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Abstract: Today, skin care products and cosmetic preparations containing natural ingredients are
widely preferred by consumers. Therefore, many cosmetic brands are encouraged to offer more
natural products to the market, such as plant extracts that can be used for their antiaging, antiwrinkle,
and depigmentation properties and other cosmetic purposes. In the current study, the volatile
constituents of the hexane-soluble fraction of a Stenocarpus sinuatus (family Proteaceae) leaf methanol
extract (SSHF) were analyzed using GC/MS analysis. Moreover, the antiaging activity of SSHF
was evaluated through in vitro studies of anti-collagenase, anti-elastase, anti-tyrosinase, and anti-
hyaluronidase activities. In addition, an in silico docking study was carried out to identify the
interaction mechanisms of the major compounds in SSHF with the active sites of the target enzymes.
Furthermore, an in silico toxicity study of the identified compounds in SSHF was performed. It was
revealed that vitamin E (α-tocopherol) was the major constituent of SSHF, representing 52.59% of the
extract, followed by γ-sitosterol (8.65%), neophytadiene (8.19%), β-tocopherol (6.07%), and others.
The in vitro studies showed a significant inhibition by SSHF of collagenase, elastase, tyrosinase, and
hyaluronidase, with IC50 values of 60.03, 177.5, 67.5, and 38.8 µg/mL, respectively, comparable to
those of the positive controls epigallocatechin gallate (ECGC, for collagenase, elastase, hyaluronidase)
and kojic acid (for tyrosinase). Additionally, the molecular docking study revealed good acceptable
binding scores of the four major compounds, comparable to those of ECGC and kojic acid. Besides,
the SSHF identified phytoconstituents showed no predicted potential toxicity nor skin toxicity, as
determined in silico. In conclusion, the antiaging potential of SSHF may be attributed to its high
content of vitamin E in addition to the synergetic effect of other volatile constituents. Thus, SSHF
could be incorporated in pharmaceutical skin care products and cosmetics after further studies.

Keywords: antiaging; Stenocarpus sinuatus; anti-collagenase; anti-elastase; anti-tyrosinase;
anti-hyaluronidase; GC/MS

1. Introduction

Skin aging is a complex biological process. It causes various undesirable visible signs
such as skin dryness, wrinkles, fine lines, reduction in skin elasticity, and loss of skin
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firmness and soft texture [1]. It develops as a result of both intrinsic and extrinsic factors.
The intrinsic factors include genetic, hormonal, and cellular metabolic factors. The extrinsic
factors are the result of chronic exposure to agents with damaging effects to the skin such
as toxins, chemicals, nicotine, pollutants, and, particularly, exposure to sunlight radiation,
especially UV-B, which causes photoaging and skin cancer [2]. These factors can lead to
an increase in matrix metalloproteinases (MMPs) expression in human skin. MMPs are
responsible for senescent cells accumulation, connective tissue degradation, and elastic
fibers degradation [3].

Collagenase and elastase are members of the MMPs family that degrade collagen
network and breakdown elastin fibers, respectively. As a result, wrinkles appearance, loss
of skin elasticity, and consequently skin aging occur [4]. Tyrosinase is the rate-limiting
enzyme in melanin synthesis, and its overproduction results in melanin accumulation and
various skin disorders, including hyperpigmentation, sagging, wrinkles, freckles, and age
spots. Hyaluronidase degrades hyaluronic acid, which is necessary to retain water and
keep the skin tissues moist, smooth, well hydrated, and lubricated [5]. Thus, the breakdown
of hyaluronic acid by hyaluronidase results in skin drying and sagging and loss of skin
smoothness and plasticity [6]. Therefore, medical and cosmetic preparations used to protect
skin against aging and hyperpigmentation are mainly composed of collagenase, tyrosinase,
elastase, and hyaluronidase inhibitors [4].

However, synthetic ingredients used in cosmetics and medical preparations are not
widely accepted by consumers, due to their undesirable side effects and allergic reactions.
As a consequence, cosmetic research has extended to identify natural resources for cosmet-
ics [6]. Many natural products have shown potential antioxidant, anti-inflammatory [7–9],
antiaging, and anti-hyperpigmentation effects. Green tea (Camellia sinensis) extracts, grape
(Vitis vinifera) seed oil, soya bean (Glycine max) extracts, and coconut (Cocos nucifera) oil are
good examples of natural antiaging products [6].

