixotrophs or facultative heterotrophs [2]. Some of the latter lost the ability to
photosynthesize and turned into obligate heterotrophic parasites such as Plasmodium and
Toxoplasma (P. malariae, P. knowlesi, P. falciparum, P. vivax, and P. ovale) [3].

Algae have several reproductive strategies and can be unicellular organisms or have
complex multicellularity [3]. Algae can be divided into micro- and macroalgae. Microalgae
(microphytes) are represented by green (Chlorophyta), blue-green (Cyanobacteria), yellow-
green (Ochrophyta и Xanthophyta), and golden (Ochrophyta и Chrysophyta) algae, and diatoms
(Bacillaryophyta). Macroalgae or simple algae include red (Rhodophyta), green (Chlorophyta),
and brown algae (Ochrophyta) [4].

Macroalgae are mainly found in the marine environment [5]. They are available
naturally or can be cultivated in large areas of the seaside. Algae use natural nutrients
available in the sea for their growth [6].

The main primary metabolites of algae are lipids, proteins, carbohydrates, and water
(Table 1) [7,8]. Chlorophylls, cytochromes, nucleotides, and compounds that are interme-
diates in various metabolic reactions are also primary metabolites [8]. The biochemical
composition of microalgae makes them suitable for producing various compounds. The
ratio of primary metabolites depends on the type of algae and the conditions of their culti-
vation [6]. For example, S. maxima (Cyanobacteria) is an excellent protein source (60–71% by
weight) [9], P. cruentum (Cyanobacteria) is a rich source of carbohydrates (40–60%) [9], and
S. dimorphus (Chlorophyta) contains 40% lipids [10].

Table 1. Nutritional value of marine algae in terms of dry matter (DM).

Algae Genus
and Species Crude Proteins (%) Total Lipids (%) Total Carbohydrates 1 (%) Ash, % Moisture, % Sources

U. prolifera 26–33 2 0.20–0.80 2 43–51 2 9.20–25.80 5–6 [11]
C. racemosa var.

peltata (Chlorophyta) 11 1.03 72 10.97 5 [12]

S. oligocystum 7–9 3 3.51–5.66 3 52–58 3 20.34–32.45 7 [13]
S. fusiforme (SF-1) 9–12 3 3.52–4.61 3 nd 76.39–80.48 7 [14]

1 Calculated by dry weight; 2 depending on the place of collection; 3 depending on the season; nd—not determined.

In addition to primary metabolites, macroalgae contain secondary metabolites, which
are substances that are not involved in the main metabolism and may be specific to one
or more algae species. Agar, alginate, fucoidan, ulvan, laminarin, starch, cellulose (1,4-β-
D-glucan), pectin substances β-D-mannuronic and α-L-guluronic, and carrageenan are
examples of secondary metabolites of algae [7]. Algae produce a large number of secondary
metabolites during their life cycle, making them an important natural source of these
bioactive compounds [15].

Algae are rich sources of biologically active compounds with antiviral, antitumor,
and anti-inflammatory properties, and they are also sources of plant growth stimulators
or antioxidant agents [16]. Components of microalgae help maintain the health of the
cardiovascular system and exhibit anti-inflammatory, anticoagulant, antiviral, antibacterial,
antifungal, and other properties. Components of microalgae are used to strengthen the
immune system, lower blood cholesterol levels, and are effective against hypercholes-
terolemia. The active components of algae can remove harmful elements from the human
body and also have ulcer- and wound-healing properties. Microalgae extracts can increase
hemoglobin concentration, reduce the level of sugar in the blood, and exhibit analgesic,
bronchodilatory, and hypotensive activities [17]. As a result, more and more attention is
being paid to applying algae in the pharmaceutical, cosmetic, and food industries [16]. The
main biochemical compounds of algae include carbohydrates, proteins, lipids, and minerals
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(micro- and macroelements) [7,18]. The carbohydrates present in algae are polysaccharides,
which can be divided into matricial (agar, alginate, fucoidan, and ulvan), storage (laminarin
and starch), and fibrous (cellulose) polysaccharides. Phycobiliproteins are pigment proteins
that can be used in a variety of applications. Minerals such as micro- and macroelements
are present in large quantities in algae [7].

The possible applications of various algae are quite extensive: energy production [19,
20], the bioremediation of industrial and domestic wastewaters [21–25], the removal of
carbon dioxide from industrial flue emissions via algae biofixation [26,27], the production
of ethanol or methane [28], feed for livestock, raw material for pyrolysis [4], organic
fertilizer [26], or biostimulants in agriculture [29]. In addition, algae are used as raw
materials to produce third-generation biofuels [30–37]. C. reinhardtii, C. vulgaris, D. salina,
and diatoms are the most studied microalgae species for biofuel production [38].

Gelling, thickening, and stabilizing substances such as agar, alginate, and carrageenan
are obtained from algae [39]. Algae have undeniable advantages in various fields of
application [40].

The interest in foods from whole algal biomass is attributed to reports of high protein
content and health benefits [41,42]. Algae can be used as functional ingredients to enhance
the nutritional value of foods [43]. However, most algae have thick cell walls, which makes
it difficult to extract nutrients and biologically active components. In this regard, algae
processing requires a suitable technology for destroying cells without the denaturation of
active components [42].

In the life process, algae produce many secondary metabolites, which makes them an
important natural source of these bioactive compounds [15]. The addition of preparations
obtained from algae allows additional beneficial properties to be imparted to food products
in addition to the traditional nutritional value [8]. Thus, functional nutrition with algae
ingredients has a beneficial effect on human health, improving well-being and quality of life,
as well as reducing the risk of diseases depending on the use of appropriate technologies
to lyse cells and extract active products in mild conditions.

The growing interest in algae application in food has led to a lot of research and
the accumulation of data on food from algae. This field requires the systematization and
generalization of the available results. This review discusses the nutritional and bioactive
components of algae, their chemical characteristics and biological properties, as well as
methods of their extraction. The use of algae as bioactive ingredients for functional nutrition
(organization of the daily diet and food intake to ensure that the human body receives
the required amount of minerals, vitamins, amino acids, carbohydrates, and proteins),
as well as the problems arising in the industrial production of algae components, are
also considered.

This study aimed to investigate the edible and biologically active fractions of algae,
their composition and properties, as well as the use of algae in the food, pharmaceutical,
chemical, and agricultural industries, as well as for environmental cleaning. Thus, the
study aimed to describe the biologically active fractions of algae, their properties, and
the applications. The need for such research stems from the discovered information gaps,
inconsistencies in research information (differing research results), the presence of differing
scientific opinions, and the identification of various leading trends in research.

2. Microalgae
2.1. Microalgae Nutritional Composition

Microalgae have long been used as food in Asian countries such as China, Japan,
and Korea, as they have many beneficial properties [44]. Algae are an excellent source of
proteins, fats, and carbohydrates and contain many vitamins and macro- and microele-
ments [45] and have a high energy value [46].

The microalgae composition varies depending on the growing conditions. For ex-
ample, the dynamics of the total content of proteins, carbohydrates, and lipids in green
microalgae (S. obliquus, D. armatus, D. subspicatus, S. obtusus, M. contortum, and S. gracile)
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in response to the effect of short-term temperature fluctuations (±10 ◦C) were investi-
gated [47]. Sharp temperature drops led to a reversible redistribution of the content of
biochemical components in the cells of green microalgae. This phenomenon is species-
specific and depends on the age of the culture. A decrease in temperature led to an increase
in carbohydrate content, and the inverse led to a decrease in lipid content.

Filamentous cyanobacterium A. platensis (also known as S. platensis) and various
commercial species of the unicellular green alga C. vulgaris contain up to 70% dry protein.
These microalgae and notably C. muelleri also have an amino acid profile comparable to
that of eggs [48,49]. All essential amino acids were found in the consortium of C. vulgaris
and S. obliquus microalgae [48,49].

Microalgae are rich in lipids mainly composed of esterified saturated and unsat-
urated fatty acids [50,51]. A study [52] demonstrated high lipid content in C. muelleri
(Bacillariophyta) and I. galbana (Haptophyta). T. weissflogii (Bacillariophyta) also contained
lipids in its composition but in smaller quantities. The microalgae consortium consisting of
C. vulgaris and S. obliquus contained saturated fatty acids with chain lengths from 14 to 18,
mono-, di-, and polyunsaturated fatty acids. Omega-3 content was about 1.9 times higher
than the amount of omega-6 fatty acids [50]. Fatty acids such as palmitoleic, oleic, palmitic,
cis-5,8,11,14,17-eicosapentaenoic, arachidonic, and g-linolenic acids were extracted from
samples of the microalgae N. salina (Ocrophyta) [53].

Microalgae are rich in exopolysaccharides [54–56]. Cyanobacterial exopolysaccharides
have some structural features compared to polymers produced by other microorganisms,
such as the presence of one or two uronic acids, the presence of sulfate groups—a feature
unique to bacteria, but distinguishing exopolysaccharides produced by archaea and eu-
karyotes [54]. A capsular, water-insoluble polysaccharide with a complex structure was
isolated from the blue-green algae M. laminosus [57]. It contained a repeating polyglycan
unit. P. marinum, P. purpureum, and R. violacea are a source of sulfated exopolysaccha-
rides [55,56,58].

In view of the abovementioned research, microalgae are an excellent source of nutrients.

2.2. The Potential Health Benefits of Microalgae
2.2.1. Biologically Active Components of Microalgae

A wide variety of compounds synthesized by different pathways of algae metabolism
provide promising sources of polyunsaturated fatty acids, polyphenols, sterols and steroids,
carotenoids, polysaccharides, lectins, mycosporine-like amino acids, proteins, halogenated
compounds, polyketides, alkaloids, alginic acid, and carrageenans [59–61].

Preparations based on microalgae have therapeutic properties such as antitumor,
anti-inflammatory, anticoagulant, antiviral, antibacterial, antifungal, wound healing, and
others [62–67]. Microalgae components are used to strengthen the immune system and
lower blood cholesterol levels, are beneficial for the health of the cardiovascular system,
effective against hypercholesterolemia, and can remove harmful elements from the human
body. Microalgae extracts increase hemoglobin concentration and lower blood sugar.

