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Abstract: Modeling plant growth, in particular with functional-structural plant models, can provide
tools to study impacts of changing environments in silico. Simulation studies can be used as pilot
studies for reducing the on-field experimental effort when predictive capabilities are given. Robust
model calibration leads to less fragile predictions, while introducing uncertainties in predictions
allows accounting for natural variability, resulting in stochastic plant growth models. In this study,
stochastic model components that can be implemented into the functional-structural plant model
Virtual Riesling are developed relying on Bayesian model calibration with the goal to enhance the
model towards a fully stochastic model. In this first step, model development targeting phenology, in
particular budburst variability, phytomer development rate and internode growth are presented in
detail. Multi-objective optimization is applied to estimate a single set of cardinal temperatures, which
is used in phenology and growth modeling based on a development days approach. Measurements
from two seasons of grapevines grown in a vineyard with free-air carbon dioxide enrichment (FACE)
are used; thus, model building and selection are coupled with an investigation as to whether including
effects of elevated CO2 conditions to be expected in 2050 would improve the models. The results
show how natural variability complicates the detection of possible treatment effects, but demonstrate
that Bayesian calibration in combination with mixed models can realistically recover natural shoot
growth variability in predictions. We expect these and further stochastic model extensions to result in
more realistic virtual plant simulations to study effects, which are used to conduct in silico studies of
canopy microclimate and its effects on grape health and quality.

Keywords: Vitis vinifera; functional-structural plant models; Bayesian statistics; model selection;
VineyardFACE

1. Introduction

Robust model parametrization is crucial for reasonable predictions, but especially
challenging in the field of plant growth modeling, where non-linearities requiring numerous
parameters are in conflict with sparse data availability [1,2]. To address this dilemma
one can control for and preserve sources of variability in model building, build up on
previous knowledge and transport uncertainties into the predictions. Using Bayesian
hierarchical models, the aforementioned aspects can be approached in exchange for higher
computational demands compared to traditional frequentist approaches [2,3]. In this
context, Little [4] suggests frequentist models for model development and checking and
Bayesian models for inference. Bayesian hierarchical models were found to be underutilized
in the field of ecology a few years back [5], but recently gained more popularity [6]. The
benefits of Bayesian hierarchical models include capturing realistic confidence intervals
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allowing for valuable predictions resembling natural variability [7,8]. While, for instance,
crop growth modelers frequently utilize Bayesian models [9,10], they are still rare in
specialty crops research, e.g., in grapevine research. Recently, Ellis et al. [11] developed a
model to predict grape yield with a double-sigmoid growth model, and Schmidt et al. [12]
incorporated Bayesian predictive uncertainties in a functional-structural plant (FSP) model
called Virtual Riesling, but mainly limited to modeling the phenological aspect of budburst
depending on growing-degree-days (GDD). Since the prediction of phenology and in
particular budburst is a prerequisite for modeling plant growth to determine the starting
point of vegetative growth, there are several studies that focus exclusively on improving
phenological models.

1.1. Modeling Phenology

An advancement of key phenological stages due to rising temperatures has already
been observed in viticulture, especially in cool-moderate climates [13,14]. As this trend
is expected to continue, phenological modeling is regularly applied in studying effects of
climate change [15–18]. In viticultural research there are already several models available
predicting various phenological stages, especially budburst and flowering, using recent
and historical as well as local and global data for model calibration (e.g., [19–23]). Model
accuracies usually allow predictions of major stages within ±7 days [24–27], while later
stages characterizing berry maturity have shown to be less predictable only using temper-
ature data as input [27]. These phenological models are based on growing-degree-days
approaches or equivalents, thus relying on temperature response functions that attribute a
development contribution to each day depending on daily or hourly summary measures of
local air temperatures. Calibration then includes the estimation of threshold temperatures
and the necessary sum of thermal development contribution, i.e., GDD, to reach a specific
stage or to transfer from one stage to another [25,28]. Research on phenological models
includes considerations of various shapes of the response function and on the resolution of
input data [24,25,29,30], where sub-daily temperatures and non-linear responses that have
also been proven beneficial in crop modeling [31] become more prominent in grapevine
phenology modeling, too. [28,30,32,33]. Thus, usually more parameters need to be esti-
mated which is sometimes counteracted by limiting the search space by fixing parameters
to reasonable values [19,28,32]. To consider different grapevine varieties either an entire
calibration for each variety is used [28] or universally applicable temperature thresholds
are combined with variety-specific accumulated development contributions [24]. Further
details concerning different modeling approaches are given in Appendix A.1.

1.2. Plant Growth Modeling

Phenological development is closely linked to general plant growth as the phenologi-
cal stages represent appearances and dimensions of plant organs. For instance, grapevine
growth stages of the so called modified E-L-system [34,35] include stages such as stage 12:
“5 leaves separated; shoots about 10 cm long; inflorescence clear” [34]. Hence, it is reason-
able to assume that plant growth and organ development, at least to some extent, can also
be modeled with a growing-degree-days approach. Therefore, several empirical growth
models incorporating GDD have been developed in the past for numerous plants. While
sometimes criticized for their simplicity, empirical models have proven to provide valu-
able insights [36]. Crop models can be used to predict different growth stages and yield
(e.g., [37–40]), while other plant models also aim to model the architectural development,
i.e., the dimensions of plant organs or phytomer development [41–43], especially in the case
of functional-structural plant (FSP) models (e.g., [44]). Focusing on the parametrization of
FSP models, it is of particular interest to simulate an accurate representation of the plant’s
three-dimensional architecture over time, if micro-climatic conditions within the canopy
are of interest. This can be, for example, local light interactions or derived measures, such
as leaf or fruit surface temperatures [45–50]. For grapevine, it was found that leaf area and
shoot growth can be related to growing degree days [12,42].
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Implementing some variability of the plants architecture in FSP models is common
practice to counteract artifactual effects that could lead to biased predictions [47,51,52].
Therefore, several approaches have been applied: Parameters known to be non-constant
can be randomly sampled from a uniform distribution, e.g., the initial plant orientation
of a greenhouse grown cucumber [53]. If there is more information on the distribution
of the parameter value, such as its standard deviation estimated by a statistical model
or a probability density function based on measurement data, sampling from any given
distribution could be applied [12,54]. Depending on the depth of architectural information,
a bounding box can be filled with randomly distributed leaves to reconstruct a canopy,
with or without neglecting branching structures [45,55], or the dynamic architectural
development of a single shoot can be simulated [12]. Both budburst and shoot growth can
be strongly heterogeneous within individual grapevines, especially when cane-pruned,
due to the influence of acrotony [56]. Bayesian models offer the chance to reproduce such
heterogeneous distributions.

1.3. Bayesian Model Calibration

Estimating parameter distributions directly from measurements not only requires
a specific measurement of this parameter, e.g., measuring leaf inclination angles, but
also requires these measurements to be independent samples. To control for deviations
from independence, such as repeated measures, statistical models, in particular mixed
models, are applicable [57–61]. However, if model parameters need to be estimated that
cannot be measured directly, e.g., growth rates, a suitable model function must first be
determined, e.g., a logistic growth model, that allows the estimation of such auxiliary
model parameters. When estimating these parameters with classical frequentist models,
including least squares or maximum likelihood approaches, usually best fit parameters and
their empirical confidence intervals are returned. If a Bayesian modeling approach is used
instead, entire sets of plausible parameter estimates are returned, where each parameter
can be summarized by a posterior probability distribution [62,63]. At first glance, this
does not seem to be too different from the output of a frequentist model that also includes
parameter uncertainties. However, in a Bayesian framework the sets of parameters included
in the non-summarized output, allow multiple independent predictions. Simple frequentist
model predictions use the point estimates of the parameters that can only be accompanied
by an empirical confidence interval. This advantage of multiple plausible model parameter
combinations can be transported in plant growth models in such a way that for each
new simulation of an organ or plant, we can sample from the pool of possible parameter
combinations to resemble natural variability in repeated simulations. In this way, estimated
parameter uncertainty can be transported into model output uncertainties. The strength
of Bayesian calibration providing sets of parameters is especially beneficial in multiple
parameter models, where dependencies between variables are retained in the sampling.
Single parameter estimates that allow sampling from normal distributions based on mean
estimates and frequentist confidence intervals or Bayesian credible intervals should be very
similar when flat priors and a Gaussian likelihood is used in the Bayesian model. Here we
can see another possible advantage of using a Bayesian framework for model calibration. If
there is prior information available, we can incorporate this knowledge and update our
prior belief on parameter probability distribution with new data [64,65]. This can lead to
narrower uncertainties in the output conditional of our data. In summary, by estimating
uncertainties within the model parameters and not only in the output, we can repeatedly
sample from random trajectories and, hence, conduct stochastic simulations [66].

If clusters or repeated measures are included in the data sampling process, so called
mixed or hierarchical models are necessary [59–61,63]. Especially in complex models, Bayesian
models can outperform classical maximum likelihood estimations by their direct treatment
of such conditional structures [57]. Using Bayesian mixed models to calibrate plant growth
models is a way of respecting the fact that input information will never be “sufficiently
accurate and comprehensive to allow exact inference of parameter values” [2]. Still today,
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plant (growth) models incorporating Bayesian models in the calibration, and in particular
mixed models, are rare. Yet, a recent increase in popularity might be related to and further
promoted by recent developments in user-friendly access to Bayesian model building via
open-source R or Python packages such as rstan [67], rstanarm [68], brms [69,70] or python
PyMC3 [71], bambi [72], an increase in computational resources [65] as well as an increase in
introductory textbooks [73–75].

In Jansen and Hagenaars [64] general potentials of of Bayesian model calibration
are theoretically discussed, especially the concept of consecutively updating the model
when new data are available. Oijen et al. [2] introduced Bayesian model calibration for
process-based forest models to address issues of reliability in complex model calibration
with the benefit of quantifying output uncertainties. Bayesian calibration approaches
have also been successfully applied in other fields, especially to benefit from enriched
information on parameter uncertainties, the ability to transport these uncertainties in
predictions or the incorporation of prior information [76–83] (see also Appendix A.2).
While Bayesian methods have in general been proven beneficial for model calibration, they
were still underrepresented as shown in a recent study on comparing calibration practices
of different crop modeling groups [84], with a similar frequency of use as found in an
earlier survey [85].

In the field of viticulture research, Ellis et al. [11] developed a Bayesian model for
grapevine yield prediction that was subjected to different prior assumptions. They conclude
that Bayesian models might be especially interesting for viticultural models, as predictive
capabilities might benefit from the ability of incorporating prior knowledge on vineyard
specifics that could be provided by local experts. Recently, Parker et al. [86] conduced a
Bayesian study on inflorescence and flower counts as well as on flowering progression,
where, for example, high variability in flowering progression was found not only between
seasons but also between inflorescences within a season.

In this study, we aim to show the first steps of an advanced robust Bayesian model
calibration, paving the way for a fully stochastic version of the functional-structural plant
model Virtual Riesling by Schmidt et al. [12]. In the process, empirical model complexity
is reduced where justified [87]. To let the reader participate in the development process,
decisions made are discussed in more detail than usual. We incorporate novel data from an
additional vegetation period and exemplary demonstrate how main parts of the original
model, especially budburst prediction and internode development and growth at primary
shoots, can be improved and extended by Bayesian model calibration. Novel data now
also include observations from plants grown under elevated CO2 (eCO2) conditions for
two seasons, hence allowing further model extensions to estimate possible effects of eCO2
on budburst and internode growth. We demonstrate how the flexible Bayesian modeling
structure, provided by the brms-package, allows us to estimate the complex hierarchical
data structure even with hard-to-estimate non-linear empirical models, leading to more con-
sistent results across different growing seasons, while covering the high natural variability.

2. Materials and Methods
2.1. Experimental Site

The study was conducted on Vitis vinifera L. cv. Riesling vines (clone 198-30 Gm
grafted on rootstock SO4 clone 47 Gm) grown in the VineyardFACE system in Geisenheim,
Germany. In brief, the free air CO2 enrichment (FACE) system consists of six rings with
ambient (aCO2) or elevated CO2 (eCO2) concentrations (20% enrichment, at the time of
the experiments roughly 480 ppm) to the grapevines in threefold replicates [88]. Data was
gathered in two years (2018, 2019) and includes phenological ratings of randomly selected
shoots from almost all Riesling vines of the facility and data on primary shoot growth
(number of nodes and internode length) from manual 3D digitization of six selected vines
(one vine per ring) using a electromagnetic field digtizer (Fastrak®, Polhemus, Colchester,
VT, USA). Three digitizations per vine were conducted each year before shoot trimming.
Hourly air temperature data was provided by a weather station located at the Vineyard-
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FACE site. More details on the FACE facility and the digitization procedure can be found
in Wohlfahrt et al. [88] and Schmidt et al. [12], respectively.

2.2. Cumulative Development Days Model

In order to account for non-linear responses of growth and development to ambient
temperatures, we decided to use the non-linear method introduced by Wang and Engel
(Equation (6) [29]) and recently applied for grapevine by Zhu et al. (Equations (3)–(4) [28]).
Non-linearity in temperature response is achieved by calculating the hourly development
day contribution (hDD) based on a beta-distribution-like function depending on the av-
erage hourly air temperature Th (°C) and three additional parameters. The latter are the
three cardinal temperatures, the base (minimum) temperature (Tbase, °C), the optimal tem-
perature (Topt, °C) and the upper limit temperature (Tupper, °C) for growth. The adopted
temperature response function for estimating hourly development day contribution was
defined as follows:

hDD =


0 Th < Tbase

2(Th − Tbase)
α(Topt − Tbase

)α − (Th − Tbase)
2α(

Topt − Tbase
)2α

Tbase ≤ Th ≤ Tupper

0 Tupper < Th ,

(1)

with
α = ln(2)/ ln

[(
Tupper − Tbase)/(Topt − Tbase

)]
, (2)

restricting hDD to the values between 0–1. The daily development day contribution DD is
then estimated as the average hDD for a day (24 h):

DD(doy) =

(
24

∑
i=1

hDDdoy,i

)
/24 . (3)

Similar to a growing degree days accumulation, cumulative development days (CDD)
are the sum of the development days DD between a starting day (doy0) and the current
day of the year (doy):

CDD(doy) =
doy

∑
n=doy0

DD(n) (4)

The maximum hourly contribution of hDD = 1 is reached if Th = Topt, while no
contribution is accounted for hours with Th < Tbase or Th > Tupper. Consequently, we
expect single day values of DD to be�1, as only 24 h of Th = Topt would yield DD = 1.

In contrast to Zhu et al. [28], we do not need to interpolate hourly data from daily sum-
mary measures, as we use hourly average air temperatures from the on-site weather station.

2.3. Grapevine Phenology Assessment

Estimation of the three cardinal temperatures for the development days method
should include the phenological development. Therefore, grapevine phenology of up to
60 randomly selected shoots (Figure 1, Table A1) in each VineyardFACE ring was assessed
by viticultural experts on four and five dates during the 2018 and 2019 growing season,
respectively, using the modified E-L-system (ELSt) [35]. The ratings cover stages 1 (“winter
bud”) to 18 (“14 leaves separated; flower caps still in place, but cap colour fading from
green”) including two major stages “budburst” (stage 4) and “shoots 10 cm, inflorescence
clear, 5 leaves separated” (stage 12) [35].
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Figure 1. Phenological ratings converted to a linearized modified E-L-system (Table 1) based on
single shoots for two different years and the two treatments (ambient end elevated CO2 conditions).
Budburst is highlighted, as it marks the starting date for the plant growth model. The bubble size
indicates the respective number of observations (n). The numbers to the right of a bubble stream
indicate the median stage at that time.