Natural products are considered as a reservoir for treating and combating many dis-
eases [10–20]. The family Proteaceae is considered one of the important medicinal plant
families owing to the different significant biological activities exerted by its family mem-
bers. For example, the stem and bark extracts of Faurea saligna have been reported to exert
in vitro antibacterial and antifungal activities. In addition, an in vitro anti-leishmanial
effect has been reported for a Stenocarpus sinuatus bark extract against Leishmania amazo-
nensis promastigotes. These significant activities have been correlated to the diversity of
the classes of compounds isolated from Proteaceous plants. These include flavonoids,
alkaloids, terpenoids, sterols, and phenolic compounds. Furthermore, significant activities
of the compounds isolated from Proteaceous plants have been described. For example,
bisresorcinol isolated from a Heliciopsis terminalis trunk extract was reported to exert in-vitro
antioxidant, anti-inflammatory, and hepatoprotective effects. In addition, lomatiol isolated
from different species of the genus Lomatia exhibited cytotoxic activity, and helicid isolated
from Helicia nilagirica showed potent antidepressant activity in vivo [21–29].

Moreover, many plant extracts and oils belonging to the family Proteaceae have been
reported to exert significant antiaging, moisturizing, and skin whitening effects. For ex-
ample, the oil of Macadamia integrifolia (Proteaceae) has been incorporated as an antiaging
ingredient in cosmetic preparations. In addition, its leaf extract was reported to exhibit po-
tent anti-tyrosinase activity, with IC50 of 85 µg/mL, whereas the ethyl acetate and n-butanol
fractions showed IC50 values of 60 and 75 µg/mL, respectively. Besides, gallic acid iso-
lated from this plant exhibited an IC50 value 56 µg/mL [30]. These remarkable cosmetic
effects of Macadamia integrifolia oil and leaf extract have been attributed to their content
of vitamin E and phytosterols [31,32]. Protea madiensis root and bark extracts have been
traditionally used to treat hyperpigmentation and other skin disorders. They were found
to inhibit mushroom tyrosinase and tyrosine hydroxylase activity (THA). The n-hexane
and methanol extracts inhibited the enzyme tyrosinase, with IC50 of 40 and 31 µg/mL,
respectively. Meanwhile, the n-hexane, chloroform, methanol, and aqueous extracts inhib-
ited THA with IC50 > 16.7, =74 ± 17, <16, and <52 µg/mL, respectively. Moreover, they
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strongly inhibited melanogenesis [33]. Additionally, methyl 2,5-dihydroxycinnamate and
bis-norstriatol isolated from a methanolic extract of Grevillea robusta leaves was reported to
inhibit L-DOPA oxidation by mushroom tyrosinase, with IC50 values of 69.22 and 65.54 µM,
compared to a value of 114.54 µM of a reference standard (kojic acid) [34]. Furthermore, an
Oreocallis grandiflora hydroalcoholic extract exhibited photoprotective activity against UV
B cell death. It showed a sun protection factor (SPF) of 13.56 at 10 µg/mL, compared to
11.82 and 6.21 of 2-ethylhexyl 4-methoxycinnamate and 2-ethylhexyl 4-(dimethyl amino)
benzoate positive controls, respectively, at the same concentration [35].

Despite the great diversity of the reported phytoconstituents and biological activities
of many Proteaceous plants, several family members have not been explored yet. These
members are expected to be beneficial in the field of medicine and are worth to be investi-
gated. The anti-leishmanial activity of Stenocarpus sinuatus (A. Cunn.) Endl. (Proteaceae)
bark extract was previously described [28]. However, the phytoconstituents and biological
activities of its leaf extracts have not been investigated yet. S. sinuatus is an Australian tree
of medium size and approximately 30 m in height. It grows in tropical and subtropical
rainforests. It is sometimes named fire wheel tree or white silky oak due to its ornamental
flowers of a bright orange-red color. These flowers produce olfactory cues and ultraviolet
markers that attract bees. For example, Pharohylaeus lactiferus, a rare endemic bee, mainly
prefers S. sinuatus [36,37]. The interesting previously mentioned antiaging, moisturizing,
and skin whitening effects of some Proteaceous plant extracts and oils have encouraged us
to investigate S.S. leaf extracts.

The aim of the current study was to investigate the volatile constituents and the bio-
logical activities of a Stenocarpus sinuatus extract for the first time. The volatile metabolomic
profile of SSHF was characterized by GC/MS. Moreover, the ability of the SSHF extract
to inhibit skin aging enzymes (collagenase, tyrosinase, hyaluronidase, and elastase) was
evaluated. In addition, in silico docking studies were conducted to demonstrate the mecha-
nism and binding pattern of the four major compounds in SSHF to their targets. Moreover,
potential skin toxicity was determined in silico for compounds identified in SSHF.