Carotenoids and phenolic compounds. Carotenoids, terpenoid pigments derived
from tetraterpenes (C40), are essential pigments in algae [68]. For example, fucoxanthin
exhibits biological activity in various model systems, providing antioxidant, anticancer,
antidiabetic, anti-obesity, anti-inflammatory, hepatoprotective, antiangiogenic, antimalarial
effects. Fucoxanthin is safe for human consumption and, therefore, can be used as a
bioactive molecule for the prevention and treatment of diseases in humans [69].

Astaxanthin is another important pigment in microalgae, which is of particular interest
because of its potent antioxidant activity [70]. The extraction of this compound from the
C. zofingiensis (Chlorophyta) biomass was successfully explored [71]. Astaxanthin ester
dominated free astaxanthin regardless of culture conditions and time points. However, a
higher proportion of ester was observed under stress conditions. Another study addressed
the production of astaxanthin as a by-product in biodiesel production from microalgae [72].
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Fucoxanthin, astaxanthin, lutein, and zeaxanthin contained two alcohol OH groups at
different ends of the molecule, but the molecules themselves had different configurations,
whereas canthaxanthin and β-carotene were characterized by the absence of OH groups.

Microalgae H. pluvialis, C. zofingiensis, and D. disociatus (Chlorophyta) are potential
sources of canthaxanthin, a pigment with antioxidant and immunomodulatory proper-
ties [73,74]. An extract of D. subspicatus contained lutein [75]. It has antioxidant potential
and plays a significant role in age-related infant brain development, age-related macular de-
generation, and cancer [76]. Some microalgae species (C. fusca, C. citroforme, T. intermedium,
S. almeriensis, D. protuberans, and A. protothecoides) are potential lutein sources, as they
produce about 5 g·kg−1 biomass mainly in the form of free lutein [76].

Microalgae can also be rich in phenolic compounds. Significant phenolic acid (mainly
gallic acid) content with antioxidant activity was identified in I. galbana (Haptophyta) ex-
tracts [77].

Minerals and vitamins. It was noted that among microalgae, C. vulgaris, H. pluvialis,
D. salina (Chlorophyta), and S. maxima (Cyanobacteria) were rich in iodine, potassium, iron,
magnesium, and calcium [78]. The human body absorbs algal iron more easily than
that from higher terrestrial plants due to the pigment phycocyanin, which forms soluble
complexes with iron and other minerals during digestion.

Microalgae contain vitamins [79] such as B12 [80] or K [81]. C. vulgaris, H. pluvialis,
D. salina, and S. maxima are rich in vitamins A, C, B1, B2, B3, and B6 [78].

Some studies have suggested that vitamin B12 from algae is not bioavailable to hu-
mans [82]. However, other studies have found that C. vulgaris contains the active form of
vitamin B12. Studies in rats with B12 anemia and a nutritional analysis of vegan children
have shown that consuming C. vulgaris helps prevent B12 deficiency [83,84]. Thus, algae
products are one vegetarian alternative to the cobalamin source in one’s diet [85].

2.2.2. Antimicrobial and Antiviral Activity of Microalgae

The literature points to the antimicrobial activity of microalgae extracts. The problem
of maximizing the extraction of biologically active substances while preserving their prop-
erties was solved while developing a technology for producing extracts from microalgae.
When selecting rational extraction conditions, the following parameters were studied:
hydromodule (ratio of raw materials: extractant), duration and temperature of extraction,
and type of extractant. The following parameters were used: hydromodule 1:10 and an
extraction duration of 1–2 h at the extraction temperature of 25–40 ◦C. A 30–50% solution of
ethanol in water was used as an extractant [86]. Extracts of the blue-green algae A. oryzae,
O. limosa, and S. ocellatum were tested for their antimicrobial activity against pathogenic
human fungal and bacterial strains (B. subtilis, M. luteus, S. aureus, E. coli, K. pneumoniae,
P. aeruginosa, and S. marcescens) using the disc diffusion method. The acetone extract of
A. oryzae was the most active against the tested fungal and bacterial strains, while it showed
the maximum antimicrobial activity against S. marcescens and C. albicans [86].

A review [86] studied the antimicrobial activity of ethanol extracts of several microal-
gae species against pathogenic and opportunistic microorganisms. T. suecica extract showed
an inhibitory effect against three studied bacteria [87].

It was found that N. gaditana (Ochrophyta), D. salina (Chlorophyta), P. tricornutum
(Bacillaryophyta), and I. galbana (Haptophyta) extracts had inhibitory activity of varying inten-
sities against E. coli or P. aeruginosa. N. gaditana extract also inhibited S. aureus. C. muelleri
(Bacillariophyta) and C. vulgaris (Chlorophyta) extracts showed no antimicrobial activity. The
extracts of all studied algae suppressed C. albicans. However, M. gaditana was most active.
A. niger was found to be resistant to the action of all extracts. The observed antimicrobial ac-
tivity was associated with the content of fatty acids, carotenoids, and phenolic compounds
in the extracts.

The antiviral activity of microalgae is also known, due to the presence of sulfated
polysaccharides in their composition [88,89].
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Thus, microalgae extracts can be considered a potential natural source of biologically
active compounds with antimicrobial and antiviral activities. However, more in vivo
studies are needed before algae-based antimicrobial agents can be used in humans.

It was found that macroalgae also have antimicrobial and antiviral activities [90,91].

3. Macroalgae
3.1. Nutritional Value of Macroalgae

As a food product, microalgae provide high nutritional value but with a reduced
calorie content [44,92]. In addition to microalgae, macroalgae are an excellent source of
proteins, fats, and carbohydrates (Table 1) and contain many vitamins and macro- and
microelements [11,93–95]. At the same time, the algae composition can vary depending on
the time and place of collections [11,13,14,96].

The protein content in different algae groups varies greatly. Among marine macroalgae,
red and green algae (e.g., P. vulgaris (Laverbread), P. tenera (Nori), P. palmata (Dulse), and
U. lactuca (Sea lettuce)) often contain high levels of protein (as a percentage of dry weight)
in contrast to lower levels in most brown algae [7]. High contents of protein and amino
acids were found in macroalgae U. pinnatifida (Ochrophyta) composition [46]. U. prolifera
(Chlorophyta) has been studied as a food source with low fat and high protein contents [11].

The edible green alga C. racemosa var. peltata contained 40.07% essential amino
acids [97]. Eighteen amino acids were found in S. oligocystum (aspartic acid, glutamic
acid, serine, glycine, arginine, alanine, tyrosine, cysteine, proline, histidine, threonine,
valine, methionine, isoleucine, phenylalanine, tryptophan, leucine, and lysine). Their
amounts varied depending on the season [13], reaching the highest values in May.

Algae are rich in fatty acids. Among macroalgae, S. fusiforme has a high content
of polyunsaturated fatty acids including eicosapentaenoic, α-linolenic, and arachidonic
acids [14]. The main fatty acids found in S. oligocystum were palmitic, oleic, and arachidonic
acids. These algae had a surprisingly high saturated fatty acid composition. For example,
palmitic acid accounted for 37–45% of all fatty acids [13].

Carbohydrates are a common algae component [97]. Algae polysaccharides can se-
lectively increase the activity of certain populations of beneficial bacteria and stimulate
the production of functional metabolites by the gut microbiota. In addition, they can
stimulate a number of biological activities such as anticancer, antioxidant, immunomodula-
tory, and antidiabetic ones. Algae polysaccharides are not absorbed by human digestive
enzymes. They are resistant to digestion in the upper intestinal tract and are subsequently
fermented in the colon [98]. High carbohydrate contents were measured in the red algae
C. crispus, M. stellatus, and G. pistillata [99]. It was established, for example, that the brown
algae H. elongata and L. ochroleuca contain high contents of a sulfated polysaccharide, fu-
coidan [46]. Fucoidans extracted from algae have a complex structure, which depends on
the type of algae, the part of the plant, and the extraction method used [100]. Depending
on their structures, they can have a number of health benefits, such as anticancer, antioxi-
dant, and antiviral activities [101]. In addition to fucoidan, other polysaccharides, such as
alginates, were also found in S. fusiforme and other brown algae [50].

It was shown that the red algae C. crispus, M. stellatus, and G. pistillata have high
energy values for living organisms [102].

3.2. Some Bioactive Components of Algae

Many bioactive products derived from algae are used in the pharmaceutical and
food industries. The biologically active substances of algae are mainly determined using
gel permeation chromatography (GPC). GPC is a liquid chromatography technique in
which a polymer in solution is separated into separate chains depending on their size
(and not on chemical properties) and by the presence of functional groups (using affinity
chromatography, a type of ligand chromatography). The latter was based on the reaction of
the interaction of separated impurities with a ligand bound to an inert carrier, seharose. In
the case of affinity chromatography, biologically active substances (proteins and enzymes)
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that enter into a specific biochemical interaction with a ligand (also, as a rule, organic) were
used as impurities. Gas–liquid chromatography, IR, proton nuclear magnetic resonance,
and 13C NMR spectroscopy, high-performance size exclusion chromatography, and the
C-PC method (analysis method with the isolation of a pigment–protein complex from the
family of light-harvesting phycobiliproteins—C-phycocyanin) are also used to determine
the chemical composition of algae [103,104].

Carotenoids. Like microalgae, macroalgae are rich in the carotenoid fucoxanthin,
which can have antioxidant, antitumor, antidiabetic, anti-inflammatory, hepatoprotective,
antiangiogenic, and antimalarial effects [69].

Pigments β-carotene and zeaxanthin, which macroalgae are rich in, also exhibit an-
tioxidant properties. The dependence of the β-carotene and zeaxanthin concentrations in
red algae P. yezoensis on environmental conditions was demonstrated [102]. When extract-
ing carotenoids, it is necessary to select suitable methods of purification from interfering
components, which will not change the structure of the active component. One of these
methods is the purification of carotenoids from chlorophylls using activated carbon [105].