2.4. Grapevine Phenology Linearization

The modified E-L-system does include several stages clearly characterized by the
number of leaves separated starting from stage 7 (“first leaf separated from shoot tip“)
until stage 18 (“14 leaves separated“). Assuming the early stage organ development
rate is constant when relating to CDD we linearized the modified E-L stages to set up a
linear model of CDD depending on E-L stage, i.e., a model to estimate the accumulated
CDD to reach a specific phenological stage. Our linearization assumes a difference of
one stage between each leaf separation starting from stage 7 (Table 1). Fixing ELSt = 4
(budburst) to ELStlinear = 4 we assume ELSt = 7 (first leaf separated) to be approximated
with ELStlinear = 6.5, hence not to far off from the original stage number and based on the
modeling experiences from Schmidt et al. [12], where budburst was predicted using early
E-L stages without linearization. Stages before budburst were drawn closer together and
ELSt = 5 remained ELStlinear = 5. The full linearization scheme for ELSt 1-18 to linearized
scale ELStlinear is given in Table 1. This linearization based on organ development should
not only allow us to use a linear model relating CDD to ELStlinear, it is also useful to
synchronize organ development rate estimates using phenological and morphological
measures in the estimation of cardinal temperatures.

Table 1. Linearization of phenological stages of grapevine between E-L stage 1 and stage 18 (ELSt),
fixing stage 4 (budburst) and linearization of stages (ELStlinear) depending on number of seperated
leaves (nleaves).

nleaves 1 (2-)3 4 5 6 7 8 10 12 14

ELSt 1 2 3 4 5 7 9 11 12 13 14 15 16 17 18
ELStlinear 2.00 3.75 3.875 4.00 5.00 6.50 8.50 9.50 10.50 11.50 12.50 13.50 15.50 17.50 19.50
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2.5. Estimation of Cardinal Temperatures by Multi-Objective Optimization

Our first goal is to obtain robust estimates of the cardinal temperatures Tbase, Topt and
Tupper that allow us the prediction of necessary CDD for budburst and its variability for a
given year, as this is to be used as a starting point for organ development in the plant growth
model. In addition, these estimates should also serve as the base for all other temperature
dependent growth processes. This is partly in contrast to Zhu et al. [28], where budburst
was separated from the general phenology module. We assume that considered phenology
stages and temperature dependent growth processes can be predicted with an equal
response to temperature, which is in agreement with the results of a meta-analysis of Parent
and Tardieu [89]. However, this implies that in particular our budburst predictions will not
use information on chilling units resembling an endo-dormancy phase, although this has
been considered in other phenological models for grapevine [25,28]. For a robust estimation
of the cardinal temperatures all observed linearized stages (Table 1) are considered equally
in the calibration. We assume that CDD accumulation starts on 1 January (doy0 = 1) and
necessary CDD to reach a specific stage is constant across years, hence, dependent on air
temperature, but it might also be affected by the treatment, i.e., eCO2 or aCO2.

A linear mixed model was built to predict CDD depending on ELStlinear, treatment
(trt ∈ {eCO2, aCO2}) and year (2018, 2019; categorical variable) plus the interaction of
trt× ELStlinear. In the mixed model part we control for repeated samplings in rings over
the years and on single plants within a year (rankings of multiple shoots from the same
vine) using group-level effects on the intercept. In addition, we allowed the slope to
vary between plants. This results in the following model formulation according to the
lme4/brms-package syntax [70,90]:

CDD ∼ trt× ELStlinear + year + (1|ring) + (1|year:ring) + (1|plant) +
(0 + ELStlinear|plant) .

(5)

For hold-out validation, the data was split into a training and a test data set before
model fitting using a ratio of approx. 80%/20% while blocking by year, treatment and
plant, i.e., all data from the same plant within a year is assigned either to the training or the
test data (ntrain = 2085, ntest = 599).

To incorporate also digitization data in the cardinal temperature estimation, we use
the information on the development of the highest rank from each primary shoot, i.e., the
rank of the apex (Rapex). Similar to Schmidt et al. [12], we use the apex rank to estimate
an internode appearance rate (IAR, ranks/CDD) by relating Rapex to CDD. We assume
a linear dependency between apex rank (Rapex) and CDD during the time frame of our
observation (maximum observed Rapex = 23). For the cardinal temperature estimation a
linear mixed model (Equation (6)) was set up, where we were mainly interested in the slope
parameter of the model representing the IAR. The model includes fixed effects for CDD,
year and treatment, plus the interaction of CDD× trt, while considering group-level effects
of the ring, the plant, i.e., shoots from the same plant in a year, and the shoot, i.e., repeated
measures from a single shoot, plus a varying slope for each shoot.

Rapex ∼ CDD× trt + year + (1|ring) + (1|plant) + (1|shoot) + (0 + CDD|shoot) . (6)

Furthermore, here, data was split into a training and a test data set (approx. 80%/20%
split) with blocking by treatment, year and shoot (ntrain = 200, ntest = 56).

By including two different data sets into the cardinal temperature estimation, we aim
for more robust estimates, allowing the prediction of budburst and its variability and the
organ (internode) development. Based on our assumptions, both models are linked by their
slope parameters representing organ development rates. The inverse of the slopes for each
treatment of Equation (6), i.e., the IAR in ranks/CDD should be equal to the slopes from
Equation (5), which describes the leaf appearance rate (LAR) as CDD/leaf per treatment.

In order to estimate parameters that allow predicting corresponding CDD for growth
stages and treatments independent of the year but with similar organ development rates
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in both models, we set up a multi-objective optimization [91]. Its objectives were to
simultaneously minimize the

- treatment-averaged normalized absolute difference between the organ development
rates (∆ODR)

- absolute effect of year in both models (Eyear,phen,Eyear,apex)

while constraining the normalized root-mean squared errors for both models for both the
test and the training data (NRMSEtrain,phen,NRMSEtest,phen, NRMSEtrain,apex,NRMSEtest,apex)
with

∆ODR =

(
| 1

IARaCO2
− LARaCO2|

( 1
IARaCO2

+ LARaCO2)/2
+
| 1

IAReCO2
− LAReCO2|

( 1
IAReCO2

+ LAReCO2)/2

)
/2 , (7)

and

NRMSEphen =

√
n
∑

i=1

(
CDD− ĈDD

)2

CDD
, (8)

and

NRMSEapex =

√
n
∑

i=1

(
Rapex − R̂apex

)2

Rapex
, (9)

where the ̂ indicates the predicted values.
The parameter estimation was conducted using a step-wise grid search ap-

proach [92]. The initial grid search used step sizes of 1 °C for all parameters and
was set up with Tbase ∈ {−60,−59,−58, . . . , 15 °C}, Topt ∈ {10, 11, 12, . . . , 35 °C} and
Tupper ∈ {15, 16, 17, . . . , 55 °C}. To account for overlaps in temperature intervals we only
allowed Tbase ≤ Topt − 2 °C and Topt ≤ Tupper − 2 °C within a parameter set of Tbase, Topt
and Tupper leading to a total of 37,778 combinations.

In the second and final iteration a refined grid search with 6858 additional combi-
nations around the estimated minimum was conducted using the following parameter
ranges and step sizes: Tbase ∈ {10.1, 10.2, 10.3, . . . , 11.9}, Topt ∈ {18.1, 18.2, 18.3, . . . 19.9},
Tupper ∈ {24.1, 24.2, 24.3, . . . , 25.9}. We refrained from lowering the step size any further or
applying full range classical global optimization algorithm, as the expected measurement
accuracy of future input data—average hourly measurements of air temperature from local
weather stations—would not justify any further refinement.

Following each iteration the optimum was selected from a set of Pareto optimal
solutions [91] estimated on a subset that only included potential optima by using thresholds
on the output parameters given the following conditions:

∆ODR < 0.05 and

Eyear,phen < 0.05 and

Eyear,apex < 0.05 and

NRMSEtrain,phen < 0.20 and

NRMSEtrain,apex < 0.20 and

|NRMSEtrain,phen −NRMSEtest,phen| < 0.05 and

|NRMSEtrain,apex −NRMSEtest,apex| < 0.05

For the final optimization step the three main parameters ∆ODR, Eyear,phen and
Eyear,apex addressing our assumptions on similar organ development rates across data
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sets and no effect of the year were scaled to the range of 0–1 using min-max normaliza-
tion following:

value01 =
value−min
max−min

. (10)

The previously applied thresholds assured adequate predictive accuracy for combina-
tions within the subset; hence, we did not need to include NRMSE-values here.

The set of Pareto optimal solutions was created using a a weighted sum approach
following

f (w1, w2, w3) = w1 · ∆ODR + w2 · Eyear,phen,01 + w3 · Eyear,apex,01 , (11)

with w1,w2 and w3 ∈ {0, 0.05, 0.10, . . . , 1} and w1 +w2 +w3 = 1. Each of these 219 combina-
tions of weighting factors provides an optimum solution from within the subset associated
with a cardinal temperature triplet of Tbase, Topt, Tupper. The overall best cardinal tem-
perature combination was selected as the one most frequently associated with a Pareto
optimum solution.

2.6. Modeling Budburst Variability

Following the parameter optimization, which was based on a linear mixed model with
maximum likelihood estimation, the budburst model was fit in a Bayesian framework. This
Bayesian calibration not only allowed predicting a mean CDD for the linearized E-L-system
growth stage 4 (budburst), using posterior predictions, information on CDD variability
could also be estimated. The initial Bayesian calibration was followed by a step-wise model
reduction to evaluate whether the factor year can be fully excluded as assumed and whether
there is a treatment effect on phenological development. Our decisions were based on
information criteria, hold-out validation performance and, in the case of Bayesian models,
the probability of direction [93–95]. Bayesian models were compared by the LOOIC (leave-
one-out cross-validation (LOO) information criterion) derived from the ELPD (expected
log predictive density) based on Pareto smoothed importance sampling [94]. We also
provide general performance measures that underline our decision on the final model, i.e.,
the selected model after model reduction, such as RMSE and (Bayesian) R2 (R-squared).
In addition, we computed the probability of direction (pd) for fixed model parameters,
which indicates whether a parameter was estimated to be strictly positive or negative, with
values between 50% (no direction) and 100% (one direction). Being strongly correlated
with p-values from frequentist approaches, pd-values of at least 97.5% are necessary to
approximately correspond to a two-sided p-value of 0.05. In addition, we also refitted
frequentist versions of the models for comparison using AICc, a second-order Akaike
Information Criterion [96]. In the first step, the trt× ELStlinear-interaction was excluded,
before the year effect could be removed entirely matching the initial assumption that there
is no effect of year on necessary CDD to reach budburst. Finally, we evaluated the effect of
removing the trt effect.

Posterior predictive checks of the final model indicated that the assumed Gaussian
likelihood might not be the best fit to the data due to its inflexibility in capturing possible
skewness. Hence, we refitted the final Bayesian model as a generalized linear mixed model
using an exponentially modified Gaussian distribution likelihood (exGaussian) [97]. By
calculating the DD and the resulting CDD for each day of the year (doy) model posterior
predictions of budburst CDD and its variability can be mapped back to visualize the
predicted time frame for budburst within a year.

2.7. Modeling Internode Development

To simulate the growth of plant organs, e.g., in a functional-structural plant model, the
development of phytomers and the growth of a plant organ must be represented in model
functions. As already introduced above and similar to Schmidt et al. [12], we estimate the
internode appearance rate (IAR, ranks/CDD) by using information from digitized shoots
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and relate them to CDD. Besides integrating novel data from a second season and from
plants grown under elevated CO2, a further advancement related to Schmidt et al. [12] is
that we now use the same non-linear CDD function with cardinal temperatures estimated
considering phenological development data and digizitazion data. In the cardinal temper-
ature estimation we used a frequentist linear mixed model, to keep computational times
low for the repetitive model fitting procedure outlined above. To derive parameters for
stochastical modeling we transferred the model to a Bayesian framework. Hence, first
a similar Bayesian linear mixed model with a Gaussian likelihood was set up to predict
the apex rank depending on cumulative development days (Equation (6)). Then again,
model reduction was performed, starting from the full model (Equation (6)). Moreover,
here model selection could rely on training and test data set performances. The reduced
final model was refitted using the full data set to extract the posterior distribution to define
a sampling distribution for the internode appearance rate (IAR).

2.8. Internode Length Model

Schmidt et al. [12] found that primary shoot internode growth depending on tem-
perature can be modeled with a non-linear asymptotic growth model when considering
the rank of the internode and its ‘age’ (CDDage). The internode age is defined as the CDD
accumulated after the respective internode appearance. Similar to Schmidt et al. [12],
we determine CDDage by relying on the estimates for IAR and the rank of the apex at
the respective digitization date (Rapex). For each internode I the current age in CDD is
estimated following:

CDDage,I = (Rapex − RI + 1)/IAR . (12)

For the internode length model we rely on the average IAR, although we already esti-
mated some uncertainty by estimating the posterior distribution of IAR with the previous
model. However, this uncertainty is confounded with the uncertainty we have in our data
by being limited to the apex rank present at the digitization date for estimating CDDage.
Hence, we included a general age-correction term in our modeling approach to address at
least parts of both issues at once. Details on its implementation will be discussed later in
this section (Equation (19)).

In general, model building and selection considered the additional factors year and
treatment, as well as accounting for the sampling structure with group-level effects. The
age-correction term considers group-level effects for each measurement date of a shoot
(shoot × date; cf. Listing A1). In Schmidt et al. (Equation (3) [12]) the non-linear part was
modeled with an asymptotic regression model through the origin with two parameters,
here denoted A and lrc (Equation (13)).

IL = A · (1− exp(− exp(lrc) ·CDDage)) . (13)

Following Schmidt et al. [12], we assume similar growth behavior between ranks,
i.e., same lrc for each rank (R), but allowing variable asymptotic values, i.e., maximum
internode length for each rank. Instead of fitting a separate downstream model to cap-
ture the nature between individual per-rank estimates of the asymptote parameter as in
Schmidt et al. [12], the non-linear part of the model was extended to include an implicit
modeling of the asymptote dependencies on the rank. This was realized by incorporating
the two-step approach from Schmidt et al. [12] into a single model formula. Similar to
Schmidt et al. [12], the relation between asymptote and ranks ≤ 7 is generally modeled
with a linear function (Equation (14)), although recent observations indicated a possible
non-linear behavior for internodes up to rank 7.

GAsym = m1 · (R− 1) + i1 . (14)

This non-linearity might have been approximated with a three-parameter Gompertz
function (y = a · exp(−b · cx)); however, in expectation of high variability within the data,



Plants 2022, 11, 801 11 of 56

the high flexibility of such exponential functions is a hindrance to Bayesian model fitting
when aiming for robust estimates. Nevertheless, to partially include the observations
on deviations from linearity for ranks ≤ 7, our novel implementation includes parame-
ters allowing to shift the rank input for the ranks 2 and 7. In contrast to Schmidt et al.
(Equation (4) [12]), we replaced R by (R− 1) (Equation (14)) to later control for a positive
restricted intercept equaling the asymptotic internode length at rank 1. For the ranks 2
and 7 we allow for an offset to be estimated by the model ((Equations (15) and (16)) that
could correct for slight deviations from linearity at these ranks, to mimic a Gompertz-like
behavior. Therefore, we introduce variables R2 and R7 as

R2(R) =

{
1 if R = 2
0 if R 6= 2 ,

(15)

and

R7(R) =

{
1 if R = 7
0 if R 6= 7 ,

(16)

and modify Equation (14) as follows:

GAsym = m1 · ((R− 1) + R2 · sR2 + R7 · sR7) + i1 . (17)

For internodes above rank 7 a repetitive linear dependency that is expected to be
related to observations of three morphological distinct phytomers [98,99] is realized as a
step function and modeled following the form of Schmidt et al. (Equation (4) [12]):

LAsym = Rx3(R) ·m2 + i2 with Rx3(R) = (R + 1) mod 3 (18)

Thus, the complete model to predict internode length, IL (cm), depending on the rank
(R) and the age of the internode (CDDage) was implemented as follows:

IL(R, CDDage) =A(R) ·
(
1− exp

(
− exp(lrc) ·

(
CDDage + sage

)))
with (19)

A(R) =R01(R) · GAsym + (1− R01(R)) · LAsym and (20)

R01(R) =

{
1 if R ≤ 7
0 if R > 7 ,

(21)

where we also included the above mentioned shift of the calculated CDDage (sage) to account
for uncertainties related to the fact that the appearance of the apex rank must not coincide
with the digitization date and the uncertainty in the IAR-estimate (see Section 2.7). As the
latter one affects the CDDage of ranks differently we also model a group-level slope for
each shoot × date combination (cf. Listing A1).