2. Results and Discussion
2.1. GC/MS Analysis of the Hexane-Soluble Fraction of a Stenocarpus sinuatus Extract

The phytochemical profile of the n-hexane soluble fraction of a S. sinuatus methanol leaf
extract was characterized using GC/MS. Fifteen compounds were identified, accounting
for 96.77% of SSHF composition (Table 1, Figure 1). Vitamin E (α-tocopherol) was the major
constituent identified in SSHF, representing 52.59% of the total fraction. Other identified
compounds included γ-sitosterol (8.65%), neophytadiene (8.19%), β-tocopherol (6.07%),
linolenic acid, methyl ester (4.84%), and phytol (4.04%). The other identified compounds
(Figure 2) belong to different classes including diterpenes, triterpenes, fatty acid methyl
esters, aliphatic hydrocarbons, and others.

α-Tocopherol (Figure 2), the major constituent identified herein, is the most biologically
active isomer of vitamin E [38]. Vitamin E is composed of naturally occurring lipophilic
compounds including α-, β-, γ-, and δ- tocopherols. They differ in the saturation of
their side chains and in the methylation degree of their chromanol heads [39]. It was
reported in various plants including leaves of Sauropus androgynus (426.8 mg/kg edible
part), Capsicum annum red pepper (155.4 mg/kg), Camelia chinensis black tea (183.3 mg/kg),
and many others [40].

Many Proteaceous plants were reported to be rich in tocopherol, phytosterols, squa-
lene, and other constituents. For example, Macadamia integrifolia was shown to contain
133.18 mg of vitamin E in 100 g leaves, 2.6% in its kernel, and 5.52% in the pericarp [31].
Macadamia nuts and kernel were reported as rich sources of phytosterols, squalene, and
tocopherols [32]. In addition, Gevuina avellana (Chilean hazelnut) displayed a high content
of vitamin E [41]. Furthermore, the average total tocopherol content of the nut oil of
Gevuina avellana was 1.4 µg/g [42].
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Table 1. Chemical profile of the prepared lipophilic extract from the leaves of Stenocarpus sinuatus.

Peak Rt Compound Molecular
Formula RI-exp RI-lit Content (%) Identification

1 31.54 3,7,11,15-Tetramethyl-2-
hexadecene C20H40 1811 1811 0.26% MS, RI

2 31.67 Neophytadiene C20H38 1817 1817 8.19% MS, RI

3 32.58 7,11,15-Trimethyl-3-
methylenehexadeca-1-ene C20H38 1843 1844 3.07% MS, RI

4 33.55 Hexadecanoic acid, methyl
ester C17H34O2 1907 1907 2.22% MS, RI

5 36.89 9,12-Octadecadienoic acid,
methyl ester C19H34O2 2077 2076 1.79% MS, RI

6 37.03
9,12,15-Octadecatrienoic acid,

methyl ester, (Z, Z, Z)-
(Linolenic acid, methyl ester)

C19H32O2 2084 2085 4.38% MS, RI

7 37.23 Phytol C20H40O 2095 2096 4.04% MS, RI

8 48.92 Squalene C30H50 2794 2790 1.03% MS, RI

9 49.70 α-Tocospiro A C29H50O4 2844 2855 0.64% MS, RI

10 49.80 2-Methyloctacosane C29H60 2851 2857 1.54% MS, RI

11 51.97 β-Tocopherol C28H48O2 3048 3043 6.07% MS, RI

12 52.49 Hentriacontane C31H64 3088 3100 1.64% MS

13 53.27 Vitamin E
(α-tocopherol) C29H50O2 3146 3149 52.59% MS, RI

14 54.84 Campesterol C28H48O 3255 3193 0.66% MS, RI

15 56.31 γ-Sitosterol C29H50O 3346 3351 8.65% MS, RI

Tocopherols 58.66%

Acyclic diterpenes 11.52%

Oxygenated diterpenes 4.04%

Triterpenes 1.03%

Sterols 9.31%

Fatty acid methyl esters 8.39%

Aliphatic alkanes 3.18%

Others 0.64%

Total identified 96.77%

RIexp, Retention index, determined experimentally on an Rtx-5MS column; RIlit, published retention indices.