Phenolic compounds. Phenolic compounds of algae also have biological activity, such
as antioxidant, antiproliferative, antiobesity, and antidiabetic activities [106]. For example,
the antioxidant and antidiabetic effects of phlorotannins isolated from C. compressa were de-
tected and quantified [107]. Flavonoids extracted from the Libyan brown algae C. compressa
and P. pavonica exhibited bactericidal activity against pathogenic bacteria isolated from
meat, meat products, milk, and dairy products. The best spectrum of bactericidal action
was shown by flavonoids extracted from C. compressa [95].

Derivatives of phenolic acid, phlorotannin, catechin, hydroxybenzoic acid, coumaric
acid, and gallocatechin, were identified in the extracts from brown algae A. nodosum,
L. japonica, L. trabeculata, and L. nigrescens [108].

One study [109] identified various phlorotannins, phenolic acids, and flavonoids
(mainly acacetin derivatives) in A. nodosum, B. bifurcata, and F. vesiculosus extracts. The
content of phenolic compounds in algae changes under various abiotic and biotic fac-
tors [110]. Phenolic acids can be found in free form in algae extracts, but they are more
commonly found in the form of conjugates. For example, in the form of esters. Gallic and
ellagic acids can be esterified with glucose or another monosaccharide [111]. Preparative
chromatography methods such as high-performance liquid chromatography (HPLC) or
thin-layer chromatography (TLC) allow for the isolation and purification of individual
phenolic compounds in pure forms [111] without changing their structure.

The chemical diversity of U. reticulata (Chlorophyta), S. wightii, and G. verrucosa
(Rhodophyta) was demonstrated [112]. Over 30 metabolites were found, and steroids and
fatty acids were dominant.

Minerals and vitamins. Algae are high in minerals. Sea algae are rich in iodine,
so they can be potential candidates for the production of drugs for the prevention of
many diseases caused by iodine deficiency (for example, endemic goiter, Grave’s disease,
and hyperthyroidism) [113]. Significant Ca, Mg, K, Cu, Fe, and Se contents were found
in S. fusiforme and S. oligocystum, collected from May to August [13,14]. S. oligocystum,
collected in February, had higher Na, I, and Zn contents [13]. L. japonica contain 13 times
more calcium than milk [114].

Macroalgae produce or store a wide variety of vitamins [115]. Algae are valuable can-
didates for preventing diseases associated with iron and vitamin B12 deficiency (alimentary
anemia) and vitamin A (xerophthalmia). Algae are rich in antioxidant vitamins C and E.
Vitamin C prevents scurvy, and vitamin E helps to manage neurological problems caused by
poor nerve conduction and anemia caused by oxidative damage to red blood cells [114,115].
Macroalgae P. vulgaris and P. palmata demonstrated high vitamin B12 content [46]. Retinol,
α-tocopherol, and ergocalciferol were identified in C. barbata [116].
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3.3. Antimicrobial and Antiviral Activities

Due to the significant content of various biologically active components, algae can
exhibit antimicrobial, antimycotic, and antiviral activities.

Antimicrobial and antimycotic activity. There is a significant amount of research
on the antimicrobial and antimycotic activity of macroalgae extracts. One study [116]
demonstrated the high antimicrobial activity of red alga G. doryphora extracts (in methanol,
ethanol, and ethyl acetate) against B. subtilis, E. faecalis, S. aureus, E. coli, P. aeruginosa,
and C. albicans (yeast strain). The antimicrobial activity was evaluated in vitro using the
well-cut diffusion technique. The fresh extract was found to be more effective against all
tested organisms than the dried material, except for the ethyl acetate and ethanol extracts
against B. subtilis.

Sirbu et al. [117] studied the antimicrobial activity of the green algae U. lactuca,
E. intestinales, and C. vagabund against E. coli and S. aureus. The analysis method used
was the nutrient agar well diffusion method. It was shown that the sites of inhibition in
E. coli are higher than in S. aureus. The algae U. lactuca (Chlorophyta), D. spiralis, and J. rubens
(Rhodophyta) were tested for activity against Gram-positive (S. pyogenes and M. luteus),
Gram-negative (S. flexneri and V. cholerae) bacteria and fungi (C. albicans and A. niger).
M. luteus was the most sensitive pathogen. Among all the studied extracts (water, methanol,
ethanol, chloroform, acetone, ethyl acetate, and hexane), the chloroform extract of D. spiralis
was the most active against the studied pathogens. Water extracts were not active against
all selected pathogens [118].

The data from the studies mentioned above are summarized in Table 2. It indicates the
data on the antimicrobial and antifungal activity of microalgae for comparison. The table
shows that many algae are active against C. albicans. Compared to microalgae, all of the
mentioned macroalgae showed activity against A. niger, while none of the indicated microal-
gae showed activity against this type of microorganism. All of the mentioned macroalgae
extracts demonstrated activity against E. coli, and the majority of microalgae extracts also
showed activity against E. coli, except for O. limosa, S. ocellatum (Cyanobacteria), C. muelleri
(Bacillariophyta), and C. vulgaris (Chlorophyta). All the listed macroalgae extracts were active
against S. aureus. However, among microalgae, only A. oryzae, T. suecica (Chlorophyta),
and N. gaditana were active. The different ratios of total lipids and polyunsaturated fatty
acids in macro- and microalgae can explain differences in their antimicrobial activity. The
higher this ratio, the more active the macro- or microalgae extract is. Macroalgae have the
most fungicidal activity, and they also contain a lot of triacylglycerols, glyceroglycolipids,
phospholipids, fucoxanthin, and other biologically active substances that adversely affect
the higher mold fungi A. niger [119,120].

Table 2. Antimicrobial activity of various algae.

Algae Genus and Species Test Cultures against Which Algae
Are Active Sources

G. doryphora (R) 1–6 [117]
U. lactuca (C) 3, 4, 6–11 [120,121]

E. intestinales (C) 3, 4 [121]
C. vagabund (C) 3, 4 [121]

D. spiralis (P) 6–11 [118]
J. rubens (R) 6–11 [118]

A. oryzae (Tci) 1, 3–6, 8, 12, 13 [86]
O. limosa (Tci) 5, 6, 8, 13 [86]

S. ocellatum (Tci) 1, 5, 6, 12, 13 [86]
T. suecica (C) 3–6 [87]
D. salina (C) 4–6 [87]

N. gaditana (E) 3–6 [87]
D. viridis (C) 4–6 [87]
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Table 2. Cont.

Algae Genus and Species Test Cultures against Which Algae
Are Active Sources

P. tricornutum (D) 4–6 [87]
I. galbana (H) 4–6 [87]
C. muelleri (D) 6 [87]
C. vulgaris (C) 6 [87]

1—B. subtilis; 2—E. faecalis; 3—S. aureus; 4—E. coli; 5—P. eruginosa; 6—C. albicans; 7—S. pyogenes; 8—M. luteus;
9—S. flexneri; 10—V. cholerae; 11—A. niger; 12—K. pneumoniae; 13—S. marcescens. P—Phaeophyceae, R—
Rhodophyta, Tci—Cyanobacteria, E—Eustigmatiophyceae, H—Haptophyta, D—Diatomeae, C—Chlorophyta.

Antimicrobial activity of endophytic fungi isolated from algae. The antimicrobial
effect of algae may be due to their active substance contents but also to secondary metabo-
lites formed by endophytic fungi present in these plants. For example, the antimicrobial
properties of fungi extracts isolated from the brown algae P. pavonica against S. aureus,
E. coli, and C. albicans were demonstrated [122]. Agar diffusion was used as an analysis
method. One of the fungal isolates, identified as T. harzianum, showed the greatest activity
against the above microorganisms. Twenty-seven endophytic fungi were isolated from
seven macroalgae (D. divaricata, G. lauris, G. salicornia (Rhodophyta), P. minor, U. lactuca,
S. oligocystum, and S. polycystum). The cross-band method was performed to screen for
antibacterial agents. Thirteen of these fungi had positive antibacterial activity against
six pathogenic human bacteria, such as S. aureus, S. marcescens, S. typhi, S. dysenteriae, E. coli,
and K. pneumoniae [123]. The fungus T. viride demonstrated strong broad-spectrum an-
tibacterial activity. Thus, endophytic fungi isolated from macroalgae can be a source of
antimicrobial compounds.

Antiviral activity. The antiviral activity of macroalgae is often determined by the con-
tent of polysaccharides in their composition. Carrageenans, ulvans, fucoidans, agars, and
alginates have strong antiviral properties [124,125]. It was reported that some of the sulfated
polysaccharides could be used to prevent and treat COVID-19 [126,127]. In vitro studies
demonstrated that iota-carrageenan can inhibit SARS-CoV-2 [128,129]. Fucoidan prevents
SARS-CoV-2 from entering the cell by binding to S-glycoprotein [129,130]. Fucoidan and
other highly sulfated polysaccharides were tested in vitro using surface plasmon resonance
(SPR) to measure the binding affinity for the SARS-CoV-2 S protein [130].

There are currently no algae-based antimicrobial, antifungal, or antiviral drugs regis-
tered. In vivo studies are required to extrapolate use to humans. Nonetheless, macroalgae
are promising candidates for further research aimed at their future use in the pharmaceuti-
cal industry.

3.4. Macroalgae as Bioactive Ingredients for Functional Food

According to the National Academy of Sciences’ Institute of Medicine, “functional
foods are foods that encompass potentially healthful products, including any modified
food or food ingredient that may provide a health benefit beyond the traditional nutrients
it contains” [131].

3.4.1. Algae in the Food Industry

While increasing the worldwide market of functional foods, in parallel, there is grow-
ing interest in the discovery of new functional food ingredients from different natural
sources [132–135]. Thus, in recent years, the opportunity of using algae-derived com-
pounds for innovative functional food products has become of great interest. In the food
industry segment, the major and most commonly used hydrocolloids from marine algae
are: agars, alginates, and carrageenans.