For held-out evaluation, the data set consisting of 2658 observations was split into a
training (≈80%, nI = 2124, nshoot = 64) and a test dataset (≈20%, nI = 534, nshoot = 16). To
get balanced sample sets we used blocking by year, treatment and intervals of maximum
rank (apex rank) of a shoot. Assignment to a sample set was then based on shoot affiliation,
i.e., all internodes from the same shoot were assigned to the same data set. A summary
of the training and test data sets split into year and average internode length is given in
Table A2. Within the training data set 571 aCO2 and 565 eCO2 observations from 2018 and
432 and 556 observations from 2019 were present, respectively. Test data included 154 aCO2
and 130 eCO2 internode measurements from 2018 and 136 and 114 from 2019, respectively.

Preliminary model fitting was conducted using a non-linear mixed effects model
(‘nlme’-function, R-package nlme, v.3.1-152) [100]. This frequentist implementation uses the
concept of restricted maximum likelihood (REML), but allows for Gaussian likelihood only.
Preliminary model selection was limited to this approach due to the faster convergence
(minutes vs. hours) compared to full Bayesian model implementations. Model selection
included the consideration of heteroscedasticity depending on the fitted values and per
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rank, as we expect higher variability for higher measures. While higher ranks are also
associated with longer internodes [12], they might be subjected to additional variability
due to measurement errors that might increase with distance to the cane. In the final model
for predicting internode length we want to assure only positively restricted outcomes.
Therefore, we used a Gamma-likelihood with a log-link in the Bayesian model implementa-
tion, taking advantage of the high flexibility offered by the brms-package. An upstream
analysis had shown that we can obtain meaningful parameters on the non-transformed
scale, if the right-hand side is log-transformed, while avoiding model initialization prob-
lems associated with the use of an ‘identity’ link function. Following prior predictive
checks [101] and incorporating expert knowledge gained from 2018 data [12], moderately
informative priors (Table A6) were set to achieve convergence for the complex non-linear
model [102]. Furthermore, the full model included controlling for heteroscedasticity by
group-level effects for rank, ring, plant, shoot and year on the shape parameter of the
Gamma distribution likelihood making use of the so-called distributional model capabilities
(https://cran.r-project.org/web/packages/brms/vignettes/brms_distreg.html, accessed
on 7 February 2022). The Gamma-likelihood with log-link implicitly models variance
increasing with the mean.

2.9. Model Implementation and Diagnostics

Model implementation and related data analysis were conducted within R (v.4.1.2) [103].
Linear and generalized linear mixed models with restricted maximum likelihood were
implemented using the lme4-package (v.1.1-27.1) [90]. For the non-linear mixed models
with heteroscedasticity the ‘nlme’-function from the R-package nlme (v.3.1-152) [100] was
used. To realize the Bayesian model calibration equivalents and advanced models im-
plementations, especially generalized linear and non-liner mixed modeling (e.g., Gamma
likelihood) and heteroscedasticity consideration by distributional modeling, the capa-
bilities of the brms-package (v.2.16.1) [69,70] were utilized. Following prior predictive
checks [101] and previous experience [12] weakly to moderately informative priors were
applied Tables A4–A6. If there were any warnings on divergent transitions, visual Markow-
Chain-Monte-Carlo (MCMC) diganostics were used to rule out that the Hamiltonian Monte
Carlo algorithm had real problems fitting a model [101]. Bayesian models were run with
4 (or 6) Markov chains with 4000 samples per chain of which the first 2000 iterations are
discarded as burn-in, hence, providing a total of 8000 (or 12,000) samples from the posterior,
where more samples (six chains) were only used for the complex internode length models.
Bayesian model diagnostics did not indicate any errors, i.e., R̂ (Rhat) values were all below
1.01 [104], and effective sample size ratios were well above 0.1 [105]. Posterior predictions
for performance measures were usually conducted leaving out the group-level effects, as
this allows for the direct comparison of training and test data prediction by RMSE. For
performance measures used in model comparisons helper functions from the brms-package
(e.g., Bayesian R2 [106]) or bayestestR (v.0.11.0) [107] (e.g., probability of direction [93])
were used. The data.table-package (v.1.14.0) [108] was used for data wrangling tasks and
visualizations were created with the ggplot2-package (v.3.3.5) [109].

2.10. Model Validation
2.10.1. Phenology Prediction

For external validation of the final model that predicts necessary CDD for observed
E-L stages point estimate data on budburst from Riesling grown at three selected locations
covering seasons from 2003 to 2021 was used. As Riesling is a grapevine variety especially
suited for cool climates the three locations Neustadt an der Weinstraße, Germany, Zeltingen-
Rachtig, Germany, and Remich, Luxembourg, are characterized by a cool climate, too. We
compared the observed budburst day of the year with the average predicted day of the year.
In addition, we present the 50% and 95% highest density intervals from the Bayesian model
predictions. Predictive error was estimated in days by calculating RMSE, mean absolute
error (MAE) and bias between the observation and the average prediction. The average

https://cran.r-project.org/web/packages/brms/vignettes/brms_distreg.html
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predicted budburst day was estimated from 4000 predictions based on draws from the
posterior distribution not considering group-level effects for each scenario. Each posterior
prediction provides a CDD threshold for budburst (ELStlinear = 4) that is mapped to the
corresponding day of the year.

Furthermore, we compare the novel model predictions with average predictions
from the budburst variability model from Schmidt et al. [12], where in a first step the
budburst date prediction model for Riesling from Nendel [21] is applied (Equation (2) [12]).
The predicted date is then combined with the estimated variability in GDD based on
VineyardFACE aCO2 data from the year 2018 to also predict 4000 budburst dates. Hence,
the two model steps rely on two different GDD estimations (see (Equations (1) and (2) [12])).

For Neustadt and Zeltingen-Rachtig the data sources also included the stage ’be-
ginning of flowering’, defined in the modified E-L system as ’about 16 leaves separated;
beginning of flowering (first flower caps loosening)’ [35]. Being partly associated with
the number of seperated leaves we assigned ELStlinear = 21.5 to this phenological stage to
allow projections of this adjacent stage (Table 1).

In addition, local budburst data from Geisenheim, Germany, between 1990 and 2009
from Stoll et al. [14] are compared to model predictions to evaluate if an observed advance-
ment of budburst date is captured by model predictions.

Data sources for phenology observation are given in Table 2. Local average hourly air
temperature was available from Dienstleistungszentren Ländlicher Raum Rheinland-Pfalz,
Agrarmeteorologie Rheinland-Pfalz (https://www.am.rlp.de/, accessed on 7 February
2022) using weather stations Neustadt (1/NW), Zeltlingen (112/ZET), Remich (AGM 009,
Luxemburg) and from the German Meteorological Service (Deutscher Wetterdienst, DWD)
for a local weather station at Geisenheim (station ID 1580).

Table 2. Public data sources used in the validation of the phenology model.

Location Season Stage Source

Neustadt an der Weinstraße,
Germany 2003–2021 ‘Austrieb’ (budburst), ’Blühbeginn’

(beginning of flowering)

https:
//www.dlr-rheinpfalz.rlp.de/Internet/global/
themen.nsf/2eca2af4a2290c7fc1256e8b005161c9/8
096dedb652c43cbc12571b00048fe49?OpenDocument
(27 August 2021)

Zeltingen-Rachtig, Germany 2013–2016 budburst (BBCH 09 [110]),
beginning of flowering

Molitor et al. [111], Suppl. Mat:
https://ojs.openagrar.de/index.php/VITIS/article/
view/8462/8625 (accessed on 7 February 2022)

Remich, Luxembourg 1993–2015 budburst (BBCH 09 [110]) Molitor and Keller (Table 2 [112])
Geisenheim, Germany 1990–2009 budburst Stoll et al. (Figure 1 [14])

2.10.2. Predicting the Apex Rank

For external validation of the estimated appearance rate we rely on a data set on
Riesling vines collected in 1986 and 1987 at Geisenheim, Germany, where the plastochron
index, i.e., the number of leaves on a shoot, was estimated during the growing season
(Figure 8 (‘S-System’) [42]). As each node in a grapevine is associated with a leaf, this index
is to some extent similar to the apex rank that was used for estimating the primary shoot
internode appearance [113]. Predictions were estimated in a two-step process: First we
predicted 4000 expected budburst dates, using the same procedure as described above
(Section 2.10.1), here using hourly air temperature data from a local weather station at
Geisenheim provided by the German Meteorological Service (Deutscher Wetterdienst,
DWD; station ID 1580). Second, starting from each budburst day we accumulated the CDD
and multiplied it by the estimated slope of internode development IAR. To include some
measure of additional uncertainty into the visualization, we also multiplied by IAR± σIAR,
hence, considering the estimated standard deviation. Measurement data (averages) were
extracted from the original figure using Webplotdigitizer [114], and, if extractable, the
provided error interval representing ±2× SE. Observational data was limited to the time
frame before hedging. RMSE and bias between the predictions and the measurements were

https://www.am.rlp.de/
https://www.dlr-rheinpfalz.rlp.de/Internet/global/themen.nsf/2eca2af4a2290c7fc1256e8b005161c9/8096dedb652c43cbc12571b00048fe49?OpenDocument
https://www.dlr-rheinpfalz.rlp.de/Internet/global/themen.nsf/2eca2af4a2290c7fc1256e8b005161c9/8096dedb652c43cbc12571b00048fe49?OpenDocument
https://www.dlr-rheinpfalz.rlp.de/Internet/global/themen.nsf/2eca2af4a2290c7fc1256e8b005161c9/8096dedb652c43cbc12571b00048fe49?OpenDocument
https://www.dlr-rheinpfalz.rlp.de/Internet/global/themen.nsf/2eca2af4a2290c7fc1256e8b005161c9/8096dedb652c43cbc12571b00048fe49?OpenDocument
https://ojs.openagrar.de/index.php/VITIS/article/view/8462/8625
https://ojs.openagrar.de/index.php/VITIS/article/view/8462/8625
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calculated for each of the 4000 budburst dates and then summarized as an average RMSE
for the model; hence, the predicted frequencies of each budburst date are considered in
this overall RMSE. These predictions and measures are compared to similarly conducted
predictions using the respective model components (budburst prediction, appearance rate)
from Schmidt et al. [12].

2.10.3. Shoot Length Predictions

External data on shoot length, or even more detailed on internode length, accompanied
by high resolution local air temperature data is rare, so we refer to published data from
a study of Pagay et al. [115], in which Riesling growth was monitored focusing on water
stress effects. In addition, we can rely on local data from preliminary results on shoot length
development over time from the Geisenheim VineyardFACE gathered in 2020.

Pagay et al. [115] selected shoots from two different shoot length classes (short, long)
and found no effect on growth pattern between rainfed and stressed conditions. The
experiment took place at New York State Agricultural Experiment Station, Geneva, NY,
USA. In contrast to the Geisenheim VineyardFACE Riesling, which uses Vitis vinifera L. cv.
Riesling (clone 198-30 Gm) grafted on rootstock SO4 (clone 47 Gm), Pagay et al. [115] used
Vitis vinifera L. cv. Riesling (Cl. 239) grafted onto 101-14 rootstock. In addition, there are
some differences in vineyard setup, for example 8–10 shoots per 90 cm at Geisenheim [12]
versus approx. 15 shoots per linear meter of canopy in the study of Pagay et al. [115]. The
corresponding high resolution thermal data was provided by personal communication.
We compared their data to model predictions for the year 2012. Model predictions were
limited to the time frame from average budburst date to accumulated CDD after budburst
of ≤30 similar to the time frame of model calibration.

The prediction workflow used for apex rank predictions (cf. Section 2.10.2) was
extended by predictions of shoot length, i.e., the sum of internode length of a shoot at
a given time. For each predicted budburst date with a frequency of at least 1% (i.e.,
40/4000 samples) 80 random shoots and their internodes were simulated with parameter
sets drawn from the posterior distribution of lrc, m1, i1, m2, i2, sR2, sR7. group-level effects
are sampled for lrc, m1, i1, m2, i2. The age correction is fixed to sage = 0, as it was intended
as a correction factor for the measurements, only. In addition, we simulate budburst
and shoot growth using the respective model formulas from Schmidt et al. [12]. Here,
only a single shoot per budburst date is simulated from their frequentist internode length
model. As the observational data from Pagay et al. [115] does represent selected shoots of
different length classes, we only conducted a qualitative comparison between the models
and the observation.

For comparison with the local data, similar predictions were computed using Geisen-
heim local air temperatures from 2020-season.

Finally, we also predicted shoot length for 2018 and 2019 to compare with the cali-
bration data, which was supplemented by measurements from 2019 of unpruned shoots
(‘nearby random shoots’) from identical planting material grown outside of the FACE
rings [116].

2.11. Flowchart of the Model Development and Validation Progress

The flowchart (Figure 2) summarizes the previously described general process and
the interplay between the developed models in the model predictions. The first block
represents the cardinal temperature optimization (see Section 2.5) which is based on the
two models for phenology and for apex rank. The resulting temperature triplet (Tbase, Topt,
Tupper) is the start point for the model reduction process for both the phenology and the
appearance model. The phenology model is later applied to predict budburst dates in
all validation scenarios, while the appearance model output is necessary to extend the
internode length dataset with an estimate of internode age in CDD. Finally, the internode
length model is also subjected to model reduction and selection. External validation on
the number of phytomeres relies on both the phenology and the appearance model. Shoot
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length simulations are possible by combining predictions from all of the three developed
models. As a general input for model building and simulation local hourly air temperature
is required.

Appearance Model

Apex Rank ~ CDD

Phenology Model

CDD ~ ELStlinear

Cardinal temperature optimization

CDD = f(Th, Tbase, Topt, Tupper)



Linearized 

E-L Stages

Training / Test



Apex Rank




Training / Test

Model reduction / selection

Phenology Model

CDD ~ ELStlinear

Appearance Model

Apex Rank ~ CDD

Tbase      Topt     Tupper

Internode appearance rate

(IAR)






Internode 
length


Training / Test

External validation

Phenology

- Budburst date

- Beginning of Flowering date (extrapolated)

Phytomeres

- Plastochron index

Shoot length

- Average

- Spread (short/long)

Model reduction / selection

Internode Length 

Model


ILrank ~ CDDage

Internode length
and age


IL / CDDage


Local hourly 

air temperature


Th

Figure 2. Flowchart on the primary model development and validation steps. Abbreviations:
CDD: Cumulative development days; ELStlinear: Linearized phenological Eichorn-Lorenz (E-L)
stages [110]; Th: Hourly air temperature; Tbase, Topt, Tupper: Cardinal temperature thresholds of
non-linear response function (Equation (1)); ILrank: Internode length at a specific rank; CDDage: Age
of internode in CDD).