2.2. In Vitro Assays to Evaluate the Antiaging Potential of Stenocarpus sinuatus Leaf
Hexane-Soluble Fraction

The antiaging potential of Stenocarpus sinuatus leaf hexane-soluble fraction was evalu-
ated in vitro. The results revealed a promising activity of SSHF against several enzymes.
Different concentrations of the sample were assessed and showed a dose-dependent
inhibitory activity against four enzymes (Figure 3). SSHF displayed considerable anti-
hyaluronidase and anti-collagenase activities, exhibiting IC50 of 38.8 and 60.03 µg/mL,
respectively, approaching that of the standard anti-aging drug epigallocatechin gallate
(EGCG) with IC50 values of 15.5 and 24.7 µg/mL, respectively. In addition, SSHF inhibited
tyrosinase, with IC50 value of 67.5 µg/mL, whereas the kojic acid standard had an IC50
value of 13.8 µg/mL. Meanwhile, it displayed a lower anti-elastase activity, with IC50 of
177.5 µg/mL, whereas the IC50 of the EGCG standard was 18.2 µg/mL.
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The identified constituents of SSHF were reported to exert significant biological activi-
ties useful in the cosmetic field. Their antiaging, skin whitening, skin moisturizing, and
antioxidant effectiveness was observed. These reported beneficial activities encouraged us
to evaluate the antiaging potential of the isolated fraction through different in vitro and
molecular docking assays.

For example, vitamin E (52.59%) is well known for its antioxidant, free radicle scav-
enging, and antiaging activities [38]. Moreover, it reduces ultraviolet-induced skin hyper-
pigmentation. Therefore, its cosmetic application protects the skin from UV damage that
aggravates wrinkles, skin dehydration, and loss of elasticity [43]. The depigmentation effect
of vitamin E was attributed to its reported anti-tyrosinase and antioxidant activities [44].

Several studies were previously conducted to illustrate the role of vitamin E in the
inhibition of the pro-aging enzymes assessed herein. An in vitro study with skin fibroblasts
revealed that α-tocopherol reduced the level of expression of collagenase via protein
kinase C inhibition. It diminished the transcription of MMP-1 mRNA at 50 µM. This
inhibition explained the effect of α-tocopherol against skin age-dependent damage and
inflammation [45]. Vitamin E was also used as a reference standard in antioxidant and
anti-tyrosinase assays, showing a DPPH scavenging effect with an IC50 of 25.55 µg/mL
and inhibition of tyrosinase with a percentage of inhibition of 36.27 ± 3.73% [46].

An in vivo study on 10 female volunteers examined the effectiveness of a vitamin E
microsphere formulation. Enhancement of skin elasticity and skin moisture and decrease of
wrinkles volume were reported [47]. Consequently, vitamin E can be used either alone or in
combination with other ingredients in cosmetic preparations to improve skin integrity and
pigment appearance besides reducing skin aging [43]. Thus, the high content of vitamin E
in SSHF suggests a significant antiaging activity of this extract.
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Phytosterol constituents identified in SSHF such as γ-sitosterol (8.65%) and Campes-
terol (0.66%) were reported to be biologically active, exhibiting emollient and antiaging
effects and protecting the skin against UV damage. Moreover, the ability of phytosterols
to inhibit MMP-1, constrain collagen degradation, and enhance collagen synthesis was
experimentally demonstrated in human keratinocytes [48]. Besides, they were reported to
stimulate the synthesis of hyaluronic acid, increase the thickness of the epidermis, enhance
skin elasticity, and reduce skin roughness. Therefore, they can be incorporated in antiaging
creams as well as sun-care products [49].
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In addition, many diterpenes isolated from plants have been reported to show potential
antioxidant and anti-inflammatory activities [50,51]. Phytol diterpene identified in SSHF
(4.04%) was used in cosmetics to inhibit cellular senescence, in particular of keratinocytes,
induced by oxidative stress [52]. In It also exhibited antioxidant, anti-inflammatory, an-
timicrobial, cytotoxic, and immune-modulating activities [53]. Previous molecular docking
studies revealed that phytol can bind to amino acid residues in the catalytic domain of
MMP-1 (collagenase enzyme), with binding energy (−7.06 kcal/mol) comparable to that
(−8.05 kcal/mol) of the reference compound doxycycline [54].

Neophytadiene diterpene (8.19%) exhibited in vitro antioxidant, anti-inflammatory,
antipyretic, antimicrobial, and analgesic activities [55]. It showed potent binding affinity to
tyrosinase in molecular docking studies, with a docking score of 56.99 [56], while squalene
triterpene (1.03%) exhibited in vitro antiaging, sunscreen, antioxidant, anti-inflammatory,
and antidermatitic effects [55,57].
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Therefore, in the current study, the observed significant activities of SSHF can be
explained by the antiaging, skin whitening, and antioxidant effects previously reported for
its identified components. Thus, it can be concluded that the significant inhibitory activity
of SSHF to hyaluronidase collagenase, tyrosinase, and elastase may be attributed to its high
content of vitamin E and the synergetic effects of all its constituents.