Agar

Agar is principally found in the matrix cell of seaweeds of the Gelidiales (Gelidium
and Pterocladia) and Gracilariales (Gracilaria and Hydropuntia) orders. Its abundance and
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its easy exploitation allow agar production from G. tenuistipitata, which is economically
important [136].

Agar is a phycocolloid composed of agarose (a linear polysaccharide) and a heteroge-
neous mixture of smaller molecules (agaropectin). A generally recognized as safe (GRAS)
food additive in USA and a food additive authorized in Europe (E406), agar cannot be
digested in the gastrointestinal tract because humans lack α/β-agarases. Nonetheless, it
can be metabolized by intestinal bacteria to d-galactose [137]. Agar is an effective gelling
agent, able to form a brittle, firm, and thermally reversible gel at low concentrations [138].
Remarkably, agarose is the main gelling agent in agar. In this regard, along its linear chains
of agarose with repeating units, agar gel is formed by hydrogen bonds between the adjacent
D-galactose and 3,6-anhydro-L-galactose. Ninety percent of produced agar is used in the
food industry for its gellifying properties. It is used in in culinary, food, and confectionery
industries as the gelling agent for producing Asian traditional dishes, canned meats, confec-
tionery jellies, and aerated products such as marshmallows, nougat, and toffees [138,139].
Served as a food additive, agar is routinely used to produce foods that need heating before
consumption, such as cake, sausage, roast pork, and bacon [140]. In order to substitute fat
in whipped products, agar fluid gels can be used for making foams at high stability [141].
On the other hand, the remaining 10% is employed as a thickening component of media for
the culture of bacteria tissue, cells, filamentous fungi, and yeast [142].

Agar can be defined as a hydrophilic colloid extracted from some algae of the
Rhodophyceae class. It does not dissolve in cold water, but it does dissolve in boiling water.
The 1.5% solution is clear, and when it cools down to 34–43 ◦C, it forms a solid gel that
does not dissolve again at a temperature below 85 ◦C. It is a mixture of polysaccharides,
the main monomer of which is galactose. These polysaccharides can be sulfated to very
different degrees, but to a lesser extent than in carrageenan. For this reason, the ash content
of agar is lower than that of carrageenan, furcelleran, and other polysaccharides. Agar is
characterized by a maximum ash content of 5.0%, although it is usually maintained within
the range of 2.5–4.0% [143].

Alginates

Present as a blended salt of Na and/or Na, Ca, and Mg in brown macroalgae, algi-
nates are polymers of consecutive mannuronate and guluronate (1,4) covalently connected
together in various blocks [144]. The principal marketable sources of alginate are marine
brown algae, and notably, those belonging to L. japonica, A. nodosum, and L. trabeculata
genus [144]. Similar to agar, in the food industry, alginates are usually employed for gelling,
thickening, stabilizing, and film-forming applications. Interestingly, contrary to other hy-
drocolloids, alginates are special in their cold solubility, which permits the manufacture of
heat/temperature-independent non-melting gels, cold-setting gels, and freeze–thaw-stable
gels [38,145]. Technically, for alginate gel formation, the addition of cations such as Ca2+ is
desired. In this vein, only guluronate blocks and occasionally mannuronate/guluronate
blocks can react with Ca2+ to form alginate gels [146]. It should be noted that command-
ing alginates–Ca interaction would confer shear-irreversible and heat-stable features on
cold-setting gels [38,145]. In the food industry, solely Na alginate is predominantly used
in foods as gel or as a viscosity regulator [38,145]. For the majority of Na alginate ap-
plications (e.g., custards, bakery fillings, structured fruits, structured vegetables, aerated
confectioneries, and structured meat products), internal setting under a governed status
is crucial [144]. Moreover, Na alginate can be used as a thickening and structuring agent
in low-fat margarine and spread products and can also be used to control the melting
behavior of ice cream and reformed foods such as onion rings and olive fillings [144,147].
Likewise, alginate is exploited as a stabilizer of beer foam [143].

Alginate is a linear polysaccharide in which β-D-mannuronate (M) and α-L-guluronate
(G) are covalently (1–4) linked in different sequences. α-L-Guluronate is the C5 epimer
of β-D-mannuronate. Monomers of uronic acid are linked into a polymannuronate block
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(polyM block), a polyguluronate block (polyG block), and a random copolymer (polyMG
block) [148].

As a hydrocolloid cryoprotectant, alginates impart different cryoprotective effects
to food products depending upon their solubility, water-holding capacity, rheological
properties, and synergistic effect with other ingredients during freezing and frozen storage.
For instance, [149] reported the usefulness of alginate in retaining the texture and sensory
acceptability of pre-cut carrots during frozen storage. Likewise, the addition of sodium
alginate to corn starch, sucrose, or water mixtures minimized the structural damage to the
gel/paste after slow freezing and during frozen storage.

Lee et al. [150] concluded that sodium alginate was effective in syneresis reduction in
sweet potato starch gel after five freeze–thaw cycles and storage at−18 ◦C for 20 h followed
by 25 ◦C for 4 h.

Carrageenan

The initial raw material for the production of carrageenan, an ionic polysaccharide, is
C. crispus, commonly known as “Irish moss” [151]. K. alvarezii and E. denticulatum are also
used [152]. With diverse structural specificities, carrageenans are sulfated polysaccharides.
There are three main commercial kinds of carrageenan: kappa (which has one sulfate per
disaccharide), iota, and lambda (which comprise two and three sulfates per disaccharide,
respectively) [153]. These carrageenans differ in the degree of sulfation and consequently
have diverse gel strengths, textures, solubilities, melting and setting temperatures, syneresis,
and synergy properties [145,153,154]. In the presence of potassium ions (K+), kappa-
carrageenan forms a strong and rigid gel and can react with dairy proteins. In contrast,
iota-carrageenan forms a soft and elastic gel in the presence of Ca2+ ions [49,51]. However,
lambda-carrageenan is a pure thickener and does not gel [155].

Employed for decades in the food industry, carrageenan is labeled as a GRAS by
the Food and Drug Administration (FDA); additionally, carrageenan and semi-refined
carrageenan are food additives (E-407 and E407a, respectively) permitted by the European
Food Safety Authority (EFSA). Carrageenan is widely used in dairy products, such as
cheese and chocolate milk products, to confer thickening, gelling, stabilizing, and strong
protein-binding properties [152]. Due to its extraordinary faculty to join milk proteins,
carrageenan, at low levels, was utilized in dairy products. This hydrocolloid was able
to keep milk solids in suspension, therefore stabilizing them. Another domain in the
application of carrageenan (mainly produced by Eucheuma) is the meat industry. Due to its
water retention characteristics, it is used in the production of hamburgers, ham, seafood,
and poultry products. Carrageenan is also used in aqueous gels, such as jelly-candies,
fruit gels, juices, and marmalade [140,143]. For instance, Atashkar et al. [155] assessed the
impact of the addition of κ-carrageenan at 0.5%, 1.0%, and 1.5% on texture characteristics
of sausages formulated with 70% fat reduction and stored at 4 ◦C over 30 days. The results
displayed that the partial fat substitution with κ-carrageenan lead in a decrease in hardness
and chewiness and a partial increase in gumminess and springiness.

Carrageenans are high-molecular-weight, sulfated D-galactans consisting of repeating
disaccharide units with alternating 3-linked β-D-galactopyranose (G-units) and 4-linked
α-galactopyranoses (D-units) or 3,6-anhydro-α-galactopyranose (AnGal units) [156].

Carrageenans are usually classified according to their structural characteristics, in-
cluding sulfation patterns and the presence or absence of AnGal on the D-units. There
are at least 15 different carrageenan structures [157]. The most industrially significant
carrageenans are the κ, i, and λ forms. The main source of κ-carrageenan is the red
algae Kappaphycus alvarezii [158]. Its structure is represented by alternating 3-linked β-D-
galactose-4-sulfate and 4-linked AnGal units [159]. I-carrageenans have an additional
sulfate group on the C2 (O) of the AnGal residue, which gives two sulfates per disaccharide
repeating unit.

Carrageenans, as cryoprotecting agents, play a crucial role in stabilizing the structure
and texture of frozen foods. In this vein, [160] evaluated the k-carrageenan functionality,
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used as a secondary stabilizer, in an ice cream mix. This study indicated the k-carrageenan
proved to be a crucial factor for cryoprotection. The combination of k-carrageenan and
xanthan gum was found to retain the texture and water-holding capacity of mashed potato
for one year of frozen storage. The sensory acceptability of the treated frozen product, after
1 year, was maintained [161]. In the same way, Alvarez et al. [162] suggested that the low
concentration of k-carrageenan and xanthan gum addition to frozen thawed mashed potato
kept the overall acceptability. In addition, the combination gum Arabic/k-carrageenan
was found to be the best cryo-protectant for the storage of beef at −18 ◦C [163]. Similarly,
a study by Kovacevic et al. [164] confirmed the cryoprotective effect of k-carrageenan on
chicken surimi during rapid freezing.

Carrageenan has long been used as a dietary supplement and is generally considered
safe for humans, but recent chronic toxicological tests have shown that it may have a
cumulative effect in mammals [165]. Therefore, further research is required to resolve the
controversy over the safety of carrageenan.