3. Results and Discussion
3.1. Estimated Cardinal Temperatures for Riesling Development

We found optimal parameters to predict growth stages to be Tbase = 10.8 °C,
Topt = 19 °C and Tupper = 24.7 °C. The optimal solution is associated with
∆ODR = 4.9× 10−3, Eyear,phen = 3.2× 10−2 and Eyear,apex = 3.9× 10−5. The in-
and out-of-sample predictive capabilities are NRMSEtrain,phen ≈ 0.1518 (R2 = 0.8837),
NRMSEtest,phen ≈ 0.1470, NRMSEtrain,apex ≈ 0.1872 (R2 = 0.8797), NRMSEtest,apex ≈ 0.2159.
These cardinal temperatures are accepted as the optimum solution that minimizes the
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difference between ĈDD and R̂apex between years with similar organ development rates in
both models, while providing an overall good fit to the data.

Results of the first grid search lead to a Pareto optimization considering 306 different
cardinal temperature triplets of which Tbase = 11 °C, Topt = 19 °C and Tupper = 25 °C was
most frequently associated with a Pareto optimum (nopt,iter1,max = 67). The refinement
around the optimum from iteration one leads to a subset of 4337 cardinal temperature
triplets and, hence, 4031 additional combinations that were subjected to the final Pareto
optimization run. Min-max normalization of ∆ODR, Eyear,phen and Eyear,apex, within the
data subset for the final Pareto optimization was realized with min(∆ODR) ≈ 3.09× 10−3

and max(∆ODR) ≈ 0.05; min(Eyear,phen) ≈ 6.29× 10−6 and max(Eyear,phen) ≈ 0.05; and
min(Eyear,apex) ≈ 1.07× 10−5 and max(Eyear,apex) ≈ 0.05, where the upper limits of approx.
0.05 are a result of the fixed threshold used to extract the data subset.

As expected the refinement did reduce the dominance of a single temperature set as
observed in the first iteration (nopt,iter2,max = 49); however, not one of the previously also
high rated alternatives was present in the top 10 from iteration two (Table 3).

Table 3. Results of Pareto optimization following the first and second grid search iteration on how
often a cardinal temperature triplet was associated with a Pareto optimal solution (nopt) from a total
of 219 Pareto optimal solutions. Data on iteration 1 includes all 219 optima, while iteration 2 is limited
to solutions with nopt ≥ 4.

Iteration 1 Iteration 2
Tbase Topt Tupper nopt Tbase Topt Tupper nopt

11 19 25 67 10.8 19.0 24.7 49
9 19 21 37 11.8 18.7 24.1 30

12 16 35 28 10.9 19.1 25.3 19
15 17 22 24 11.8 18.8 24.1 15
11 19 24 23 10.6 19.3 25.3 14
−8 21 24 15 11.5 18.7 24.2 13
−38 22 25 9 10.6 19.8 25.4 8

12 15 50 4 11.3 19.1 24.4 6
−11 20 22 4 10.5 19.5 25.0 5

15 17 21 2 11.9 18.7 24.3 5
8 20 24 2 11.9 18.7 24.2 5

11 19 23 2 11.6 18.9 24.2 4
9 19 22 1
4 21 25 1

The refinement around the first iteration’s optimum could further improve the results,
but they were generally quite close together (Figure 3). The association with more Pareto
optimal solutions of the optimum from iteration 2 compared to the one from iteration 1
might be vastly attributed to the improvement in Eyear,phen from 3.0× 10−3 to 3.9× 10−5.
The other two objectives, ∆ODR and Eyear,apex, were less effected. The results from the first,
coarse grid search (Figure A2) show that all response variables were sensitive to each of the
cardinal temperatures. For example, if Tbase is fixed at 11 °C while Topt and Tupper deviate
from their optimal values (Figure A2, first line) this has less influence on the NRMSE values,
but a significant influence on ∆ODR, Eyear,phen and Eyear,apex. Here, the interim optimum
lies at the intersection of curve-linear regions with low (good) response values of all three
variables. Fixing Topt = 19 °C or Tupper = 25 °C (Figure A2, 2nd/3rd row) shows that
NRMSEtrain,phen and NRMSEtrain,apex react controversial on changes of these two cardinal
temperatures. For example, when decreasing both Topt and Tbase NRMSEtrain,phen decreases,
but NRMSEtrain,apex increases. With fixed Topt = 19 °C especially ∆ODR and Eyear,apex are
more effected by deviations of Tbase from its optimum than by changes of Tupper. However,
fixing Tupper to 25 °C ∆ODR and Eyear,apex stronger react on deviations of Topt rather than
of Tbase.
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Figure 3. Responses of the five objectives ( ∆ODR, Eyear,phen, Eyear,apex, NRMSEtrain,phen,
NRMSEtrain,apex ) from the refined grid search (step size 0.1 °C) around the optimum from the first
iteration (Tbase = 11 °C, Topt = 19 °C and Tupper = 25 °C) keeping one cardinal temperature fixed to
the estimated overall optimum (×©).

Overall there is a high degree of interaction between all three cardinal temperatures.
This can be explained by the high flexibility of the underlying temperature response func-
tion (Equation (1)). With the estimated cardinal temperatures the shape of the temperature
response function is almost symmetric around Topt (Figure A3), as the differences between
Topt and Tbase and Topt and Tupper are almost identical. Reducing the gap between the
optimum and the upper temperature limit more strongly affects the response function than
reducing the gap between optimum and base temperature (Figure A3).

The grid search results support the limits we set for the parameter space as none
of the optimal temperatures fell on the edge of the search space (Figure A2). However,
Zhu et al. [28] found different cardinal temperatures when calibrating different varieties
for the duration of two phenological stages later in the season with Tbase in the range of
0.2–3.9 °C, Topt between 22.2 °C and 29 °C and Tupper between 35.7 °C and 48.8 °C. Compar-
ing their hDD-response function shapes to the one estimated in this study (Figure 4), shows
that in our case no growth and development is accounted for average hourly temperatures
below 10.8 °C and above 24.7 °C, while the varieties under study in Zhu et al. [28] would
strongly respond to higher or lower temperatures. In particular Chardonnay, with its also
almost symmetric response function resulting from Tbase = 0.239 618 °C, Topt = 27.149 °C
and Tupper = 48.75 °C, seems to be quite insensitive to moderate temperatures. In contrast
to this study, Zhu et al. [28] set stronger boundaries on the search space for model cali-
bration (personal communication) with Tbase ∈ [0, 5], Topt ∈ [20, 35] and Tupper ∈ [35, 50].
These boundaries do not include our derived optimum cardinal temperature triplet of
Tbase = 10.8 °C, Topt = 19 °C and Tupper = 24.7 °C.
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Figure 4. Comparison of shapes of the hourly development days response function (Equation (1)) for
different calibrations (this study: (Tbase = 10.8 °C, Topt = 19 °C, Tupper = 24.7 °C)) versus calibrations
for five difference varieties from Zhu et al. [28] .

The calibration of Cortázar-Atauri et al. [33] to predict phenology stages for seven
different grapevine varieties was even more limited by only estimating Topt with fixed
Tbase = 0 °C and Tupper = 40 °C. Hence, with Topt in the range of 25.6 °C to 28.5 °C their
results are more similar to to the calibration from Zhu et al. [28] than to our estimates.
A direct comparison with other methods also estimating temperature triplets might be
problematic, due to different response functions. Nevertheless, Molitor et al. [117] found
a temperature triplet of 7 °C, 18 °C and 24 °C, more close to our estimates. They applied
the model from Molitor et al. [19] which uses linear response functions between the
threshold temperatures on Riesling data from three different locations using daily mean
temperatures as input data. Here the highest temperature represents a heat threshold
above which the response value starts to decrease. The upper limit associated with a
zero-response can be estimated to 35 °C using a function depending on the temperature
triplet [19]. The calibration procedure from Molitor et al. [19] is also very restrictive on
possible temperatures by limiting the lower threshold to integers from 3 to 7 °C, upper
thresholds between 15 to 21 °C and heat thresholds from 21 to 25 °C. If we focus only on
our estimated base temperature of Tbase = 11.8 °C, it lies in close proximity to the long-term
base temperature of 10 °C used in the grapevine modeling [42,118–120]. We did not observe
local average hourly air temperatures above 31 °C or below −9 °C (Figure A1) within the
considered time frame in each year starting from 1 January. However, this should not have
prohibited estimating cardinal temperatures outside this range, as the shape of the response
function is highly flexible (Figures 4 and A3). Our new approach is an advancement to the
models used by Schmidt et al. [12] as now a non-linear response function depending on
the sub-daily temperature course relying on hourly time steps is introduced. The use of
hourly temperatures is generally recommended to reduce approximation errors compared
to daily measurements, while only negligible accuracy improvements are obtained when
further reducing the time step [121]. While the CDD model depends on three cardinal
temperatures that have a clear biological meaning in other studies, the calibration was
still carried out according to purely statistical concepts, so the estimated temperatures
should not be misused for other purposes. Hence, it follows, for example, that the upper
threshold temperature estimate of 24.7 °C must be seen in the context of the measured data.
We rely on hourly temperature measurements to model observations with an observation
frequency of days or weeks. Thus, if the statistically optimal solution can be achieved with
higher weighting of lower temperatures, consequently, more extreme temperatures are
associated with less or no influence. In regions where Riesling is grown, even during the
course of a very warm day with peak temperatures well above Tupper, there will be enough
hours with temperatures below Tupper that the model will be able to account for growth on
that day. This aspect also applies to phenological models discussed above and shows that
comparability of such estimated temperature thresholds is limited. However, this does not
contradict the fact that models developed are valid empirical models.
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With combining phenological ratings and digitization data in the calibration we aimed
at more robust estimates of cardinal temperatures. Furthermore, the same CDD estimation
is now used for the growth and development models, i.e., used in the following to predict
phenological stages, in particular budburst, and shoot growth, thus reducing the overall
parameter count of a FSP model.

3.2. Phenology Prediction
3.2.1. Model Reduction

Parameter estimation using grid search optimization required a vast amount of model
fits; hence, it was conducted using a non-Bayesian model to be computational feasible.
With optimal parameter set, the model was transferred to an equivalent Bayesian model
that was then subjected to a step-wise model reduction to predict the CDD for observed
growth stages, especially budburst (linearized E-L-system stage no. 4). Based on estimated
performance measures, especially LOOIC, it was found that predictive capabilities did not
suffer from removing all fixed effects except ELStlinear (Table 4).

Only the intercept and the ELStlinear were associated with a pd of 100%, which further
justifies the conducted model reduction. It is not surprising that we could not estimate
any year-effect, as this has been one initial assumption in the estimation of the cardinal
temperatures. Nevertheless, the transported information were consistent across the step-
wise process, and hence we can also conclude that no substantial effect of ambient and
elevated CO2 conditions on necessary cumulative development days could be estimated for
the considered growth stages. This stands in contrast to the results from Lüscher et al. [122]
showing an effect of extreme CO2 enrichment (700 ppm) on duration of a phenological
phase. An enrichment to only approximately 480 ppm (aCO2 + 20%) [88] might not be
enough to induce the same effects. In addition, we also refitted frequentist versions of the
final and the full model that were compared using AICc, a second-order Akaike Information
Criterion [96]. Comparing the refitted frequentist versions, both using the full data set,
the final model had a lower AICc indicating a better performance than the full model
with values of 12,139.95 and 12,150.75, respectively. In both cases, removing the random
slope did worsen AICc values; hence, this was not considered in the Bayesian model
selection process.

The final reduced Bayesian model refitted as a generalized linear mixed model by using
an exGaussian likelihood substantially improved the model fit based on a considerably
lower LOOIC-estimate (Table 4). This might be related to the phenological ratings usually
including some shoots further developed than the average shoot, hence, matching the
characteristic positive skew of the exGaussian distribution. Unfortunately, this distribution
was not available in the frequentist mixed modeling framework and could therefore not
already be used in the upstream cardinal temperature estimation procedure.

Lastly, the final Bayesian exGaussian model was updated using the full data set to
incorporate all available information (Table 4) with similar parameter values and perfor-
mance measures (RMSE, R2). Here, the estimated LOOIC can not be compared to the
models fitted using the test data only. Using the exGaussian-likelihood did reduce the left
tail from posterior predictions, which is especially relevant for predicting necessary CDD
for budburst, where it is generally assumed that a certain threshold of heating units needs
to be exceeded to initiate budburst. This aspect might have been of even more relevance,
e.g., when the starting date for CDD summation would have been chosen to be later in
the year reducing the possible total accumulated CDD [25]. Hence, we expect the selected
exGauassian-model to be the more robust approach when aiming to predict budburst and
its variability. Plotting the predictions against the data (Figure 5) we can see the effect of
the exGaussian-model on the the prediction interval that is slightly wider above the model
mean than below.
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Table 4. Model result from step-wise model reduction: Starting from a full model (including year effect and interaction between treatment (trt) and linearized
E-L stage (ELStlinear; Equation (5))) to a reduced, final model only considering the stage, plus the downstream final exGaussian model. Performance measures
(leave-one-out cross-validation information criterion and standard error (LOOIC (SE)), Bayesian RMSE and R2) and parameter estimates and their probability of
direction (pd) are provide for each step.

Model LOOIC [SE] RMSE [95% HDI] RMSE (test) [95% HDI] R2 [95% HDI] Parameter Estimate [Q2.5, Q97.5] pd (%)

full 9234.46 [95.41] 3.188 [3.0925, 3.2912] 3.0593 [2.8977, 3.2232] 0.8893 [0.8856, 0.8929] ELStlinear 1.2892 [1.259, 1.3203] 100.00
full Intercept 2.5436 [1.9893, 3.082] 100.00
full trteCO2 −0.0481 [−0.708, 0.6182] 56.43
full trteCO2:ELStlinear −4 × 10−4 [−0.0402, 0.0406] 50.50
full year2019 −0.0237 [−0.4223, 0.3781] 54.86
no interaction 9233.05 [95.37] 3.1866 [3.0892, 3.2842] 3.0593 [2.9053, 3.2345] 0.8893 [0.8857, 0.8931] ELStlinear 1.289 [1.2682, 1.3099] 100.00
no interaction Intercept 2.5352 [2.0315, 3.0276] 100.00
no interaction trteCO2 −0.0479 [−0.6024, 0.5175] 58.26
no interaction year2019 −0.0178 [−0.4036, 0.3833] 54.05
no year 9232.04 [95.39] 3.1856 [3.0897, 3.2842] 3.0576 [2.8999, 3.2182] 0.8893 [0.886, 0.8933] ELStlinear 1.2891 [1.2685, 1.3101] 100.00
no year Intercept 2.5262 [2.0715, 2.983] 100.00
no year trteCO2 −0.0518 [−0.5796, 0.4729] 59.39
final 9232.64 [95.39] 3.1817 [3.0891, 3.2836] 3.0553 [2.8938, 3.2123] 0.8893 [0.8857, 0.8928] ELStlinear 1.2893 [1.269, 1.3092] 100.00
final Intercept 2.5006 [2.1734, 2.8311] 100.00

final (exGaussian) 8775.62 [79.81] 3.2624 [3.1183, 3.3996] 3.1466 [2.9118, 3.3836] 0.8789 [0.875, 0.8829] ELStlinear 1.2539 [1.2345, 1.2736] 100.00
final (exGaussian) Intercept 2.8502 [2.5594, 3.1455] 100.00

final (exG., full data) 11288.56 [90.97] 3.1998 [3.0805, 3.3182] — 0.8887 [0.8853, 0.8919] ELStlinear 1.2577 [1.241, 1.2741] 100.00
final (exG., full data) Intercept 2.7789 [2.4794, 3.0868] 100.00
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Figure 5. Posterior predictions of the final model fit (no year and treatment effect) using the full
data set (final, exGaussian, full data, see Table 4) compared to phenological ratings split by year and
treatment over thermal time. Bubbles (◦) show the frequencies (n) of observed phenological stages in
the linearlized E-L-system.