2.3. In Silico Studies
2.3.1. In Silico Docking Studies on the Target Enzymes

Driven by the promising inhibitory activity of the extract against collagenase, elastase,
hyaluronidase, and tyrosinase, an in silico docking study was conducted. Docking studies
are performed to identify the possible binding mechanism and pattern of compounds to
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potential targets [58,59]. The main compounds that we identified were previously reported
to exert antiaging activity in several studies. For example, vitamin E was found to inhibit
tyrosinase and collagenase in vitro [45,46]. In addition, neophytadiene showed potent bind-
ing to tyrosinase in a previous in silico study [56]. Furthermore, phytosterols were reported
to enhance the synthesis of collagen and hyaluronic acid [48,49]. Therefore, we assumed
that the major identified compounds might be responsible for the observed activities of
SSHF. In this respect, the X-ray structures of the four enzymes were downloaded from the
PDB to conduct the docking assays. First, the applied docking parameters were validated
by re-docking each o-crystalized ligand into its corresponding active site. The calculated
RMSD values between the docked pose and the co-crystalized pose were 0.77, 1.2, 0.61, and
0.81 Å for collagenase, elastase, hyaluronidase, and tyrosinase, respectively, indicating that
the docking protocol was valid. The docking of EGCG to hyaluronidase, collagenase, and
elastase resulted in docking scores of −8.19, −8.8, and−8.9 Kcal/mole, while the docking
of kojic acid to its target enzyme resulted in a docking score of −4.62 Kcal/mole. The
docking of the four major compounds to the four enzymes resulted in good acceptable
scores, comparable to those of the reference compounds EGCG and kojic acid. Table 2
summarizes the docking interactions of the four compounds with the four potential target
enzymes and the corresponding docking scores. Taking into account the hydrophobic
nature of the isolated compounds composed mainly of a hydro-carbonic skeleton, most of
the observed interactions with the four enzymes were found to be hydrophobic in nature
(see Figures 4–7). In conclusion, from the major extract, the four identified compounds had
the ability to strongly interact with the four enzymes collagenase, elastase, hyaluronidase,
and tyrosinase, achieving acceptable docking scores that sometimes exceeded those of the
reference compounds. These acceptable scores were achieved through the establishment of
many hydrophobic interactions. Thus, the observed strong binding interactions validated
the activities of SSHF and suggest possible mechanisms of action.

2.3.2. In Silico Toxicity Study

The SSHF constituents showed no toxicity in silico using Pro-toxll for the prediction
of any potential toxicity. In addition, no potential skin toxicity could be predicted when
using Pred-Skin 3 and a Bayesian model. The results are shown in Table 3. Furthermore, no
reported harmful or toxic effects could be established for any of the compounds identified
in SSHF.
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Table 2. Docking results regarding the main four isolated compounds and collagenase (456c), elastase (6qeo), hyaluronidase (1fcv), and tyrosinase (5M8Q).

Compound
Name

Collagenase Elastase Hyaluronidase Tyrosinase

Score HB Hydrophobic Score HB Hydrophobic Score HB Hydrophobic Score HB Hydrophobic