3.4.2. Algae-Containing Food: Example of Meat Products and Their Quality

Promoted by the growing interest in seaweeds due to their significant potential as
functional ingredient sources, this section encloses aspects linked to the state of the art of the
application of both whole algae and algae-derived compounds in meat and meat products.
In 2018, Agregán et al. [166] examined the impact of seaweed (A. nodosum, F. vesiculosus,
and B. bifurcata) extracts on the fortification of the oxidative stability of low-fat pork liver
patties. During 180 days of storage at 4 ◦C, these authors compared studied extracts at
0.5 g·kg−1 to those developed using a synthetic antioxidant (butylated hydroxytoluene
(BHT) at 0.05 g·kg−1) and untreated samples. Compared to control trials, the treated
samples showed higher lipid and protein stability, kept the levels of instrumental color
measured in terms of the redness (a*) and yellowness (b*), and did not modify microbial
characteristics. Later, in 2019, these same authors studied the effect of F. vesiculosus extracts’
potency at 0.2, 0.5 and 1 g·kg−1 on the shelf-life of pork patties throughout storage at
2 ◦C for 18 days [167]. At the end of storage, compared to untreated samples, 1 g·kg−1

experiments showed lower protein oxidation parameters, expressed by thiobarbituric acid-
reactive substances (TBARS) and carbonyl contents. These findings can be described by the
high content of phenolic compounds, principally phlorotannin, which displayed powerful
antioxidant capacity. At various concentrations (which ranged between 10% and 40%), Cox
and Abu-Ghannam evaluated the incorporation of H. elongata seaweed extracts on chemical
stability, microbial evolution, and sensory traits of cooked beef patties over 30 days [168].
The authors confirmed that enriched patties showed an increase in lipid stability, joined
by good acceptance in terms of appearance, aroma texture, and taste. In an attempt to
reduce nitrites in meat sausage, Sellimi et al. [169] used different levels (0.01–0.04%) of
lyophilized aqueous extract from C. barbata seaweed. After 5 days of refrigerated storage,
samples at 80 ppm of sodium nitrites reduced about 36% of the TBARS values compared
to the control trials (sodium nitrites at 150 ppm). The authors assigned this protection
against lipid oxidation to the existence of phenolic compounds, sterols, and fatty acids in
the aqueous extract. Likewise, the red color was maintained, and turkey meat sausages
were maintained during storage. The addition of edible algae Sea Spaghetti (H. elongata),
Wakame (U. pinnatifida), and Nori (P. umbilicalis) to meat led to increases in K, Ca, Mg,
and Mn levels. In addition, Nori algae increased the levels of some amino acids such as
Ser, Gly, Ala, Val, Tyr, Phe, and Arg [170]. Likewise, meat fortification with algae, which
supplied soluble polyphenolic compounds, increased the antioxidative potential of the
whole system.

On the other hand, some attempts were made to use algae and algae-derived com-
pounds as replacers of fat in meat products. For instance, the addition of L. japonica powder
in the manufacture of reduced-fat pork patties was examined by Choi et al. [171]. These
authors stated that the patties enriched with various levels at 1%, 3%, 5%, and 10% fat
content showed a decrease in cooking loss and reductions in diameter and thickness. Fur-
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thermore, L. japonica powder at 1% and 3% enhanced textural parameters: springiness,
hardness, gumminess, and chewiness. López-López et al. [172] reported that the addi-
tion of H. elongata at 5% to low-fat frankfurters enriched with n-3 polyunsaturated fatty
acids (PUFA) improved the water- and fat-holding capacities, enhanced the hardness and
chewiness, and lowered lightness (L*) and redness (a*) values. Nevertheless, compared to
untreated samples, treated ones presented lower sensory acceptability.

With the aim to make functional and practical preservative designs, films have to
obey several physico-chemical interactions. The essential operation over their production
manner is the polymeric organic precipitation that might be ensured by simple and complex
coacervation and gelation [173,174]. The meat industry has designed biopolymers-based
materials containing algal hydrocolloids as active packaging to diminish losses and improve
the shelf-life of these products.

The impact on the chemico-physio-mechanico properties and the biological potential
of algal hydrocolloids films for packaging meat and derived products have recently been
reported. For instance, due to its attractive properties, sodium alginate was used as a
biopolymer in meat packaging. Sodium alginate showed good mechanical strength, mois-
ture barrier, and cohesiveness. Other features such as high water viscosity, permeability,
absorption capacity, and the ability to incorporate various compounds into the matrix have
extended its applicability in the development of new materials in meat packaging [175,176].

Using the casting method, Puscaselu et al. [176] prepared sodium alginate/agar films
utilizing glycerol as a plasticizer. After testing and identifying the best characteristics, a
new film was used to package the slices of dried salami. The results indicate the possibility
of substituting conventional materials with sodium alginate/agar biopolymer. The same
beneficial effect of natural extracts was shown by [177] when they packed chicken breast in
polymer foils with the addition of essential oils of lemon and verbena or by Kang et al. [178]
when they packed low-fat frankfurters in sodium alginate film. Takma and Korel [179]
produced active ethylene terephthalate (PET) films composed of chitosan and alginate as
coatings incorporated with black cumin oil. The authors examined their positive impact
on refrigerated chicken breast meat shelf-life. Alginate incorporation into the network
matrices of the film showed anti-S. aureus and anti-E. coli activity and variations in color,
pH, total viable count, and psychrotrophic bacteria counts of packaged samples.

3.4.3. Drawbacks of Marine Hydrocolloids Originated from Seaweeds in Food Application

In spite of a wide range of several applications, carrageenan has some drawbacks
and adverse effects on biological systems. The toxicological properties of carrageenan are
the following: LD50 (rat, oral) > 5 g·kg−1; LD50 (rabbit, skin) > 2 g·kg−1; 4 h LC50 (rat,
inhalation) > 0.93 mg·L−1 [180]. Due to its sulfate group, carrageenan was revealed to have
harmful effects regarding blood coagulations and immune system [124,181]. In this regard,
the presence of sulfate groups on G-6 generated the strongest cytotoxicity [182,183]. In
addition, the anticoagulant activity of carrageenans correlates with the contents of sulfate
groups [184]. Moreover, carrageenans may induce adverse effects on human intestinal
epithelial cells. For instance, the treatment of carrageenans at a range between 1 and
10 mg·L−1 over 8 days was found in human colonic epithelial cells [185]. Carrageenan was
also recognized to provoke an inflammatory response in the study of anti-inflammatory
drugs in laboratory animals [186,187]. Recent findings demonstrated that the long-term
use of carrageenans in animals resulted in ulcerative colitis or digestive system mucous
layer injury and promoted tumor growth [187].

On the other hand, it should be noted that the application of alginate has significant
limitations due to its macromolecular structure, poor solubility, and low bioavailabil-
ity [188]. Equally, alginate can be digested chemically or enzymatically, producing alginate
oligosaccharides, which have lower molecular weights and lower viscosity. Hence, it is
necessary to carry out additional vital and epidemiological investigations to evaluate the
hydrocolloids’ safety.
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Algae are used to produce a variety of products from native and processed algo-
mass [189]. In some regions of the world, there is a historical tradition of using certain
types of algae for food purposes. Today, all countries around the world allow the con-
sumption of the following types of algae: A. platensis, A. maxima, C. vulgaris, C. pyrenoidosa,
C. sorokineana, and D. salina; regionally permitted: N. pruniforme (in Southeast Asian coun-
tries) and A. flosaquae (in the United States). Algae contain a unique complex of components
required by the human body. Their cells are rich in vitamins, proteins, carbohydrates, and
micro- and macroelements, not only quantitatively, but also qualitatively. For example,
microscopic algae can biosynthesize 13 vitamins, whereas fish oil contains only 6 of them.
The concentration of vitamins such as thiamine, riboflavin, folic acid, and provitamin A
in the biomass of C. vulgaris, S. elongates, and S. platensis is higher than that in higher
terrestrial plants. Algae of the genera Nostoc and Microcystis accumulate vitamin B12 in
large amounts [190].

3.4.4. Algae as a Source of Protein and Amino Acids

According to WHO data, more than 60% of the world’s population does not eat
adequately, meaning they do not get enough protein from food. So, according to the con-
clusion of the specialists of the Russian Academy of Medical Sciences, conducting selective
clinical studies throughout the country, the protein deficiency in Russia is approximately
850 thousand tons/year. Microscopic algae can solve this problem, since they contain large
amounts of complete proteins essential for humans [191]. There is evidence in the scien-
tific literature that the protein of Chlorella, Scenedesmus, Chlamydomonos, Spirulina, Nostock
and other microalgae contains all essential amino acids—threonine, valine, phenylalanine,
leucine, isoleucine, lysine, methionine, etc. In light of this, it is clear that an intensive culture
of microalgae is required as an additional source of complete protein. It was demonstrated
that chlorella biomass with protein contents ranging from 8 to 58 percent, carbohydrates
ranging from 6 to 37 percent, and fats ranging from 4 to 85 percent can be produced by
changing the cultivation conditions [192].

By varying the growing conditions, it is possible to significantly increase the yield of
these and other substances (amino acids and macro- and microelements) in other types
of algae.

The food industry has experience in using S. platensis microalgae as high-protein and
vitaminized food additives, bio-dyes, as well as a biostimulants and growth regulators.

The algae cells contain significant amounts of mineral components. For example, the
biomass of spirulina contains up to 528 mg/kg of iron, phosphorus—8000, potassium—
14,300, magnesium—1660, manganese—22, zinc—33, and selenium—0.4 mg/kg, and it
contains even more calcium than milk (up to 10,000 mg/kg). The marine unicellular red
algae porphyridium is a source of carrageenin, which is used not only as an emulsifier in
the food, pharmaceutical, and fermented milk industries, but also as an adhesive in leather
and textile production [193].

3.4.5. Use of Algae Pigments

The controlled biosynthesis of algal pigments such as chlorophylls, carotenes, xan-
thophylls, and phycobiliproteins is one of the most pressing tasks in biotechnology [194].
It is important that the pigments obtained from plant components are not toxic. Thus,
the green alga D. salina is recognized as the most promising source of carotene for the
biotechnological industry. It is known that under certain conditions, it can hyper synthesize
carotene, the content of which in its cells can reach 10%.