However, the model still relies on our a priori assumptions when linearizing the
modified E-L-system stages before flowering to model a linear relation between CDD and
ELStlinear. However, this was necessary to use all ranking data instead of only fitting a
model to predict one specific stage (e.g., [28]). With an overall good model performance
(see Table 4 and Figure 5) we conclude that our assumptions were reasonable.

A dynamic functional-structural plant model requires an accurate estimation of bud-
burst date. The Bayesian model calibration allows predicting several possible predictions
of CDD (ĈDD) using posterior predictions. Aligning the ĈDD with observed CDD of
a season, each ĈDD can be associated with a day of the year. The median predicted

ĈDD for budburst was estimated to ĈDD ≈ 7.8 (Figure 6) with slight variation due to
simulation uncertainties.

It was independent of year and treatment, as inclusion of these effects did not provide
any improvements in the model predictive performance and is associated with doy 111
and doy 108 for the calibration years 2018 and 2019, respectively. According to https://
rebschutz.hs-geisenheim.de/rebentwicklung/rebphaenologie.php (accessed on 7 February
2022) which relies on the model of Molitor et al. [19], budburst around Geisenheim was
projected to doy 109 (19th of April) for both 2018 and 2019.

By using a Bayesian approach we can now estimate a budburst doy for single shoots,
hence, incorporating natural observed budburst variability into the plant growth model. In
Figure 6 we show the relative frequency and the 95% highest density interval (HDI) based
on 8000 posterior predictions of the CDD for ELStlinear = 4 per variant. Highest density
intervals in 2018 and 2019 cover a range of approx. 20 days and 40 days, respectively, but
include gaps that can be related to cold periods where no additional CDD accumulate, and
hence these dates are not associated with budburst events when matching the predicted
CDD threshold to the first date of accumulation. Since, in contrast to the quantiles, the

https://rebschutz.hs-geisenheim.de/rebentwicklung/rebphaenologie.php
https://rebschutz.hs-geisenheim.de/rebentwicklung/rebphaenologie.php
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highest density interval captures the most probable observations, these gaps become visible.
The high variability of predicted budburst days coincides well with the stretch in the
observations of budburst.
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Figure 6. Posterior predictions of budburst date by matching predicted ĈDD to day of the year
(doy). Model data is presented as the median plus the 95 % highest density interval (—H—) and as
frequencies of predicted budburst for each doy (%) with nsim = 8000 per sub-plot (vertical orange
lines). While the model does not differentiate between years and treatment, predictions can differ
because of random sampling from the posterior distribution. The data (◦) includes all phenological
ratings in the linearlized E-L-system, not only budburst, where the bubble size indicates the respective
count (nobservations).

3.2.2. External Validation of Budburst Data Predictions

Validating the predictive capabilities of the final Bayesian model with external data
sets, we found root-mean-squared errors between 3.2 to 4.3 days depending on the location
(Figure 7).
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Figure 7. Posterior predictions of budburst date by matching predicted ĈDD to day of the year
(doy). Model data is presented as the mean and the ranges between 50% and 95% highest density
intervals (HDI) (—H—). Observations (•) include data on Riesling vines monitored in Neustadt an
der Weinstraße, Germany, in Zeltingen-Rachtig, Germany, and Remich, Luxembourg. Gaps in range
bars are a result of the highest density interval estimation and related to the temperature course
within a year.

On all occasions, the observed date fell within the estimated range of budburst (95%
HDI), often even within the 50% HDI. Only the data set from Neustadt included the years
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2018 and 2019 that were used for parametrization, suggesting that the Bayesian model
calibration only using phenology ratings from one site and two subsequent seasons already
yields robust predictions for Riesling grown at cool-moderate climate regions in different
years. Estimated bias might not only be related to model calibration specifics but could
also be a consequence of e.g., vineyard microclimate, which might differ from the local
weather station data [21,123]. In addition and similar to other studies [19], observed bias
might also be related to different clone-rootstock combinations or subjective interpretation
of the phenological growth stages.

The model from Schmidt et al. [12] had an overall similar performance for Neustadt,
Zeltlingen-Rachtig and Remich with RMSE of 4.1, 4.0, 3.2 days and bias of 0.5, −3.1, −2.0
days, respectively. However, the variability in the approach from Schmidt et al. [12]
lead to some outliers where budburst would be predicted to days before the 1 January of
the respective year due to the random sampling from a normal distribution around the
estimated budburst date. This problem was not found for the novel model which is based
on an exGaussian distribution. Nevertheless, expecting warming winter temperatures in
the future, budburst variability in Europe might further stretch towards the beginning of
the year. For example, in southern Italy a budburst event has already been observed on
11 January 2020 [124]. While the novel model is based on both ambient and elevated data,
we could not yet reliably distinguish between aCO2- and eCO2-grown plants. However, it
is not excluded that future data might allow a differentiation that could further improve
predictions for historic (aCO2) and/or future (eCO2) conditions.

Stoll et al. [14] noted an advancement of phenological stages in the Rheingau wine
region (Germany) as an effect of climate change. Our model successfully recovers the
advancement of budburst observed between 1990 and 2010 in the model predictions
(Figure 8). Again, predictions transport high variability of budburst dates within a year,
but a similar trend is detected. The low RMSE (3.7 days) and the low bias (1.1 days) confirm
the previously determined good accuracy of the model predictions. This suggests the
developed model is capable to be used for climate impact studies relying on budburst
predictions. The model from Schmidt et al. [12] yielded similar RMSE (3.4 days) and bias
(0.3 days) for this data set, but with the same outlier problem as stated above.
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Figure 8. Observed advancement of budburst captured by posterior predictions of budburst date
by matching predicted ĈDD to day of the year (doy). Model data is presented as the mean and the
ranges between 50% and 95% highest density intervals (HDI) (—H—). Observations (•) include
data on Riesling vines monitored in Geisenheim, Germany [14]. Regression lines for model and
observation are based on the means.
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3.2.3. External Validation by Projections of Beginning of Flowering Date

The external data sets from Zeltlingen-Rachtig and Neustadt also include observations
on beginning of flowering date. As this stage is directly following the stages considered in
the calibration, we chose to project this adjacent stage with our model as ELstlinear = 21.5
by extending the linearized E-L-system. With RMSE-values of 4.1 days and 4.7 days these
posterior predicted projections agree similarly well with the observations (Figure 9) as the
budburst predictions. The majority of observations fell into the estimated 95% HDI that
covers approximately 10–15 days. However, the bias for both locations changed sign, albeit
at a generally low level, indicating that the forecasts for beginning of flowering are on
average somewhat later in the year than the corresponding observations. This might be a
consequence of the simple extrapolation of the linearized E-L-system, despite the beginning
of flowering stage being only partially related to the number of leaves (‘about 16’), and
mainly characterized by ‘first flower caps loosening’ [35]. While not yet considered in the
functional-structural plant model on Riesling vine [12], these results suggest that one might
use the developed model to also predict beginning of flowering that could become relevant
when berry development is included in future versions [46,125]. Furthermore, due to the
synchronization of organ development rates in the estimation of cardinal temperatures,
we expect a good agreement with the speed of the architectural development of the plants
between budburst and the beginning of flowering.
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Figure 9. Posterior predictions of beginning of flowering (about 16 leaves seperated; linearized E-L
stage 21.5) date by matching predicted ĈDD to day of the year (doy). Model data is presented as the
mean and the ranges between 50% and 95% highest density intervals (HDI) (—H—). Observations (•)
include data on Riesling vines monitored in Neustadt an der Weinstraße, Germany, and in Zeltingen-
Rachtig, Germany. Gaps in range bars are a result of the highest density interval estimation and
related to the temperature course within a year.
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3.3. Primary Shoot Internode Appearance
3.3.1. Model Reduction

Primary shoot growth was split into a model for internode appearance and a model
for internode growth. We already assumed a linear dependency between the rank of the
apex and cumulative development days up to the maximum observed apex rank of 23
when estimating the cardinal temperature triplet using a frequentist linear mixed model.

In the following, Bayesian model calibration was used and the model selection process
evaluated the effects of the additional factors year and treatment (aCO2, eCO2) including
the interaction of CDD× trt (Equation (6)). The group-level effects model structure was
fixed to control for the sampling structure given the experimental design (cf. Equation (6)).
It was found that model performance was not affected by first removing the interaction
and then also both factors year and treatment entirely. We also tested whether including
year as a group-level effect (GE) would be an alternative, but this was not the case. Hence,
the selected final model, although not with the overall lowest LOOIC, but with a negligible
difference to more complex models, does not include any year effect and predicts best
the apex rank only considering CDD. Fulfilling the initial assumption of no year effect is
in accordance with the results from Schultz [42] on plastochron development rates. The
model selection progress included a training and test data set, while the hold-out-data
RMSE confirmed the overall good model performances by being in line with the training
data RMSE (Table 5). The choice of the final model was supported by the fact that the
additional parameters (trt, year) were only associated with pd-values of <72%, i.e., not
indicating a significant effect. Following the model selection progress, the final model
formula was refitted using the full data set to incorporate as much information as possible
in the Bayesian calibration, i.e., to estimate the slope and its variability, as this information
is supposed to be used as an input in functional-structural plant modeling.

Final model results estimated an average slope (IAR) of 0.7784 ranks/CDD with
a standard deviation of 0.081 ranks/CDD when including the estimated uncertainty of
the random slopes per shoot. The reciprocal 1/IAR of 1.285 CDD/rank indicates how
many CDD are necessary for a new internode to appear. This is in accordance with the
estimated appearance rate (slope) of the Bayesian phenology model using the Gaussian
likelihood with a value of 1.289, and reflects the assumptions we made in the cardinal
temperature optimization. The estimated slope in the subsequently established exGaussian
phenology model is only slightly lower (1.2577) (Table 4), and therefore not to be seen as
a contradiction.

The intersection of the model regression line with the estimated CDD for budburst
approximately coincides with an apex rank of 0 (Figure 10). While the focus of this model
was the estimation of the slope parameter, this supports the validity and assumptions
of the two analyses, the estimation of the budburst CDD and this analysis on phytomer
development. The slight offset might be related to the fact that the observational digitization
date of the apex rank does not perfectly coincide with the appearance of that rank. We
expect a negative offset, i.e., the appearance should have happened a little earlier. However,
since only the slope will be used in an FSP model, this aspect is only considered in the
internode growth model, where we try to control for this uncertainty (see Section 2.8). Thus,
it has been shown that the estimated cardinal temperatures for the CDD calculation allow
predicting phenological stages and phytomer development rate at the same time. The
mixed modeling approach, where the development of each single shoot is considered in the
mixed model part, was necessary to give a robust estimate of the average development rate
and its variability, as the phenology ratings and model results already indicated that there
is between-shoot variability in the development, i.e., the shoots were never all at the same
stage of development. To account for this, the modeling structure controlled for individual
differences in the intercept and slopes. A consequence of individual slopes and intercepts
can be seen in the model prediction interval that slightly increases with increasing CDD
(Figure 10).
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Table 5. Model results of internode appearance rate estimation: Estimated fixed effects comparing the full model (including year and treatment effect; Table 5) and
the reduced, final model with Gaussian likelihood only considering CDD (leave-one-out cross-validation information criterion and standard error (LOOIC (SE)). (rm:
Remove; GE: Group-level effect.)

Model LOOIC [SE] RMSE [95% HDI] RMSE (Test) [95% HDI] R2 [95% HDI] Parameter Estimate [Q2.5, Q97.5] pd (%)

full 642.61 [17.97] 2.3803 [2.1842, 2.5924] 2.5867 [2.279, 2.8805] 0.9751 [0.9707, 0.9791] Intercept −6.7827 [−7.8887, −5.7296] 100.00
full CDD 0.7747 [0.7372, 0.8118] 100.00
full CDD:trteCO2 0.0087 [−0.0418, 0.0593] 63.65
full trteCO2 −0.0139 [−1.1569, 1.1765] 51.11
full year2019 −0.268 [−1.2436, 0.7435] 71.44
rm trt interaction 639.82 [17.89] 2.3721 [2.178, 2.567] 2.574 [2.2815, 2.873] 0.9752 [0.9708, 0.9792] Intercept −6.8255 [−7.8867, −5.7655] 100.00
rm trt interaction CDD 0.7792 [0.7533, 0.8041] 100.00
rm trt interaction trteCO2 0.0582 [−1.0514, 1.1574] 54.84
rm trt interaction year2019 −0.2694 [−1.2459, 0.7285] 71.25
rm year 638.34 [17.53] 2.3748 [2.1999, 2.5562] 2.5915 [2.3077, 2.8755] 0.9753 [0.9711, 0.9793] Intercept −6.9295 [−7.8836, −6.023] 100.00
rm year CDD 0.7794 [0.7537, 0.8054] 100.00
rm year trteCO2 0.0427 [−1.0245, 1.124] 53.00
rm trt 638.99 [17.8] 2.3521 [2.1713, 2.5334] 2.5572 [2.2669, 2.8495] 0.9752 [0.9709, 0.9792] Intercept −6.7851 [−7.6507, −5.9236] 100.00
rm trt CDD 0.7797 [0.7541, 0.8059] 100.00
rm trt year2019 −0.2686 [−1.2425, 0.7031] 71.39
add year GE 640.27 [17.92] 2.4214 [2.1622, 2.7362] 2.6286 [2.2688, 3.0283] 0.9752 [0.9712, 0.9793] Intercept −6.9483 [−8.3861, −5.6148] 100.00
add year GE CDD 0.7798 [0.7539, 0.8051] 100.00
final 640.12 [17.99] 2.3589 [2.2037, 2.5365] 2.5789 [2.3162, 2.8699] 0.9753 [0.9712, 0.9793] Intercept −6.9059 [−7.6626, −6.1822] 100.00
final CDD 0.7789 [0.7533, 0.8051] 100.00

final (full data) 832.6 [20.89] 2.4104 [2.2682, 2.5492] −−− 0.9745 [0.9707, 0.978] Intercept −6.921 [−7.5665, −6.2985] 100.00
final (full data) CDD 0.7784 [0.7547, 0.8018] 100.00
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Figure 10. Model fit of maximum ranks (apex rank) over cumulative development days (CDD) (mean
(–) and posterior predicted quantile interval (Q2.5–Q97.5); gray area) versus data split by the two
different years (2018, 2019) and the two treatments (aCO2, eCO2). Bubbles (◦) show the frequencies
(n) of observation data. Model data is equal in all panels, as no treatment or year effect was estimable.
Dashed lines connect data from the same shoot. Predicted budburst CDD from the phenology model
is indicated, too (mean and 95% highest density interval).

For the transfer of these findings into a stochastic plant growth model we are only
interested in the estimated development rate and its variability, as the onset of development
should be estimated using the phenological model and its estimated uncertainties for
budburst CDD. As stated above, combining the posterior distribution of the slope’s fixed
effect with random samples from the slope’s group-level effect (modeled as a Gaussian
distribution) we arrive at a posterior distribution also following a Gaussian distribution
with N ∼ (µ = 0.778 ranks/CDD, σ = 0.08 ranks/CDD). With no additional effect in the
model we can rely on just this single sampling distribution to assign a development rate to
each single shoot within a stochastic FSP model.