α-Tocopherol −9.02 —–

LEU185,
LEU218,
VAL219,
LEU239,
TYR244,
PHE252,
MET253

−6.00 HIS140,
GLU141

HIS140,
HIS223 −6.40 SER304

TYR55,
TYR184,
TYR227,
TRP267,
TRP301

−7.70 HIS377,
HIS381

HIS215,
PHE362,
TYR369,
HIS381,
LEU382

β-Tocopherol −8.68 PRO190

TYR176,
LEU184,
LEU185,
HIS187,
PRO193,
HIS222,
HIS226,
HIS232

−6.20 —–

VAL137,
HIS140,
LEU197,
ARG208,
HIS223,
HIS224

−6.40 SER304
TYR55,

TYR184,
TYR227,
TRP301

−7.46 —–

HIS215,
PHE362,
TYR369,
HIS377,
HIS381,
LEU382,
VAL391

Neophytadiene −7.83 —–

LEU184,
LEU185,
LEU218,
VAL219,
HIS222,
LEU239,
PHE252,
MET252

−5.20 —–

LEU132,
VAL137,
HIS140,
ILE190,
LEU197,
ARG208,
HIS223,
HIS224

−5.40 —–
TYR55,
TRP184,
TYR227,
TRP301

−7.13 —–

HIS215,
TYR348,
LEU382,
VAL391,
PRO431,
HIS434

γ-Sitosterol −7.66 —–

TYR179,
LEU184,
TYR185,
HIS187,
PHE189,
PRO193,
HIS222,
HIS232

−6.10 —–

PHE129,
LEU132,
LEU197,
ARG208,
HIS223

−6.90 —–

TYR55,
TYR184,
TYR227,
TRP226,
TRP301

−6.84 —–

HIS215,
PHE362,
TYR369,
HIS377,
HIS381,
LEU382,
VAL391

EGCG −8.19

ALA186,
VAL219,
GLU223,
HIS226,
PHE241,
ILE243

VLA219,
HIS222 −8.80

GLU141,
ARG198,
ASP206,
ASP221,
HIS223

HIS140,
LEU197,
ARG198

−8.9
ASP56,

ASP111,
TRP301,
SER304

ASP111,
GLU113,
TRP301

Kojic acid −4.62 HIS377,
SER394

HIS377,
SER394
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Table 3. In silico toxicity study of compounds identified in SSHF.

Compound Name lD50 as Predicted by Pro-toxII Any Potential Toxicity as
Predicted by Pro-toxII

Potential Skin Toxicity as
Computed by Pred-Skin 3 Using

Bayesian Model
% Probability

3,7,11,15-Tetramethyl-2-hexadecene 5000 mg/kg none None 95

Neophytadiene 5050 mg/kg none None 89

Hexadecanoic acid, methyl ester 5000 mg/kg none None 92

9,12-Octadecadienoic acid, methyl ester 20,000 mg/kg none None 95

9,12,15-Octadecatrienoic acid,
methyl ester (Linolenic acid, methyl ester) 20,000 mg/kg none None 99

Phytol 5000 mg/kg none None 92

Squalene 5000 mg/kg none None 95

α-Tocospiro A 300 mg/kg cytotoxic None 88

2-Methyloctacosane 750 mg/kg none None 96

β-Tocopherol 500 mg/kg none None 90

Hentriacontane 750 mg/kg none None 98

Vitamin E (α-tocopherol) 5000 mg/kg none None 89

Campesterol 890 mg/kg none None 97

γ-Sitosterol 890 mg/Kg none None 98
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3. Materials and Methods
3.1. Plant Material

The leaves of Stenocarpus sinuatus were collected in Spring 2020 from El-Abd farm,
Cairo Alexandria desert road, Egypt. Plant material was kindly identified and authenticated
by Mrs. Treiz Labib, Plant Taxonomy Consultant at the Ministry of Agriculture, Egypt. A
voucher specimen (PHG-P-SS-326) was deposited in the Herbarium of the Pharmacognosy
Department, Faculty of Pharmacy, Ain Shams University.

3.2. Chemicals and Reagents

Tricine buffer, collagenase (ChC—EC.3.4.23.3), N-[3-(2-furyl) acryloyl]-Leu–Gly–Pro–
Ala (FALGPA), EGCG, N-Succinyl-Ala–Ala–Ala-p-nitroanilide (AAAPVN), Tris-HCL buffer,
pancreatic elastase (PE), L-DOPA, mushroom tyrosinase, phosphate buffer, Kojic acid, cal-
cium chloride, hyaluronic acid, potassium metaborate (KBO2), hyaluronidase, acetate
buffer, 10 N HCl, acetic acid, and p-dimethylaminobenzaldehyde (DMAB) were bought
from Sigma-Aldrich (Heliopolis, Cairo, Egypt). Methanol and hexane were bought from
Al-brouj (Giza, Egypt). All solvents used were of analytical grade.

3.3. Preparation of the Extracts

The air-dried leaves were ground and extracted with methanol (12 L × 3). The extract
was filtered, and the solvent was evaporated using a rotary evaporator under reduced
pressure and lyophilized to yield 350 g of methanol extract. The extract was then defatted
with hexane (3 L × 3). The hexane soluble fraction was evaporated under reduced pressure
to yield 45 g of residue. The hexane soluble fraction was kept in a tightly closed container
for further analysis.