A study of the D. salina biology and environmental factors causing its transition to the
active accumulation of β-carotene in vivo showed that the biosynthesis of this compound is
an adaptive response of organisms in response to extreme growth conditions, which include
changes in salinity and mineral composition of the environment, temperature, and light, as
well as a combination of a set of these parameters. Under industrial conditions, using the
principle of separation of cell division and photosynthesis, with controlled biosynthesis of
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β-carotene in Dunaliella cells, it is possible to obtain large amounts of vitamin A precursor in
short time intervals. However, the technological process of D. salina cultivation is still very
far from ideal due to the physiological and biochemical complexity of algal metabolism
and our poor understanding from the point of view of the regulation of carotene synthesis
under the conditions of an industrial process.

Blue-green algae can also be a source of pigments, of which spirulina is the only
microalga currently cultivated for the industrial production of these compounds. Its
chlorophylls are used for coloring soaps, oils, fats, alcoholic and non-alcoholic beverages,
cologne, and perfumes, and as a deodorant. In Japan, chlorophylls are used to stain fish
pastes and other culinary products, and in Europe—oils, fats, aromatic essences. Food
colors can be obtained from other types of algae, for example, the additional pigment
phycocyanin, isolated from the blue-green alga Phormidium [195].

3.4.6. Application of Algae in Medicine

The production of chlorophyll–carotene paste, which is the main active ingredient
in the highly effective ointment “Algofin”, from microscopic algae biomass is promising
for practical use. This ointment, having an antimicrobial effect on Gram-positive and
Gram-negative, aerobic and anaerobic, spore-forming and asporogenic microflora, has an
anti-inflammatory effect; as a result of which, it enhances the regeneration and reparation
processes, thereby reducing toxicosis in patients with extensive burns, trophic disorders,
and ulcers caused by radiation.

There are numerous positive results from biomedical, pharmacological, and other
studies demonstrating the high efficiency of the use of algae in the treatment and prevention
of a number of diseases associated with disorders of the immune, endocrine, digestive,
cardiovascular, and nervous systems of animals and humans [196]. S. platensis has a
noticeable therapeutic effect, which is determined by its unique composition: the biomass
of spirulina contains easily digestible protein, free essential amino acids, a wide range of
trace elements and mineral salts, polyunsaturated fatty acids, pigments, etc.

Spirulina preparations in the form of ointments, alcohol and oil extracts, suppositories,
and tablets help to reduce blood cholesterol and the risk of obesity, reduce nephrotoxicity
when exposed to heavy metals and drugs, significantly increase the population of lacto-
bacilli and bifidobacteria in the intestine, normalizing the activity of the gastrointestinal
tract, and reduce the content of blood sugar in diabetes [197]. It was found that phycocyanin,
isolated from spirulina, stimulates cell growth, as well as increases immunity and resistance
to cancer. This compound is one of the best radioprotectors, since it absorbs up to 40%
of radioactive cesium and strontium from the human body, and its superoxide dismutase
inactivates free radicals, slowing down the aging process of cells. Chlorophyll derivatives
of spirulina are used for photodynamic therapy of cancer. In connection with the problem
of iodine deficiency among the population of Ukraine, biotechnological methods have been
developed for the production of spirulina biomass with a high concentration of iodine—up
to 100 µg per 1 g of biomass, and most of the iodine is part of organic compounds that are
more stable than mineral ones. All of the above facts give reasons to consider spirulina
as one of the most important objects of biotechnology. The growing demand for biomass
and its components led to the development of highly productive technologies for the
production of S. platensis under controlled conditions, making it possible to formalize the
entire production process of its biomass with a given biochemical composition with a high
degree of accuracy.

Glycoproteins of microalgae, capable of inhibiting the growth of tumor cells, as well
as carotenoids, which are antioxidants due to the presence of conjugated double bonds,
bind singlet oxygen and inhibit the formation of free radicals and also have healing proper-
ties [198]. Phycobiliproteins, as additional pigments of microalgae, have found application
in immunofluorescence diagnostics, where they are used as fluorescent tags. There are
data indicating the possibility of using phycobiliproteins as anti-inflammatory agents. The
beneficial effects of microalgae on human health, such as prebiotic, immunomodulatory,
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antioxidant, anticancer, and hypocholesterolemic effects, have been described in various
studies; however, the mechanism providing a positive effect strongly depends on the
specific strain of microalgae and the content of biologically active substances [199].

The importance of algae in medicine is also growing as regenerators of therapeutic
mud and sources of obtaining unique medical preparations (blood substitutes, soluble
surgical threads, and antidiabetic compounds).

One of the high-priority directions in the development of biotechnology is the search
and study of new, unconventional sources of biologically active substances; the USA and
Japan are leaders in this research, and the developments of scientists from France, India,
Switzerland, Australia, and Argentina are also making significant contributions.

Recent data suggest that algae can be used for the targeted biosynthesis of a number
of compounds. For example, S. platensis is capable of synthesizing iodine-containing com-
pounds of a hormonal nature, thyroxine and triiodothyronine, which are easily digestible
by the human body. The prospect of using unicellular green algae for the biosynthesis of
secondary compounds such as alkaloids, steroids, and vitamins is very appealing [200].

Fucoidan is a type of polysaccharide that contains significant amounts of L-fucose
groups and sulfate esters, mainly derived from brown seaweed. During the last decade,
fucoidan has been widely studied due to its high biological activity. The search for new
drugs has generated interest in fucoidans from microalgae [201]. During the last decade,
fucoidans isolated from different types of microalgae have been widely studied regard-
ing their anticoagulant and antithrombotic, antiviral, antitumor and immunomodulatory,
anti-inflammatory, blood-lipid-lowering, antioxidant and anti-complementary properties,
activity against hepatopathy, uropathy, protective effects for gastric pathology, and ther-
apeutic potential in surgery. Compared to other sulfated polysaccharides, fucoidans are
widely available from various kinds of cheap sources, which is why more and more fu-
coidans are being investigated in recent years for the development of drugs or functional
foods [202].

Bilan et al. reported that fucoidans of brown algae F. evanescens C. Ag, F. distichus, and
F. serratus L. consist of fucose, sulfate, and acetate [203]. F. evanescens C. Ag fucoidan has
a linear base of alternating 3- and 4-linked 2-sulfate residues of α-1-fucopyranose: [→3)-
α-1-Fuc p (2SO3

−)–(1→4)-α-l-Fuc p (2SO3
−)–(1→] with an additional sulfate occupying

position 4 in a part of 3-linked fucose residues, while some of the remaining hydroxyl groups
are acetylated randomly [189]. F. distichus fucoidan consists of repeating disaccharide units:
[→3)-α-l-Fuc p–(2,4-di-SO3

−)–(1→4)-α-l-Fuc p–(2SO3
−)–(1→]. The regular structure can

only be slightly disguised due to accidental acetylation and the insufficient sulfonation of
several repeating units of the disaccharide [204]. Fucoidan from F. serratus has a branched
structure; its main chain is →3)-α-l-Fucp–(1→4)–α-1-Fuc p–(1→, and about half of the
3-linked residues are substituted in C-4 by α-1-Fuc p–(1→4)–α-l-Fuc p–(1→3)-α-l-Fuc p–
(1→trifucosidic links. Sulfate groups occupy mainly C-2, and sometimes C-4, although
3,4-diglycosylated and some terminal fucose residues can be unsulfated. Acetate groups are
occupied by C-4 3-linked fucan and C-3 4-linked fucan in a ratio of about 7:3. Fucoidan also
contains small amounts of xylose and galactose. The sulfated fucan from S. marginatum has
a backbone of (1→4)–and (1→3)-linked-α-l-fucopyranosyl residues, which are substituted
at C-2 and C-3, and fucosyl residues are sulfated mainly at C-2 and/or C-4 [204].

3.4.7. Application of Microalgae in the Chemical Industry

Microalgae are also successfully used in the chemical industry. Some microalgae, for
example P. cruentum, are used to produce resinoids, fragrant fixatives used as fragrances
and dyes for food, perfumery, and other cosmetic products, as well as household chemicals.
Some strains of chlorella and cenedesmus contain more than 20% resinoids in their dried
biomass [191]. The main problem in the production of resinoids from marine microalgae
is their high cost compared to synthetic analogs. To reduce the cost of technologies, it is
possible to use waste-free production in the complex processing of microalgae biomass.
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Spirulina processing products are also used in cosmetology in the form of dyes, creams,
emulsifiers, gelling agents, and detergents.

It should be remembered that mineral resources such as deposits of graphite, limestone,
diatomites and tripoli, oil shale and gases, sapropels, some varieties of coal, and possibly
oil were formed in the past geological epochs as a result of the photosynthetic activity of
ancient algae, including unicellular ones.

3.4.8. Application of Microalgae in Agriculture

Microalgae are widely used in agriculture. Algae of the genera Chlorococcum, Spirogyra,
Scenedesmus, Nostoc, Navicula, Nitzschia, etc., are used as feed additives in livestock and
poultry farming. Such additives have a pronounced positive effect: in animals—immunity
increases, and their weight, fertility, and survival of juveniles increase; in birds—the size
of eggs increases, and egg production and the intensity of color of egg yolk increase.
Consequently, in the United States, farms for raising cattle and poultry are provided with
algal ponds in which animal waste is disposed of by algae, as a result of which, 40% of
the nitrogen from the wastewater is reintroduced into the algae biomass and consumed by
the animals. In addition, the use of a chlorella and Scenedesmus suspension in silkworm
breeding accelerates the development of silkworm caterpillars, as well as increases its
viability and yields of cocoons.

The use of algae to solve the food problem, which is inextricably linked with the search
for effective environmental protection methods, allows for a reduction in the anthropogenic
load on terrestrial–aquatic ecosystems, which are now the primary source of food for
humans and animals. Currently, the global sales of microalgae products are growing
steadily: by 2028, they will reach about USD 5 billion [205].

In the context of the intensification of agricultural production and a sharp increase in
anthropogenic impact on the environment, including on the soil cover, the role of biological
factors in increasing soil fertility and their recultivation is significantly increasing. The
skillful use and regulation of the development of soil biota, of which algae are a constant
and essential component, can be of great assistance in this.