3.3.2. External Validation of Appearance Rate

The validation results show good agreement with measurement data within the
calibration time frame (max. apex rank = 23) (Figure 11). While the one-time best predictive
performance is associated with the model from Schmidt et al. [12] (dashed lines) regarding
the 1986 data, the novel model yields more consistent results in both years. This is in line
with the aim to develop a more robust model, which might not always yield best point-wise
predictions. Beyond this, Schultz [42] found a decreases in plastochron development rate
with advancing thermal time, suggesting the linear trend might overpredict data currently
out of scope. Yet, with additional data, the model could be adapted to a limited growth
model, where the appearance rate decreases with CDD in the later season. However,
quantifying the decrease of organ appearance rate with thermal time would require the
absence of standard management practices in a vineyard, in particular shoot trimming,
or the effects of timing and intensity of shoot trimming on shoot development need to be
taken in account in a model, too.
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Figure 11. Model predictions (one line per predicted budburst doy) compared to observation data
on plastochron index (=node rank; •) from Schultz (Figure 8 (‘S-System’) [42]) Riesling vines grown
1986 and 1987 at Geisenheim, Germany, using the model developed in this study (colored solid
lines) and the one from Schmidt et al. [12] (dashed lines). Shaded areas around the predictions
from this study represent uncertainty associated with the estimated variability in the internode
appearance rate (IAR± 1× SD). Measurement data was extracted from the original figure using
Webplotdigitizer [114]. Where extractable the error interval describes ±2× SE (|). Predictions are
limited to the calibration range with a maximum observed apex rank of 23.

3.4. Internode Length Model
3.4.1. Model Selection

Model selection was split between frequentist and Bayesian models. First, frequentist
non-linear mixed models were fitted to evaluate whether the inclusion of a fixed effect for
treatment and/or allowing for heteroscedasticity, i.e., different variances with increasing
mean or per rank, is beneficial. Results indicated that especially modeling heteroscedasticity
improved model performance regarding AICc (Table A3).

As differences between the inclusion and exclusion of a treatment effect were small, this
parameter was also tested in the even more complex Bayesian calibration. The extensions
included the switch to a generalized non-linear mixed model, relying on Gamma-regression
to restrict predictions to only positive values of internode length (see Section 2.8) and
implies the variance to increase with the mean. Heteroscedasticity, i.e., a variability of
the shape parameter of the Gamma distribution likelihood, was modeled by group-level
effects related to the multilevel sampling structure plus the rank, as this has already proven
beneficial in the frequentist pre-analysis. As we were not interested in inferences on these
parameters, but wanted to control for their variability, we did not consider any fixed effects
here, but we also incorporated the treatment fixed effect on the non-linear parameters, not
to overlook anything in the Bayesian approach that might not have been extractable within
the pre-analysis due to the less complex model structure.

Within the Bayesian framework, the lowest LOOIC is estimated for the model with
treatment effect (Table 6); however, differences in LOOIC are small. Differences of ELPD
between the models in Table 6 are all below 4, indicating negligible differences [126]. Hence,
we expect no beneficial effect on prediction accuracy when incorporating a fixed treatment
or year effect. Thus, we selected the least complex model of all four as the final model—the
model where no year effect is considered in fixed and group-level effects. This decision was
supported by lower RMSE values for the ‘no year’-model. However, as literature suspects
an effect of eCO2 on shoot growth [88] and given the still sparse data, we investigate a
possible treatment effect on the outcome in the following.
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Table 6. Model performance of Bayesian generalized non-linear mixed models for internode length depending on CDDage.

Model LOOIC [SE] RMSE [95% HDI] RMSE (Test) [95% HDI] R2 [95% HDI] Parameter Estimate [Q2.5, Q97.5] pd (%)

fixed trt 6731.24 [101.24] 3.8366 [2.1598, 7.2981] 3.9045 [2.2945, 7.3602] 0.8466 [0.8396, 0.8536] sage −0.2172 [−0.3351, −0.0854] 99.92
fixed trt sR2 −0.48 [−0.5296, −0.4313] 100.00
fixed trt sR7 −0.3748 [−0.6671, −0.0708] 99.11
fixed trt i1,aCO2 1.2515 [0.537, 1.8146] 100.00
fixed trt i1,eCO2 1.2428 [0.5443, 1.8105] 100.00
fixed trt i2,aCO2 10.0877 [8.2055, 11.9674] 100.00
fixed trt i2,eCO2 9.6182 [7.7617, 11.5094] 100.00
fixed trt lrcaCO2 −0.797 [−1.6328, −0.0273] 97.77
fixed trt lrceCO2 −0.9274 [−1.7598, −0.1525] 99.00
fixed trt m1,aCO2 1.6845 [1.0109, 2.3235] 100.00
fixed trt m1,eCO2 1.647 [0.9916, 2.2534] 100.00
fixed trt m2,aCO2 0.6347 [0.1027, 1.1799] 98.89
fixed trt m2,eCO2 0.5439 [0.0166, 1.0948] 97.78
fixed year 6731.92 [101.6] 3.5725 [2.0063, 6.9003] 3.6335 [2.1216, 6.9794] 0.8467 [0.8395, 0.8536] sage −0.2178 [−0.3378, −0.0841] 99.92
fixed year sR2 −0.4795 [−0.529, −0.4287] 100.00
fixed year sR7 −0.3763 [−0.6666, −0.0714] 99.15
fixed year i1,year2018 1.3029 [1.0787, 1.5259] 100.00
fixed year i1,year2019 1.2628 [1.0168, 1.5155] 100.00
fixed year i2,year2018 8.1287 [7.3206, 8.9449] 100.00
fixed year i2,year2019 11.4742 [10.5318, 12.4614] 100.00
fixed year lrcyear2018 −0.283 [−0.5315, −0.0391] 98.65
fixed year lrcyear2019 −1.3557 [−1.5916, −1.1194] 100.00
fixed year m1,year2018 1.5069 [1.1818, 1.8159] 100.00
fixed year m1,year2019 1.8811 [1.5457, 2.2236] 100.00
fixed year m2,year2018 0.7489 [0.4476, 1.062] 100.00
fixed year m2,year2019 0.2729 [−0.1296, 0.6765] 91.47
no fixed 6737.69 [101.75] 3.8481 [2.1888, 7.2349] 3.8924 [2.2786, 7.2188] 0.8465 [0.8395, 0.8538] sage −0.2179 [−0.3402, −0.086] 99.88
no fixed sR2 −0.4796 [−0.5293, −0.4297] 100.00
no fixed sR7 −0.3766 [−0.6703, −0.0737] 99.26
no fixed i1 1.2663 [0.5514, 1.8706] 100.00
no fixed i2 9.8205 [7.844, 11.8148] 100.00
no fixed lrc −0.8415 [−1.7012, −4e−04] 97.50
no fixed m1 1.6856 [1.1053, 2.2669] 100.00
no fixed m2 0.5593 [0.0307, 1.0996] 97.91
no year = final 6736.88 [101.64] 2.7603 [2.4947, 3.0985] 2.8545 [2.5506, 3.1883] 0.8462 [0.8389, 0.8533] sage −0.2185 [−0.3383, −0.0863] 99.85
no year = final sR2 −0.4779 [−0.528, −0.4284] 100.00
no year = final sR7 −0.3627 [−0.6528, −0.0528] 98.81
no year = final i1 1.2905 [1.1, 1.4792] 100.00
no year = final i2 9.7018 [8.5788, 10.8534] 100.00
no year = final lrc −0.8119 [−1.2259, −0.3988] 99.96
no year = final m1 1.6843 [1.4069, 1.9595] 100.00
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Table 6. Cont.

Model LOOIC [SE] RMSE [95% HDI] RMSE (Test) [95% HDI] R2 [95% HDI] Parameter Estimate [Q2.5, Q97.5] pd (%)

no year = final m2 0.5879 [0.2818, 0.8683] 99.89
final (full data) 8436.07 [112.44] 2.7954 [2.5169, 3.1104] 2.7953 [2.5242, 3.1178] 0.8473 [0.8412, 0.8535] sage −0.2368 [−0.342, −0.1215] 99.98
final (full data) sR2 −0.482 [−0.5255, −0.4381] 100.00
final (full data) sR7 −0.1699 [−0.4437, 0.1185] 88.13
final (full data) i1 1.2795 [1.1104, 1.4503] 100.00
final (full data) i2 9.6989 [8.6432, 10.8139] 100.00
final (full data) lrc −0.812 [−1.227, −0.3979] 99.87
final (full data) m1 1.6552 [1.3787, 1.9278] 100.00
final (full data) m2 0.6104 [0.3429, 0.8614] 99.98
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For example, we calculated the difference in parameter estimates between treatments
from the posterior samples of the non-linear model coefficients for the fixed treatment
effect. Only when considering just the 50 % quantile interval we found i2-differences to be
different from zero (Figure A5). This further indicates that there is no significant difference
between eCO2 and aCO2 treatment in modeling internode growth depending on CDD. The
data shows substantial variability within parameter estimates, which makes it difficult to
detect small differences. However, model predictions with the ‘fixed trt’-effect model while
excluding group-level effects further verified that, based on these models, there is also no
visible impact when the interplay of the estimated parameters is considered (Figure 12).
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Figure 12. Model predictions (median (–) and the 50% and 89% highest density intervals (shaded
area) of internode length considering fixed treatment effect on non-linear model coefficient. The
dashed line includes the median prediction of the final model formulation (see Table 6). Data points
represent the calibration data set (training; ◦) and the hold-out data (test; �).

Similar to the evaluation of how the ‘fixed trt’-effect model performs on predictions, we
also investigated the ‘fixed year’-model. In this case, the estimates of the model coefficients
between years more often differ substantially from zero (Figure A6). This is transferred
into predictions by faster growth in 2018 compared to 2019, related to the difference in the
lrc-coefficient (Figure A7). Especially the longer growth duration estimated for the 2019
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data could be seen as contradictory to observations from Schultz and Matthews [98], where
internode growth was found to last approx. 12 days and was limited to the upper eight
internodes. Considering the model estimated IAR, eight internodes would develop within
the next 10-11 CDD, which is more in line with the final model’s growth speed, where
99% of the maximum IL is reached after approx. 10 CDD, than with both estimates for the
different years (2018: 6 CDD / 2019: 18 CDD until 99% max. IL; cf. Figure A7). However,
we also cannot fully rule out some operator bias in the digitization procedure between
both seasons that could affect the lrc parameter. Following Schmidt et al. [12] we assumed
growth speed (i.e., the lrc-coefficient) to be constant across ranks, while for example Greer
and Weston [127] found an increase in elongation duration for internodes along the shoot
studying Vitis vinifera cv. Semillon grapevines in growth chamber experiments. In addition,
the estimated coefficients associate the year 2019 with higher asymptote values, especially
for the R > 7, mostly related to the differences in i2 (Table 6, Figure A6). This might be
related to more frequent extreme internode length in the measurements, influencing the
average growth curve. Given this contradictory observations and the fact that the model
without considering a year effect even performed better based on RMSE measures, the
‘fixed year’-model has not been used any further. If we would have found strong evidence
that an effect of the year would lead to a significantly better model, further analysis on
underlying effects could have been conducted. However, future work might focus on
between year differences of environmental factors, such as (temporal) water stress [98,128],
temperature course before budburst [129] or light conditions [53], to refine the model.

The model performance output with no fixed effects indicated another possible model
reduction, with the probability of direction for the parameter m2 being close to 97.5 %.
Hence, a subsequent test on removing this parameter from the model was conducted. If
m2 had proven to be obsolete, this would have indicated a constant asymptotic internode
length for ranks > 7, but the model performance was worse (LOOIC 6801.39 [100.88]). Thus,
this test did not justify any further model reduction. The final model supports the findings
from Schmidt et al. (Figure 4 [12]), where the maximum internode length, i.e., asymptotic
values, of internodes at higher ranks (>7) show a repetitive pattern (Figure 13). This could
be related to observations from Schultz and Matthews [98] on three morphological distinct
internodes related to tendril presence and adjacency. Louarn et al. [99] found irregularities
from the normal pattern of succession of such phytomer types in the cultivars ‘Grenache N’
and ‘Syrah’, which would explain, why the posterior distribution for m2, the parameter
representing the assumed strong systematic behavior, also includes the zero. Comparing
the estimated ranges of the asymptotic values for the different ranks based on the Bayesian
model, generally lower variability was estimated for higher ranks, but variability also
increased with rank for ranks ≤ 7 (Figure 13). As the average parameter estimates from
final frequentists and Bayesian model formulations were similar (cf. Tables 6 and A3),
average asymptotic values between both methods were close, too. The modeling choice
to incorporate a model formula for the asymptote depending on the rank does reduce
model complexity and might allow projections for ranks not yet observed (R > 23), but
comes with the price that individual per-rank predictions might be less precise, when the
assumptions regarding the sub-model are not fully met. Here, we see benefits from using
a Bayesian approach, as the posterior distribution also captures the deviations from the
estimate’s average for each rank that can be transferred into plant growth simulations.

In the final model the probability of direction for the parameter sR7 fell below 99.0 %;
hence, here also a subsequent test on removing this parameter from the model was con-
ducted. With LOOIC 6745.97 [101.88], this model did not prove to be superior; therefore,
sR7 has been kept in the model for the final fit to the full data set. This means that the two
auxiliary parameters, sR2 and sR7 have proven to be beneficial for the model. This supports
the initial observation that there might be a slight non-linearity towards a Gompertz-like
function shape in the dependency of the asymptote on ranks for R < 7.
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Figure 13. Model parameters for asymptotic values (A) per rank (R) based on training data models fits
of the selected Bayesian and frequentist models. Part 1: Rank ≤ 7; Part 2: Rank > 7 (Equation (21)).

Not all parameters associated with lower pd, e.g., lrc or m1,aCO2, were reviewed in
detail as for example lrc overlapping 0 does not indicate ‘no effect’, and aCO2 and year
fixed effects models were set-up to provide a parameter value for each variant. Hence,
whether these factors do have an effect must be evaluated based on the difference between
the parameter pairs (cf. Figures A5 and A6).

3.4.2. Model Predictive Performance

For a more detailed analysis on the predictive capabilities of the Bayesian models, we
compared various model predictions with the corresponding measurement data-points,
while considering the modeled group-level effects or not. Comparing the different predic-
tions of the final model fitted with training data only (Figure 14A–C) the estimated RMSE
only based on the average (point) predictions is generally better than the full Bayesian
RMSE provided in Table 6 and more comparable to the frequentist RMSE (Table A3).
Considering the group-level effects in the predictions on training data clearly improved
the point-wise performance measures RMSE, MAE and bias (Figure 14A vs. Figure 14B).
Especially internode lengths above approximately 10 cm were underrepresented in average
predictions not using group-level information. Step-wise removing group-level effects
revealed that this missing of longer internodes was linked to the group-level effects at
the single shoot level (data not shown). This indicates a high variability between single
shoots. How well this variability could be captured by the final model that was fitted on
the full data set can be seen in Figure A8, where predictions of internode growth curves
over CDDage for each of the 80 shoots and all its internodes (ranks) are compared to
measurement data.

For example, the full data set included shoots with, in general, shorter internodes
(e.g., shoots 10, 17 or 71) and shoots with slightly delayed growth (e.g., shoots 52 or 79)
indicated by a less steep slope (Figure A8). However, as we allowed all parameters to
vary between shoots by group-level effects modeling, we see how singular outliers (e.g.,
shoot 80) did not distort the single internode behavior, as the hierarchical model counteracts
by shrinkage towards a global mean [130]. Thus, the model benefits from partitioning
sources of variation and shrinkage leading to more accurate and hence robust estimates of
parameters [130,131].
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Figure 14. Different model predictions of internode length (IL; cm; mean and 25–75% quantile
interval) versus measurement data split by year and treatment (aCO2: Blue, eCO2: Red). Subfigures
(A–F): [model][data][prediction type]; training model: Final model fit on training data; full model:
Final model fit on full data; fixed year model: See Table 6; Data: Training, test, full (test + training);
with/no GE: With or without group-level effects.
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Test data predictions not considering group-level effects do not fall off compared to
training data predictions when comparing point-wise performance measures (Figure 14B
vs. Figure 14C). A similar pattern of point-predictions (averages) not covering the full
range is present. For the model out-of-sample performance, test data cannot be predicted
considering group-level effects, as, for example, no shoot of the test data set has been
present in the training data, thus no group-level effect has been estimated for this shoot.
Random sampling from group-level effects would not be appropriate here, as this would
only apply to a comparison of populations of shoots rather than to this point-pair based
performance. Incorporating the fixed year effect (Figure 14C vs. Figure 14D) did not
improve model predictive performance, here regarding test data, as already indicated by
the LOOIC comparison in Section 3.4.1.