3.4. GC/MS Analysis of the Hexane-Soluble Fraction

GC/MS analysis of the hexane-soluble fraction was carried out using a Shimadzu
QP2010 gas chromatograph coupled to a quadrupole mass spectrometer (Shimadzu Cor-
poration, Kyoto, Japan) [60–62] and equipped with an Rtx-5MS fused bonded capillary
column (Restek, PA, USA, dimensions, 30 m × 0.25 mm i.d. × 0.25 µm film thickness) and
a split–splitless injector. Helium was used as a carrier gas at a flow rate of 1.37 mL/min,
and an injection volume 1 µL of the diluted sample (1% v/v) was employed in split mode at
a split ratio of 1:15. The injector temperature was adjusted at 280 ◦C, the oven temperature
was kept at 50 ◦C for 3 min, then programmed to reach 300 ◦C at a rate of 5 ◦C/min
and kept constant at 300 ◦C for 5 min. As the MS operating parameters, the ion source
temperature was maintained at 220 ◦C, and the separation was carried out at 70 eV in
electron ionization (EI) mode, filament emission current 60 mA, and scanning from 35 to
500 amu. The compounds were identified by the comparison of their retention indices
(RI) and mass spectra (MS) to values reported in the NIST mass spectral library database
(similarity index > 90%) and in the literature [63–72]. The retention indices were calculated
relative to those of a homologous series of standard n-alkanes (C8–C28) injected under the
same conditions. The results was processed by GCMSsolution Workstation Software for
Gas Chromatography–Mass Spectrometry.

3.5. In Vitro Antiaging Assays
3.5.1. Anti-Collagenase Assay

The anti-collagenase assay was performed spectrophotometrically according to the
method reported by Thring et al. [73] with minor modifications. The assay was carried
out in 50 mM Tricine buffer (pH 7.5 with 10 mM CaCl2 and 400 mM NaCl). Collagenase
produced by the bacterium Clostridium histolyticum (ChC—EC.3.4.23.3) was first dissolved
in the buffer to an initial concentration of 0.8 unit/mL based on the supplier’s activity data.
N-[3-(2-furyl) acryloyl]-Leu–Gly–Pro–Ala (FALGPA) was used as a synthetic substrate,
dissolved in Tricine buffer to a concentration of 2 mM. The samples in a concentration range
of 1000–7.81 µg/mL were incubated at room temperature with the prepared collagenase
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in Tricine buffer for 15 min; then, the synthetic substrate was added to the samples to
start the reaction. The absorbance values were measured at 490 nm using a microplate
reader (TECAN, Inc., Durham, NC, USA). A positive control (EGCG) was used, while the
negative control consisted of water. The percentage of collagenase inhibition was calculated
according to (%) = [1 − (S/C) × 100], where “S” is the corrected absorbance of the controls
(in the absence of a sample). The inhibitory concentration 50, inhibiting 50% of the enzyme
(IC50), was estimated from the graph plots of the dose–response curve for each sample
concentration by GraphPad Prism software (San Diego, CA, USA).

3.5.2. Anti-Elastase Assay

The anti-elastase assay was performed spectrophotometrically as previously reported
by Kim et al. [74] with minor modifications. Elastase from pancreatic porcine was dissolved
in sterile water to obtain a stock solution at a concentration of 3.33 mg/mL. N-succinyl-
Ala–Ala–Ala–p-nitroanilide (AAAPVN) was used as a substrate, dissolved in Tris-HCL
buffer (pH 8) at 1.6 mM. The samples in the concentration range of 1000–7.81 µg/mL were
incubated at room temperature with the prepared elastase solution in the buffer for 15 min;
then the synthetic substrate was added to the samples to start the reaction. The final mixture
with a total volume 250 µL contained buffer, substrate (AAAPVN) 0.8 mM, 25 µg of test
extract, and 1 µg/mL of PE. A positive control (EGCG) was used, while the negative control
consisted of water. The absorbance was measured at 400 nm in a 96-well microtiter plate
using a microplate reader (TECAN, Inc., Durham, NC, USA). The percentage of elastase
inhibition was calculated according to (%) = [1 − (S/C) × 100], where “S” is the corrected
absorbance of the tested samples, while “C” is the corrected absorbance of the controls (in
the absence of a sample). The inhibitory concentration 50 (IC50) was estimated from the
graph plots of the dose–response curves at each sample concentration by GraphPad Prism
software (San Diego, CA, USA).