Microalgae are successfully used to increase soil fertility, that is, to replenish stocks of
organic matter (such as humic acids), which helps to increase crop yields. Green (C. vulgaris,
S. obliquus, S. acutus, S. quadricauda, and S. spinosa) and blue-green (Nostocaceae family)
microalgae are used for this purpose. The subject of the algologization of soils was first
raised when studying the stability of rice yields in India under monoculture without
fertilization. It turned out that the rice fields of India are inhabited by a large number of
blue-green algae, among which there are many nitrogen-fixing forms. Obviously, the use
of microalgae as a biofertilizer is economically profitable and safer for the environment in
comparison with chemical fertilizers [58].

3.4.9. Solving Environmental Challenges with Microalgae

Another aspect of the use of microalgae in human economic life has attracted much
attention recently—the ecological one. The activity of microscopic algae as utilizers of
carbon dioxide can be viewed as a challenge to the 21st century. In this regard, the scale of
their application will steadily expand as an alternative to solving not only technical, food,
and medical problems, but also complex energy and global environmental problems [206].

Microalgae play a particularly important role in biological water purification. Consid-
ering economic efficiency, the use of algae for wastewater treatment from food industry
enterprises, fish farms, livestock farms, poultry farms, and slaughterhouses is the most
promising. They, as phototrophic organisms, enrich the aquatic environment with oxygen,
thereby contributing to the acceleration of oxidative processes and the mineralization of
organic impurities in wastewater. Algae for wastewater treatment is successfully used in
the USA, Japan, and Germany. There is evidence that some blue-green algae can hydrolyze
the acylanilide herbicide propanil, converting it into 3,4-dichloroaniline, which is then
more rapidly destroyed by bacteria. Some cyanoprokaryotes decompose phenylcarbamate



Plants 2022, 11, 780 18 of 30

herbicides—propham and chloropropham—into aniline and chlorine derivatives. The
positive role of blue-green microalgae is determined by the total effect of several significant
factors: the improvement of oxygen regime due to photosynthetic aeration, the improve-
ment of conditions for the existence of aquatic microflora, the accumulation of pollutants,
and the release of biologically active metabolites. The cultivation of microalgae in wastewa-
ter, on the one hand, allows biological water purification, and on the other hand, it allows
cheap biomass rich in proteins, vitamins, etc., to be obtained [207]. There is evidence that
algo-bacterial cenoses contribute to the destruction of fuel oil, organic synthesis products,
and other xenobiotics that enter natural water bodies as a result of human activity. The use
of active strains of microorganism destructors, as well as the isolation and use of microalgae
resistant to polluted waters, enabled the development of a new complex biotechnology
for the purification and restoration of ecosystems contaminated with oil and oil products
in water bodies and soils. These technologies enable the bioremediation of water bodies
and soils that have been subjected to systematic accidental pollution with oil products and
other toxicants for many years.

The cost of operating biological ponds (if appropriate land and water resources are
available) per unit of treatment efficiency is 1% of the cost of the entire biological treat-
ment. The capital cost of processing in biological ponds is 10–50% of the cost of a typical
purification station.

3.4.10. Application of Microalgae in Bioenergy and Space Exploration

Algae is one of the richest sources for biofuel production. The oil yield from algae is
about 50%, which is significantly higher than that of rapeseed. The amount of vegetable
oils produced from algae is 11,400–95,000 L·ha–1, that is, massively more than from food
crops [208].

In terms of potential energy yield, microalgae exceed palm oil by 8–25 times and
rapeseed oil by 40–120 times, which allows them to be classified as typical representatives
of vegetable oil crops.

Laboratory cultures of algae can be used to solve many fundamental problems in
natural sciences. Microalgae are used as a convenient model object for elucidating the mech-
anisms of respiration and photosynthesis, the potential productivity of the photosynthetic
apparatus, issues of biological self-regulation of the biosynthesis of various compounds,
and to clarify the issues of the natural focus of some sapronous infections.

In relation to space exploration, microscopic algae, primarily chlorella, are viewed as a
link in closed ecological systems capable of providing biological air regeneration and food
reproduction [209]. This idea was expressed by K. Tsiolkovsky, who suggested that it is
possible to use microalgae as a metabolic counterweight to humans during a long space
flight or extraterrestrial settlements. Experiments have shown that in an ecosystem with
closed gas and water loops, chlorella can provide a person with oxygen, absorbing carbon
dioxide, and utilize the products of their vital functions for an almost unlimited time (the
experiments lasted up to a year), but at the same time, a person cannot completely absorb
the entire synthesized biomass of chlorella [210]. The advantages of using microalgae
include the absence in the experiment of noticeable changes in the physiological and
population state and side effects in the coexistence of humans and algae in closed systems,
as well as high productivity (for chlorella, 25–30 L of oxygen from 1 L of suspension per
day) and high the degree of reliability and stability of the algal link in providing adequate
nutrition for the crew.

3.5. Problems Arising in the Industrial Production of Algae Products

Algae used in the food industry usually have a fishy odor of varying intensity. The
volatile compounds that contribute to the smell of algae obtained by different processing
methods also differ. Hydrocarbons, aldehydes, alcohols, and esters were identified in
macroalgae S. thunbergii, G. lemaneiformis (Rhodophyta), and S. fusiforme. Hydrocarbons
accounted for more than 60% of the total amount of components in the species P. yezoensis
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and U. pinnatifida (Rhodophyta) [211]. The fishy odor of these volatile compounds seriously
affects consumer perception and limits the development of the edible algae industry;
therefore, deodorization technologies need to be developed. There are methods involving
the application of an acid-base salt or steam treatment. However, these methods cause
some damage to algal nutrients [212]. Thus, it is necessary to develop new methods of
deodorization that do not have a destructive effect on the nutrient components of algae.

Algal proteins are actively used in the food industry. Animal proteins are still the
most consumed and nutritionally balanced. However, their growing demand will not
be sustainable due to the low conversion efficiency and high environmental impacts of
their production. Algae are considered a valuable source of proteins, but their industrial
production raises several difficulties [213]:

− A high level of variability of algal proteins (protein content may vary depending on
the season, temperature, and place of collection);

− The scalability of protein extraction from algae (many of the developed extraction
methods are used on a small scale);

− Although algae can be a natural storage of vitamins and minerals, they can also store
toxic elements such as heavy metals.

Algae polysaccharides are also of commercial value. Various industrial applications
include their use as thickeners, stabilizers, emulsifiers, feedstuffs, beverages, foodstuffs,
pharmaceuticals, and others [97]. Macroalgae are used for the production of hydrocol-
loids (for example, alginate, agar-agar, and carrageenan) [214,215]. The macroalgae of
the genus G. verrucosa are one of the sources of agar production [98]. Marine algae are
rich in carrageenans, among which, the three most commercially used are κ-, i-, and λ-
carrageenans [216]. Due to their biocompatibility, exceptional physicochemical properties,
as well as their ability to emulsify, thicken, gel, and stabilize, they have found several
industrial applications, notably in the food industry [217].

4. Some Methods of Extraction of Micro- and Macroalgae Components

There is no single extraction protocol for isolating specific components from algal
material, as studies involve different extraction parameters. The same extraction methods
can be applied to macro- and microalgae depending on the extracted compounds, but with
different methods of preliminary preparation. For example, extraction with solvents such
as methanol, ethanol, water, and aqueous solutions of alcohols is most often used to obtain
phenolic compounds [218]. Agregan et al. [167] described the extraction of polyphenols
from brown algae A. nodosum, L. japonica, L. trabeculata, and L. nigrecens, which was carried
out using microwaves.

Extraction via maceration. Extraction via maceration is used quite often. This method
is simple and allows the temperature and pH of the extraction to be varied.

Different groups of substances can be extracted depending on the solvent used. Water-
soluble proteins and R-phycoerythrin were extracted from macroalgae M. stellatus [219]
with solutions such as tap water, pure water, 0.1 mol·L−1 phosphate buffer (pH 6.5),
20 mmol phosphate buffer (pH 7.1), and 50 mmol phosphate buffer (pH 6.45). The best
results were observed when extracting with 20 mmol buffer solution. Tannins, potentially
possessing hemostatic properties, were isolated from S. aquifolium and P. pavonica using
ethanol [220]. P. pavonica extract had a higher total tannin level than S. aquifolium extract.
Sequential extraction with methanol and petroleum ether from red algae E. cottonii allowed
steroid substances such as cholesterol, β-sitosterol, campesterol, and stigmasterol to be
isolated [221]. The obtained substances demonstrated antioxidant activity, as well as toxicity
towards the A. salina larvae.

Soxhlet extraction. The Soxhlet method allows the amount of solvent used to be
reduced compared to maceration while achieving the quantitative extraction of compo-
nents from raw materials [222]. As in the above method, different solvents are used
depending on the substances to be isolated. Bio-oils, which can be used for biodiesel
production, were isolated from the brown algae S. marginatum on a Soxhlet extractor us-
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ing n-hexane [222]. Venkatesan et al. demonstrated that the Soxhlet extraction method
is significantly more efficient than maceration extraction [222]. This method is applica-
ble to microalgae as well. For example, the Soxhlet method was used to extract fatty
acids from the microalgae N. salina [52]. N-hexane and chloroform were used as solvents.
The main fatty acid compounds in the obtained extracts were palmitoleic, oleic, palmitic,
cis-5,8,11,14,17-eicosapentaenoic, arachidonic, and γ-linolenic acids.