In the next step we use samples from the group-level effects to incorporate between-
shoot variability back into a simulation model (see Sections 2.10.3 and 3.4.3) that will allow
capturing this natural variability in a stochastic FSP model. However, at this stage we only
deciphered how average predictions and predictions with group-level effects affect model
performance measures especially on the respective training data (i.e., training data set or
full data set).

3.4.3. Variability in Internode Length Simulations

Finally, we want to focus on how these modeling results could be transferred into
a FSP model. Therefore, we rely on the final model fitted to the full data set to carry as
much information as possible. We have shown that predictions with group-level effects
perform best on the data used for model fitting (Figure 14E vs. Figure 14F) as they can
capture the observation that individual shoots can be very different from each other. Thus,
especially in a Bayesian analysis including the full data set into the final model, not only
increases robustness in average parameter estimates, at the same time it enriches the
posterior samples at group-level that can be used to represent natural variability. Now,
each sampled parameter set (lrc, m1, i1, m2, i2, sR2, sR7) from the joint posterior distribution
could be used to model the growth of an average shoot, more precisely, the growth of its
internodes. To enrich these robust estimates of plausible average shoots the information
captured in the group-level effect estimates can be considered. So we can reinsert natural
variability by sampling from the corresponding posterior estimates for the group-level
effects and adding them to the fixed effects (cf. Figure A9). Similar to basic predictions
from frequentist models residual errors will not be transferred into simulations, but, as
already discussed in the introduction, in a Bayesian analysis we are not limited to a single
estimate for each parameter. As the age correction term was only relevant for corrections
related to measurement uncertainties, it is removed from the simulation model by fixing
it to sage = 0. In this way, we simulated 80 different shoots by sampling parameter
sets from the 12,000 stored posteriors samples of the model output. When comparing
the overall fit of these predictions we can see a good agreement with the magnitude
and, more importantly, also with the variability of the measurement data (Figure 15). At
this stage we no longer compare point-wise predictions, where such incorporation of
randomness would be disturbing; here, we target simulating a plausible population of
shoot internode developments that could be used in a stochastic FSP model. In contrast to
the the average predictions without considering the group-level effects (Figure 14F), these
simulations do also cover internodes with length well above 10 cm. Thus, the Bayesian
model results provide a vast enrichment in model output variability compared to only using
the single point estimate parameter set that we would have ended up with when applying
a frequentist approach, only. For example, we were able to successfully simulate different
shoot length classes with similar frequency as in the measured data (Figure A10B). Classes
were derived by calculating a normalized shoot length considering the total age of the shoot
(max(shoot length)/ max(GDDage)) that was split into three classes (see Figure A10A; data
only shown for R ≤ 13). In this single sample the results indicate a few more slightly longer
shoots in the simulation than in the observation.
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Figure 15. Model simulation of 80 different shoots and their internode length development by rank
using 80 samples from the posterior distribution covering the time frame of the observations of
approximately CDD = 30 (cumulative development days). The x-axis describes the age of each
internode in CDD (CDDage).

3.4.4. External Validation Based on Shoot Length Ranges

To validate whether our model captures variability in shoot length observed in other
Riesling vineyards, simulation of shoot length, i.e., the sum of internode lengths at a given
time, were compared to experimental data on the development of short and long shoots
selected from a drought stress experiment [115]. Hence, instead of quantifying errors of
point estimates, we would rather point to the power of the Bayesian calibration to map
natural variability in predictions. The simulation relies on all developed models from this
study; budburst, appearance rate and internode length. Comparing first only the model
predictions of this study to measurement data (Figure 16), the predictions are more close
to the long shoot observations, but also include shoots tending towards the short shoot
observations. We also added simulations with the respective model components from
Schmidt et al. [12] (see Section 2.10.3) to this comparison. The simulations with this model
are also closer to the longer shoot measurement with less variability, hence not coming that
close to the short shoots, as the variability in this model is limited to budburst date variation.
Thus, this model comparison suggests that both model predictions could over-predict shoot
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length to a certain extent; however, considering the described differences in vineyard setup
and planting material (see Section 2.10.3), this should not be overinterpreted. Both, the
rather low-vigor rootstock as well as the higher shoot load in Pagay et al. [115] might
explain a bias towards a somewhat lower shoot growth rate compared to the Geisenheim
VineyardFACE experiment. In addition, weak shoots are preferentially removed in the
course of shoot thinning, limiting the presence of short shoots in our data set. However,
the novel model better mimics the natural diversity of short and long shoots.
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Figure 16. Shoot length model predictions from this study (80 random shoots per budburst data)
and using the model from Schmidt et al. [12] (one shoot per predicted budburst date) compared
to average measurements of short and long (rainfed) shoots from Pagay et al. (Figure 2a [115]) at
Geneva, NY, USA. The predicted budburst probability for this studies budburst model is indicated
and transported in the transparency of the line plots. Measurement data was extracted from the
original figure using Webplotdigitizer [114].

3.4.5. Local, Independent Validation Using Shoot Length Data from 2020 Season

Shoot length data from VineyardFACE digitization measurements from a subsequent
season (2020) were used for local validation. Comparing the model simulations of this
study to the simulations using the model from Schmidt et al. [12], we found that the latter
model seems to constantly under-predict shoot length, while the novel model is in line with
the data at early stages, but over-predicts average shoot length later on (Figure 17). For
quantitative comparison we calculated the weighted mean shoot length, with weighting
by budburst frequency of that day (Table 7). As the regression lines for aCO2 and eCO2
drift apart, we split the comparison by treatment. Results show that the over-prediction of
the new model is in the range of 2.6 cm to 14.4 cm for aCO2-shoots and between 6.9 cm and
34.3 cm for eCO2-shoots, while using the model from Schmidt et al. [12] under-predictions
are in the range of 11.7 cm to 41.4 cm, with better performance for eCO2 shoots. Here, too,
the measurement data shows a high natural variability that could satisfactorily be recovered
by the novel model. The variability in the predictions using the Schmidt et al. [12]-model,
where variability is based on budburst variability alone is too low. The trend towards longer
shoots in the predictions using the here developed model, especially considering the eCO2
data, suggests that updating the model with additional data might be beneficial to increase
future model performance and possibly differentiate between ambient and elevated vines.
However, similar representation of the calibration years 2018 and 2019 (Figure A11) do
support the model selection process, where no treatment effect could be estimated, as the
simple regression lines for both treatments overlap in both years. Predictions of additional
observations in 2019 from nearby random shoots of identical planting material that grew
outside of the FACE rings [116] support the validity of the model calibration within that
year (Figure A11). Inter-annual variability of grapevine vegetative growth is often caused
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by factors such as stress or source/sink ratio [132,133]. As these factors have not yet been
integrated into the model, more data need to be integrated to capture these effects.
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Figure 17. Shoot length model predictions for Geisenheim 2020 compared to measurements from the
VineyardFACE facility in 2020. Solid, red/blue colored lines show simple linear regression results for
the observations per treatment (aCO2, eCO2). The predicted budburst probability for this studies
budburst model is indicated and transported in the transparency of the line plots.

Table 7. Average shoot length from observation (Geisenheim, VineyardFACE 2020) and model
simulations (Schmidt et al. [12]) and this study) for three dates and the two treatments (aCO2, eCO2).

Observation Schmidt et al., 2019 This Study

Doy Treatment SLobs (cm) SL (cm) ∆SL (cm) SL (cm) ∆SL (cm)

136 eCO2 25.2 10.0 −15.1 32.1 6.9
136 aCO2 29.5 10.0 −19.5 32.1 2.6
155 eCO2 68.0 56.3 −11.7 101.1 33.1
155 aCO2 89.3 56.3 −33.0 101.1 11.8
160 eCO2 84.9 63.3 −21.6 119.2 34.3
160 aCO2 104.8 63.3 −41.4 119.2 14.4

3.5. Future Work and Perspective Use Cases

In this case study, we extended model components of the functional-structural plant
model Virtual Riesling aiming for realistic architectural representation of the grapevine
variety Riesling grown in a FACE facility. The perspective goal is to use the advanced
model in studies benefiting from a high level of architectural detail especially including
intra-plant variability. Towards a full stochastical model further model components, e.g.,
for leaves, lateral shoots and related angles [12], need to be subjected to a similar Bayesian
calibration as presented here. Moreover, an inclusion of further management practices,
besides shoot positioning [12] and leaf removal [46], and their effects on growth are of
interest to extend the applicability of such a virtual plant model. Bahr et al. [125] laid
out a concept on necessary extension of grapevine functional-structural plant models to
study grapevine berry sunburn, a recurring problem for viticulturists linked to climate
change [134]. We expect the inclusion of variability in architectural components to provide
a more concise picture of the microclimatic conditions within grapevine canopies [47,49] ,
which would enable precise forecasts of sunburn occurrence, but also of other health and
quality aspects related to microclimatic conditions. For studies aimed at simulations of
future climatic conditions, the effects of elevated CO2 on grapevine architecture would also
need to be further investigated [88].

4. Conclusions

The primary goal of this work was to advance the development of a fully stochastic
virtual plant model for Riesling grapevine. In the course, we introduce the concepts and
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benefits of Bayesian calibration to a broad audience, using a case study on the effects of
CO2 enrichment on grapevine (Vitis vinifera L. cv. Riesling) shoot development, starting
from phenological data and digitized shoots with an empirical modeling concept based
on temperature dependencies. Validation results have shown that model outputs were in
good agreement with published or public data sets for budburst dates, as well as internode
appearance and shoot growth rates. However, model reduction steps using information
criteria revealed that we could not distinguish between elevated and atmospheric CO2
conditions in either phenology or primary shoot growth, with the considered enrichment
corresponding to the CO2 level expected in 2050. This study further demonstrates that
Bayesian calibration in combination with mixed models can realistically recover natural
shoot growth variability in predictions. When implemented into a functional-structural
plant model, we expect improvements for simulations where variability in microclimatic
conditions is of relevance, e.g., in studies to predict berry sunburn occurrence, or other
grape health and quality attributes in a virtual vineyard.
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doy day of the year
eCO2 elevated carbon dioxide
ELPD expected log predictive densit
FACE free air carbon dioxide enrichment
FE fixed effect
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FSP model functional-structural plant model
GE group-level effect
HDI highest density interval
LOOIC leave-one-out cross-validation information criterion
MAE mean absolute error
q quantile
RMSE root mean squared error

Appendix A

Appendix A.1. More on Phenology Modeling

Recently, Molitor et al. [24] developed a model called UniPhen covering the stages
from bud swell to berry ripening that also tries to capture the effect of different grape
cultivars grown under climate conditions from the Luxembourgish grapegrowing region.
Its accuracy across all stages and cultivars allows predicting 82% of the observations within
±7 days. Their GDD accumulation of daily average air temperatures is regulated by three
different threshold temperatures (lower, upper and heat threshold) and is calculated rela-
tive to the budburst date (BBCH 09) for Riesling cultivar. In a study of Leolini et al. [25]
six phenological models were compared in their ability to predict budburst, especially
comparing approaches that do or do not consider the endo-dormancy period, i.e., forcing
or chilling/forcing approaches. They conclude that model accuracies are comparable for
both approaches with root-mean-squared-errors (RMSE) of around 7–10 days, but mod-
els including the endo-dormancy period were less prone to the selected starting date for
temperature accumulation. Calibration was based on data collected in different European
regions and conducted separately for different cultivars [25]. Similar predictive accuracies
were achieved in a recent study limited to north-west Spain where approx. 65–100% of
observations fell within a range of ±6 days from the predicted dates of budburst and
flowering using one model calibration across four cultivars [26]. Another aspect considered
in phenology modeling is whether different threshold temperatures are necessary to predict
different phenological stages. A study on phenology modeling of Chardonnay subjected to
forced regrowth after heavy pruning and defoliation conduced by Prats-Llinàs et al. [27]
found best accuracy when using different upper threshold temperatures for each consid-
ered phenological stage, while assuming a constant base temperature of 5 °C for all stages.
Predicting berry maturity seemed to be less temperature dependent and hence the least
accurate (RMSE of 8–9 days); thus, it is suggested to improve the model for berry maturity
by including other factors such as crop load or water availability [27]. Their validation
data included a control from natural growing conditions (no forced regrowth), implicitly
suggesting similar threshold temperatures are applicable for both variants in early growing
stages. As already partly addressed above, one of the aspects open for optimization is the es-
timation procedure of the GDD summation. For instance, the UniPhen [24] already includes
a heat threshold temperature of 30 °C to implement a decelerating effect of above-optimum
temperatures; however, note that concerning the use of average daily temperatures, this
threshold is not too influential under current Central European climate conditions. While
average daily temperatures of above 30 °C are not to be expected any time soon in Central
Europe, hourly temperature averages of this magnitude are not uncommon during the
summer growing season.

Where most GDD models for predicting phenological stages rely on one or a few
summary statistics of the daily temperature course, i.e., the average, the minimum and the
maximum temperature, de Cortázar-Atauri et al. [32] compared two models, where the
daily sum is the sum of hourly contributions, but the temperature course of a day itself is a
linear or sinusoidal model calculated from daily minimum and maximum temperatures.
Improving growing degree day models is also an aspect in more general crop simulation re-
search. For example, to consider a sub-daily non-linear behavior in the summation of GDD,
Zhou and Wang [31] introduced a new method, where the daily temperature contribution
is the result of an hourly thermal time estimation, with a non-linear response modeled by a
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beta-distribution function. This method proved to be superior to classical methods based
on daily summary temperature measures in estimating various developmental stages of
crops (corn and wheat), as well as to a model also considering hourly temperatures, but
with linear response to deviations from the optimal temperature.

However, a similar concept had already been introduced by Wang and Engel [29] in
form of a more general temperature response function that is scaled to values between 0
and 1. This approach was applied by de Cortázar-Atauri et al. [33] in grapevine pheno-
logical modeling, but using fixed lower and upper temperature limits of 0 °C and 40 °C,
respectively. Most recently, Zhu et al. [28] adapted this concept to calculate necessary
development days, i.e., the number of days (24 h) at optimal temperatures, for specific
grapevine phenological phases after budburst. Calibration focused on Sauvignon Blanc
grapevines, but also included Chardonnay, Merlot, Pinot Noir and Pinot Gris. Estimated
cardinal temperatures were optimized based on best prediction for flowering and véraison
simultaneously. They rely on sinusoidal interpolations of hourly temperatures based on
daily minimum and maximum temperatures [28,30]. For budburst a chilling-forcing ap-
proach was used, where the heat unit accumulation follows a simple linear growing degree
days approach only depending on a base temperature. In their model calibration the base
temperature was estimated to 0.008 °C for all varieties and differed from the estimated
minimum temperature for the development after budburst, which was in the range of
0.2–3.9 °C.

Appendix A.2. More on Bayesian Model Calibration

Bayesian calibration approaches have been successfully applied in various fields. One
of the first use-cases was the introduction of Bayesian model calibration in process-based for-
est models by Oijen et al. [2]. Integrating remote sensing data into Bayesian model calibra-
tion to simulate forest production was the aim of the study of Patenaude et al. [135]. They
justify their choice of a Bayesian calibration over standard goodness-of-fit approaches by the
enriched information on parameter and model output uncertainties. van Oijen et al. [136]
applied Bayesian calibration for modeling growth of scots pine stands highlighting the
effect of reduced model predictive uncertainties. Recently, Ovalle-Rivera et al. [137] was
able to improve model accuracy by making use of a hierarchical Bayesian model cali-
bration for a parameter-rich dynamic model for coffee agroforestry. Other applications
Bayesian calibration, for example, go from maize yield predictions from empirical non-
liner growth response functions [9], over accounting for temporal variability in growth
models in the field of aquatic sciences [7] to considering uncertainties related even in
astronomical estimations [138]. Moreover, improvements in modeling phenological de-
velopment of maize were achieved with Bayesian calibration [79]. For simple models
Ceglar et al. [79] found posterior distributions that included physiologically unrealistic
values, suggesting that such model formulations might need to be revised. In a climate
impact study of Ben Touhami and Bellocchi [139] it was found that the inclusion of prior
information was beneficial for uncertainty estimates, even if these information came from
different climate conditions. Blanc et al. [140] point out that a pitfall of Bayesian model
calibration for functional-structural plant models is that with transferring uncertainties in
model parameters repetitive simulation runs are necessary for robust estimates of output
variables. To address this, they propose a surrogate modeling approach to substitute time
consuming FSP model simulations with simpler models, such as Kriging models. It should
be noted that repetitive simulations are not only necessary if Bayesian calibration is used,
any randomness included in a model will require multiple runs [141].
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Table A1. Number of phenology assessments per year, ring and day of the year.

Day of the Year (Doy)

Year Ring 98 109 115 122 126 135 140 145 154

2018 aCO2[1] 60 60 48 60
2018 aCO2[2] 40 60 44 60
2018 aCO2[3] 51 52
2018 eCO2[1] 60 56 38 60
2018 eCO2[2] 49 60 51 60
2018 eCO2[3] 60 46 37 60
2019 aCO2[1] 60 60 60 29 60
2019 aCO2[2] 12 55 60 36 60
2019 aCO2[3] 24 49 60 39 45
2019 eCO2[1] 60 60 60 35 60
2019 eCO2[2] 60 53 60 36 60
2019 eCO2[3] 48 53 60 37 60

Tbase = 10.8°C Topt = 19°C Tupper= 24.7°C

Tbase = 10.8°C Topt = 19°C Tupper= 24.7°C

2019 (doy 1-170)
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Figure A1. Histogram of average hourly air temperature at Geisenheim VineyardFACE site during
the phenological observations. Input data for estimating cardinal temperatures.

Listing A1. Codeblock of brms-formula for the final internode length model.

bf(IL ~ log(X)
, nlf(X ~ A*(1 - exp(-exp(lrc)* (CDDage+sage ))))
, nlf(A ~ 0+R01 *(((R-1) + R2*sR2 + R7*sR7) * m1 + i1) +

(1-R01)*(Rx3 * m2 + i2))
, lrc ~1+ (1| shoot) + (1| plant) + (1| ring) + (1| year)
, m1 ~ 1+ (1| shoot) + (1| plant) + (1| ring) + (1| year)
, i1 ~ 1+ (1| shoot) + (1| plant) + (1| ring) + (1| year)
, m2 ~ 1+ (1| shoot) + (1| plant) + (1| ring) + (1| year)
, i2 ~ 1+ (1| shoot) + (1| plant) + (1| ring) + (1| year)
, s2 ~ 1
, s7 ~ 1
, sage ~ 1+(1| dateXshoot)
, shape ~ 1+(1| shoot )+(1| plant )+(1| ring )+(1|R)+(1| year)
, nl = TRUE)
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Figure A2. Responses of the five objectives ( ∆ODR, Eyear,phen, Eyear,apex, NRMSEtrain,phen, NRMSEtrain,apex ) from the coarse, first grid search (step size 1 °C) keeping
one cardinal temperature of the estimated (temporal) optimum (×©) (Tbase = 11 °C, Topt = 19 °C and Tupper = 25 °C) fixed.
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Table A2. Average internode length (IL) and number of observations per rank (n) and year for the
training and test data set. Total number of observations (training/test): 2658 (2124/534) from 80
(64/16) different shoots.

Year 2018 Year 2019

Training Test Training Test

Rank n IL n IL n IL n IL

1 108 1.25 27 1.21 84 1.06 21 1.12
2 108 2.03 27 1.92 83 2.01 21 1.73
3 107 3.96 27 3.83 82 4.35 20 3.84
4 97 5.34 24 5.32 81 5.71 19 5.11
5 82 6.60 20 7.06 77 6.43 19 5.72
6 72 8.53 19 8.32 66 8.39 18 6.92
7 69 8.86 17 10.10 59 9.70 15 8.89
8 64 6.92 15 8.05 56 9.49 14 8.83
9 54 7.46 14 7.92 53 9.17 13 9.90
10 41 8.44 12 8.63 52 9.16 13 9.79
11 37 7.61 9 8.42 49 8.66 12 8.02
12 36 8.67 9 8.54 46 9.04 12 8.34
13 36 9.18 9 9.65 41 8.88 10 8.91
14 36 8.23 9 8.28 34 8.31 7 10.66
15 35 9.18 8 9.32 28 8.98 7 9.49
16 32 10.13 8 9.77 25 7.84 7 8.69
17 32 8.62 8 9.20 24 6.67 6 5.98
18 27 9.63 7 8.03 19 5.59 5 6.02
19 20 10.18 4 12.78 17 3.87 5 4.42
20 18 7.75 4 10.59 10 3.35 3 4.41
21 14 7.20 4 10.17 2 1.25 2 3.18
22 9 6.70 2 10.20 1 2.45
23 2 3.59 1 7.08
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Figure A3. Response of the hourly development days function (Equation (1)) to changes (±4 °C) in
the optimum parameter set (Tbase = 10.8 °C, Topt = 19 °C, Tupper = 24.7 °C).

IAR∼N(μ=0.77843 0.08066)

μ μ+σ μ+ 2σ μ+ 3σμ −σμ − 2σμ − 3σ
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Posterior distribution
(mean, Q68%, Q95%)
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Figure A4. Density plus the mean and 68%/95% quantiles of the posterior distribution for the slope model
coefficient (n = 8000 samples) compared to a normal distribution with same mean and standard deviation.
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Table A3. Model performance of frequentist non-linear mixed models for internode length depending
on CDDage.

Model AICc RMSE RMSE (Test) Parameter Estimate

trt 8125.19 2.19 2.34
no trt 8115.96 2.19 2.30
no trt; heteroscedasticity (fitted values) 7551.48 2.17 2.27
no trt; heteroscedasticity (per rank) 7327.16 2.17 2.29
trt; heteroscedasticity (fitted values and per rank) 7272.82 2.15 2.30

no trt; heteroscedasticity (fitted values and per rank) 7263.05 2.16 2.28 m1 1.55
i1 1.29
m2 0.45
i2 9.56
lrc −0.56
sage −0.56
sR2 −0.43
sR7 −0.49

m2 i2
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Figure A5. Difference between treatment parameter estimates from the posterior samples of the
non-linear model coefficients.
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Figure A6. Difference between year parameter estimates from the posterior samples of the non-linear
model coefficients.

Table A4. Prior input for Bayesian phenology models (FE = fixed effect, GE = group-level effect). No
differentiation in priors within FE and GE, respectively.

Prior Class

student_t(10, 0, 1) FE
student_t(3, 12.6, 8.4) Intercept
normal(0, 1) GE
normal(0, 1) GE
student_t(3, 0, 8.4) sigma

Table A5. Prior input for Bayesian internode appearance rate models (FE = fixed effect, GE = group-
level effect). No differentiation in priors within FE and GE, respectively.

Prior Class

student_t(10, 0, 1) FE
student_t(3, 9.5, 6.7) Intercept
student_t(3, 0, 1) GE
student_t(3, 0, 6.7) sigma
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Figure A7. Model predictions (median (–) and the 50% and 89% highest density intervals (shaded
area)) of internode length considering fixed year effect on non-linear model coefficient. The dashed
line includes the median prediction of the final model formulation (see Table 6). Data points represent
the calibration data set (training; ◦) and the hold-out data (test; �).

Table A6. Prior input for Bayesian internode length models (FE = fixed effect, GE = group-level effect,
dpar = distributional parameter, nlpar = non-linear parameter).

Prior Class Dpar Nlpar Bound

normal(0.6, 0.3) FE sage
normal(1, 1) FE i1 <lower = 0>
normal(10, 2) FE i2 <lower = 0>
normal(−1, 1) FE lrc
normal(1.5, 1) FE m1 <lower = 0>
normal(0.7, 0.5) FE m2
normal(0, 0.5) FE sR2
normal(0, 0.5) FE sR7
student_t(3, 0, 2.5) GE shape
student_t(3, 0, 2.5) GE sage
normal(0, 1) GE i1
normal(0, 1) GE i2
normal(0, 0.5) GE lrc
normal(0, 0.5) GE m1
normal(0, 0.5) GE m2
student_t(3, 0, 2.5) GE shape
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Figure A8. Model predictions (—) of internode length per shoot and rank using the final model with
the full data set and all shoot’s group-level information in the predictions (measurement data (◦)).
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Figure A9. Posterior distributions of the main model coefficients for the final internode length model
fitted on the full data set.
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Figure A10. (A) Model simulation of 80 different shoots and their internode length development
by ranks (rank ≤ 13) using samples from the posterior distribution including group-level effects
covering the time frame of the observations of approximately CDD = 30 (cumulative development
days). The x-axis describes the age of the internode in CDD (CDDage). Columns devise the relative
max. shoot the length (max(shoot length)/ max(CDDage)) into three different classes. (B) Frequency
of relative shoot the length in the observation and the simulation data set.
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Figure A11. Shoot length model predictions for Geisenheim 2018 and 2019 compared to measure-
ments from the VineyardFACE facility in the same years. Dashed lines connect data points from the
same shoot. Solid, red/blue colored lines show simple linear regression results for the observations
per treatment (aCO2, eCO2). The predicted budburst probability for this studies budburst model
is indicated and transported in the transparency of the line plots. Additional observations include
unpruned shoots (‘nearby random shoots’) from identical planting material grown outside of the
FACE rings [116].
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79. Ceglar, A.; Črepinšek, Z.; Kajfež-Bogataj, L.; Pogačar, T. The simulation of phenological development in dynamic crop model:
The Bayesian comparison of different methods. Agric. For. Meteorol. 2011, 151, 101–115. [CrossRef]

80. Logothetis, D.; Malefaki, S.; Trevezas, S.; Cournède, P.H. Bayesian Estimation for the GreenLab Plant Growth Model with
Deterministic Organogenesis. J. Agric. Biol. Environ. Stat. 2021. [CrossRef]

81. Sexton, J.; Everingham, Y.; Inman-Bamber, G. A theoretical and real world evaluation of two Bayesian techniques for the
calibration of variety parameters in a sugarcane crop model. Environ. Model. Softw. 2016, 83, 126–142. [CrossRef]

82. Tan, J.; Cao, J.; Cui, Y.; Duan, Q.; Gong, W. Comparison of the Generalized Likelihood Uncertainty Estimation and Markov Chain
Monte Carlo Methods for Uncertainty Analysis of the ORYZA_V3 Model. Agron. J. 2019, 111, 555–564. [CrossRef]

83. Gao, Y.; Wallach, D.; Liu, B.; Dingkuhn, M.; Boote, K.J.; Singh, U.; Asseng, S.; Kahveci, T.; He, J.; Zhang, R.; et al. Comparison of
three calibration methods for modeling rice phenology. Agric. For. Meteorol. 2020, 280, 107785. [CrossRef]

84. Wallach, D.; Palosuo, T.; Thorburn, P.; Hochman, Z.; Gourdain, E.; Andrianasolo, F.; Asseng, S.; Basso, B.; Buis, S.; Crout, N.; et al.
The chaos in calibrating crop models: Lessons learned from a multi-model calibration exercise. Environ. Model. Softw. 2021,
145, 105206. [CrossRef]

85. Seidel, S.; Palosuo, T.; Thorburn, P.; Wallach, D. Towards improved calibration of crop models—Where are we now and where
should we go? Eur. J. Agron. 2018, 94, 25–35. [CrossRef]

86. Parker, A.K.; Fourie, J.; Trought, M.C.T.; Phalawatta, K.; Meenken, E.; Eyharts, A.; Moltchanova, E. Evaluating sources of
variability in inflorescence number, flower number and the progression of flowering in Sauvignon blanc using a Bayesian
modelling framework. OENO One 2022, 56, 1–15. [CrossRef]

87. Spitters, C. Crop growth models: Their usefulness and limitations. Acta Hortic. 1990, 267, 349–368. [CrossRef]

http://dx.doi..org/10.1016/j.ecolmodel.2006.03.030
http://dx.doi..org/10.1111/j.2041-210X.2011.00155.x
http://dx.doi..org/10.1198/004017005000000661
http://dx.doi..org/10.1016/j.tree.2017.10.007
http://www.ncbi.nlm.nih.gov/pubmed/29122382
http://dx.doi..org/10.1126/science.286.5444.1460
http://dx.doi..org/10.1016/j.envsoft.2010.09.004
http://dx.doi..org/10.1111/j.1461-0248.2011.01640.x
http://mc-stan.org/
https://mc-stan.org/rstanarm
http://dx.doi..org/10.18637/jss.v080.i01
http://dx.doi..org/10.32614/RJ-2018-017
http://dx.doi..org/10.7717/peerj-cs.55
http://dx.doi..org/10.1201/9780429029608
http://dx.doi..org/10.1201/9780429258411
http://dx.doi..org/10.3390/rs12162666
http://dx.doi..org/10.2134/agronj2012.0038
http://dx.doi..org/10.1016/j.agrformet.2012.04.019
http://dx.doi..org/10.1016/j.agrformet.2010.09.007
http://dx.doi..org/10.1007/s13253-021-00468-w
http://dx.doi..org/10.1016/j.envsoft.2016.05.014
http://dx.doi..org/10.2134/agronj2018.05.0336
http://dx.doi..org/10.1016/j.agrformet.2019.107785
http://dx.doi..org/10.1016/j.envsoft.2021.105206
http://dx.doi..org/10.1016/j.eja.2018.01.006
http://dx.doi..org/10.20870/oeno-one.2022.56.1.4717
http://dx.doi..org/10.17660/ActaHortic.1990.267.42


Plants 2022, 11, 801 55 of 56

88. Wohlfahrt, Y.; Smith, J.; Tittmann, S.; Honermeier, B.; Stoll, M. Primary productivity and physiological responses of Vitis vinifera L.
cvs. under Free Air Carbon dioxide Enrichment (FACE). Eur. J. Agron. 2018, 101, 149–162. [CrossRef]

89. Parent, B.; Tardieu, F. Temperature responses of developmental processes have not been affected by breeding in different
ecological areas for 17 crop species. New Phytol. 2012, 194, 760–774. [CrossRef]

90. Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48.
[CrossRef]

91. Yang, X.S. Multi-Objective Optimization. In Nature-Inspired Optimization Algorithms; Elsevier: Amsterdam, The Netherlands, 2014;
pp. 197–211. [CrossRef]

92. Kochenderfer, M.J.; Wheeler, T.A. Algorithms for Optimization; MIT Press: Cambridge, MA, USA, 2019.
93. Makowski, D.; Ben-Shachar, M.S.; Chen, S.H.A.; Lüdecke, D. Indices of Effect Existence and Significance in the Bayesian

Framework. Front. Psychol. 2019, 10, 2767. [CrossRef]
94. Vehtari, A.; Lampinen, J. Bayesian Model Assessment and Comparison Using Cross-Validation Predictive Densities. Neural

Comput. 2002, 14, 2439–2468. [CrossRef]
95. Vehtari, A.; Gelman, A.; Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat.

Comput. 2016, 27, 1413–1432. [CrossRef]
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