Ultrasound extraction. Extraction using ultrasound makes it possible to obtain a
higher yield of phenolic substances in a short time in comparison with extraction via
the maceration method. This is essential for the industrial production of natural antiox-
idants [223,224]. The study [225] used ultrasound extraction to obtain ethanol extracts
from microalgae S. obliquus, C. vulgaris (Chlorophyta), and S. platensis (Cyanobacteria). All
the extracts showed a high content of phenolic compounds, with the highest amount of
phenols found in the extract of S. platensis, followed by C. vulgaris and S. obliquus. The
results of this study were consistent with those of Ali and Doumandji [226], who reported
that microalgae could produce relatively complex polyphenols. C. vulgaris also showed
significant levels of flavonoids [227]. Alkaloids were found in all three algae. S. platensis
and C. vulgaris also contained saponins. The temperature and time of extraction have
a significant effect on the antioxidant activity of ultrasonic macroalgae extracts. Water–
ethanol (50%) extract of U. lactuca, obtained via ultrasound, contained essential phenolic
compounds such as quercetin [193]. The resulting extract had antioxidant activity. In this
case, the optimal extraction conditions were 1 h duration and a temperature of 25 ◦C. Ex-
tracts obtained from H. banksii with 70% ethanol in an ultrasonic bath contained significant
amounts of phenolic compounds with antioxidant activities towards ABTS (2,2’-azino-
bis(3-ethylbenzothiazoline-6-sulfonic acid) and DPPH (2,2-diphenyl-1-picrylhydrazyl) and
the ability to reduce iron ions [224]. The maximum amounts of phenolic compounds and
the values of antioxidant activity were observed for extracts obtained at 30 ◦C for 60 min
at an ultrasound power of 60% (150 W). Extraction methods using a Soxhlet apparatus,
ultrasound or maceration involve the use of solvents. In studies [228,229], extraction was
performed with hexane, ethyl acetate, and water. The analysis of the antioxidant activity of
microalgae extracts revealed that the hexane extract of Microchaete tenera and the aqueous
extracts of Chlorella vulgaris, Fischerella musicola, and Fischerella ambigua had the highest an-
tioxidant activity. In addition, DPPH-HPLC analysis showed the high antioxidant potential
of the aqueous fractions. However, from a food processing standpoint, ethanol and water
are more suitable because they have GRAS status (generally recognized as safe by the US
Food and Drug Administration) [229,230].

Supercritical fluid extraction. The supercritical extraction process has some advan-
tages: high-speed and low-temperature extraction and contactless oxygen extraction, which
allows thermolabile compounds to be obtained, and environmental friendliness [52,227].
Aliev and Abdulagatov [52] described the extraction of lipids from N. salina with pure CO2
and CO2 with the addition of acetone. The experimental results showed that the extraction
method had little effect on the total extract yield and the fatty acid content.

The same method was used to extract biologically active compounds (fatty acids,
pigments, phenolic compounds, and flavonoids) from the marine U. clathrata, C. glomerata
(Clorophyta), P. fucoides (Rhodophyta), and their multispecies mixture), and freshwater
C. glomerata. The content of polyphenols with antioxidant activity was approximately
2–4% [231].

Supercritical carbon dioxide is an attractive alternative to organic solvents in food
extraction because it is gaseous at room temperature and pressure, which simplifies com-
pound recovery and provides solvent-free extracts. In addition, this molecule is environ-
mentally friendly and generally recognized as safe (GRAS) by the US Food and Drug
Administration (FDA) and the European Food Safety Administration (EFSA) [232].

It was demonstrated that the yield of fatty acids was higher (Table 3) with supercritical
fluid extraction than with the Soxhlet one. At the same time, the macroalgae extraction
yields were much more significant than with the microalgae extraction yields.
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Table 3. Total fatty acid content (wt% in dry extract) with supercritical fluid and Soxhlet extractions.

Algae Genus
and Species

Soxhlet Extraction Supercritical Fluid
Extraction CO2 Sources

Solvent Yield (%) Solvent Yield (%)

C. glomerata
hexane 28.8 ± 0.63

CO2 36.4 ± 1.32 [231]acetone 34.0 ± 1.02
ethanol 21.2 ± 0.71

N. salina
hexane 3.70 CO2 4.04

[52]chloroform 3.92 CO2
+ acetone 4.12

5. Conclusions and Future Potential of Using Algae

The concept of functional nutrition is taking over the world and inspiring both science
and industry to find innovative ingredients with physiological effects. The biological
activity of food products can be increased by using algae, since their chemical components
increase the nutritional value of food [191].

However, there are still some serious problems with quantifying the above benefits
as well as possible side effects. Firstly, there is limited understanding of the nutritional
composition of different types of algae, the influence of geographic regions and seasons,
and methods of harvesting, storing, and processing, which can significantly affect the
nutritional value of food products. The second problem is a quantitative assessment of the
bioavailability or the proportion of functional components that actually work, depending
on the time they stay in the digestive system, and assessing what factors influence the
release of food components, from food preparation to genetic differentiation in the gut
microbiome. The third is understanding how the nutritional and functional components of
algae interact in human metabolism [45].

At present, to study the colloidal properties of algae polysaccharides, the follow-
ing properties were investigated: foam-forming, surface-active, gel-forming, thickening,
rheological, sorption, and compositional properties. To study the physical properties of
algal polysaccharides, the following were investigated: electrical and magnetic constants,
electrical resistivity, coercive force, residual induction, resistance, conductivity, capacitance,
inductance per unit volume of algae, etc.

The main disadvantages of the methods for studying, processing, and using algae are
the multistage and irrational use of raw materials, when some components, such as the
lipid fraction, polyphenols, or fiber, become production waste. Another disadvantage of
these methods is the use of toxic and expensive organic solvents for defatting biomass and
obtaining preparations of lipophilic substances. The processing of algae and the production
of biologically active substances using organic solvents (hexane, chloroform, etc.) can lead
to environmental pollution and have a toxic effect on humans.

There are no global studies regarding the determining role of algal polysaccharides,
which have the properties of enterosorbents, in the prevention of occupational and in-
dustrial health disorders. It is assumed that alginate-containing products from brown
algae in the form of biogels have a similar effect, in particular, specialized food biogels
from seaweed for preventive dietary and therapeutic nutrition. The analysis shows that
there is a need to expand the list of substances for diets of therapeutic and prophylactic
nutrition with the inclusion of alginate or alginate-containing products in it when working
in hazardous working conditions.

Studies on the interactions of algal secondary metabolites in cellular systems can
provide helpful information on molecular mechanisms of action and parameters such as
dose requirements, efficacy, and bioavailability. Further studies on the structure–activity
interactions would broaden research prospects and provide insight into the synthesis of
derivatives of natural products from algae, which can be promising components for the
production of pharmaceuticals [233–236].
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231. Messyasz, B.; Michalak, I.; Łęska, B.; Schroeder, G.; Górka, B.; Korzeniowska, K.; Lipok, J.; Wieczorek, P.; Rój, E.; Wilk, R.; et al.
Valuable natural products from marine and freshwater macroalgae obtained from supercritical fluid extracts. J. Appl. Phychol.
2018, 30, 591–603. [CrossRef]

232. Ahmad, T.; Masoodi, F.A.; Rather, S.A.; Wani, S.M.; Gull, A. Supercritical Fluid Extraction: A Review. J. Biol. Chem. Chron. 2019, 5,
114–122. [CrossRef]

233. Enzing, C.; Ploeg, M.; Barbosa, M.; Sijtsma, L. Microalgae-based products for the food and feed sector: An outlook for Europe.
JRC Sci. Policy Rep. 2014, 75, 19–37. [CrossRef]

234. Fernando, I.P.S.; Ryu, B.; Ahn, G.; Yeo, I.K.; Jeon, Y.J. Therapeutic potential of algal natural products against metabolic syndrome:
A review of recent developments. Trends Food Sci. Technol. 2020, 97, 286–299. [CrossRef]

235. Udayan, A.; Arumugam, M.; Pandey, A. Nutraceuticals from algae and cyanobacteria. In Algal Green Chemistry; Elsevier:
Amsterdam, The Netherlands, 2017; pp. 65–89.

236. Ito, M.; Koba, K.; Hikihara, R.; Ishimaru, M.; Shibata, T.; Hatate, H.; Tanaka, R. Analysis of functional components and radical
scavenging activity of 21 algae species collected from the Japanese coast. Food Chem. 2018, 255, 147–156. [CrossRef] [PubMed]

http://doi.org/10.1007/s11101-018-9548-2
http://doi.org/10.3390/biom9060244
http://doi.org/10.1007/s10811-016-1024-z
http://doi.org/10.15562/jdmfs.v3i1.621
http://doi.org/10.1063/1.5115629
http://doi.org/10.1016/j.dib.2017.08.031
http://doi.org/10.1007/s13399-021-01516-8
http://doi.org/10.1007/s10811-017-1162-y
http://doi.org/10.21608/ejabf.2019.57884
http://doi.org/10.3390/molecules24224132
http://doi.org/10.1007/s10811-009-9424-y
http://doi.org/10.1016/j.foodres.2015.04.018
http://doi.org/10.1007/s10811-017-1257-5
http://doi.org/10.33980/jbcc.2019.v05i01.019
http://doi.org/10.2791/3339
http://doi.org/10.1016/j.tifs.2020.01.020
http://doi.org/10.1016/j.foodchem.2018.02.070
http://www.ncbi.nlm.nih.gov/pubmed/29571460

	Introduction—Characteristics of Algae 
	Microalgae 
	Microalgae Nutritional Composition 
	The Potential Health Benefits of Microalgae 
	Biologically Active Components of Microalgae 
	Antimicrobial and Antiviral Activity of Microalgae 


	Macroalgae 
	Nutritional Value of Macroalgae 
	Some Bioactive Components of Algae 
	Antimicrobial and Antiviral Activities 
	Macroalgae as Bioactive Ingredients for Functional Food 
	Algae in the Food Industry 
	Algae-Containing Food: Example of Meat Products and Their Quality 
	Drawbacks of Marine Hydrocolloids Originated from Seaweeds in Food Application 
	Algae as a Source of Protein and Amino Acids 
	Use of Algae Pigments 
	Application of Algae in Medicine 
	Application of Microalgae in the Chemical Industry 
	Application of Microalgae in Agriculture 
	Solving Environmental Challenges with Microalgae 
	Application of Microalgae in Bioenergy and Space Exploration 

	Problems Arising in the Industrial Production of Algae Products 

	Some Methods of Extraction of Micro- and Macroalgae Components 
	Conclusions and Future Potential of Using Algae 
	References