3.5.3. Anti-Tyrosinase Assay

This assay was performed spectrophotometrically as previously described in the
literature [75]. L-DOPA was used as a substrate. The reaction mixture in a total volume of
1000 µL contained 15 µL of mushroom tyrosinase (2500 U/mL), 685 µL of phosphate buffer
(pH 6.5, 0.05 M), 100 µL of 5 mM L-DOPA, and 200 µL of the samples in the concentration
range of 1000–7.81 µg/mL. The positive control kojic acid was used, whereas the negative
control consisted of water. After the addition of the substrate (L-DOPA), the absorbance
was measured at 475 nm using a microplate reader (TECAN, Inc., Durham, NC, USA); each
measurement was carried out in triplicate. The percentage of tyrosinase inhibition was
calculated according to (%) = [1 − (S/C) × 100], where “S” is the corrected absorbance of
the tested sample, while “C” is the corrected absorbance of the controls (in the absence
of a sample). The inhibitory concentration 50 (IC50) was estimated from the graph plots
of the dose–response curves at each sample concentration by GraphPad Prism software
(San Diego, CA, USA). IC50 is the concentration of the sample needed to inhibit 50% of
tyrosinase activity under the used assay conditions.

3.5.4. Anti-Hyaluronidase Assay

The hyaluronidase inhibitory assay was performed following the fluorimetric Morgan–
Elson method reported by Reissig et al. [76] and modified by Takahashi et al. [59]. The
reaction mixture in 2 mL test tubes contained 25 µL of calcium chloride (12.5 mM), 100 µL
of hyaluronic acid substrate (1 mg/mL in 0.1 M acetate buffer; pH 3.5), 12.5 µL each of
hyaluronidase (1.5 mg/mL), and the sample (2.8 mg/mL). The range of sample concentra-
tion for the hyaluronidase inhibition assay was 1000–7.81 µg/mL. Twenty-five microliters
of KBO2 (0.8 M) was added to tubes, which were then placed in a water bath at 100 ◦C for
3 min, followed by cooling at room temperature. Then, 800 µL of DMAB (4 g DMAB in 5
mL 10 N HCl and 40 mL acetic acid) was added. Then, the tubes were incubated for 20 min
at room temperature, and their contents were transferred to wells in a 96-well plate. Fluores-
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cence was detected by a Tecan Infinite microplate reader (TECAN, Inc., Durham, NC, USA)
at 545 nm excitation wavelength and 612 nm emission wavelength. The inhibitory concen-
tration 50 (IC50), the concentration required to inhibit 50% of hyaluronidase activity under
the used assay conditions, was estimated from the graph plot of the dose–response curves
at each concentration using GraphPad Prism software (San Diego, CA, USA).

3.6. In Silico Studies
3.6.1. In Silico Docking Studies on the Target Enzymes

The docking studies in the current work were performed using the platform of Vina
autodock and M.G.L. tools 1.5.6 [77,78]. The crystal structures of the four potential targets,
namely, collagenase, elastase, hyaluronidase, and tyrosinase were downloaded from the
protein data bank using the following PDB IDs: 456c, 6qeo, 1fcv, and 5m8q, respectively.
The four major compounds, vitamin E (α-tocopherol), γ-sitosterol, neophytadiene, and
β-tocopherol, in addition to EGCG and kojic acid, were sketched using MOE builder
and then energy-minimized under Amber12: EHT force field using a steepest descent
algorithm [79,80]. The lowest energy conformations of each of the six compounds as well
as of the four targets were saved in pdbqt format as a prerequisite for the Vina autodock.
The applied docking approach was firstly validated by re-docking each co-crystalized
ligand into the active site of its corresponding enzyme. This step was followed by RMSD
calculation between the co-crystalized and the docked poses for each enzyme [81]. Finally,
the four major compounds were docked in the binding site of each enzyme using the
validated docking protocol. Besides, EGCG was docked in hyaluronidase, collagenase, and
elastase, while kojic acid was docked in tyrosinase. Biovia Discovery Studio visualizer was
implemented in docking analysis and used to generate the binding interaction images.

3.6.2. In Silico Toxicity Study

In addition, an in silico toxicity study of the identified compounds was carried out.
Any potential toxicities were predicted by Pro-toxII, while potential skin toxicity was
predicted by Pred-Skin 3 using a Bayesian model [82,83].

3.7. Statistical Analysis

The performed assays were carried out in triplicates, and the values are expressed
as mean ± SD. For the determination of the in vitro anti-collagenase, anti-tyrosinase, anti-
elastase, anti-hyaluronidase activities, the (IC50) was estimated from the graph plots of
the dose–response curves at each sample concentration by Graph Pad Prism software (San
Diego, CA, USA). The IC50 is the concentration of the sample needed to inhibit 50% of the
tested enzyme activity under the used assay conditions.

4. Conclusions

The present study investigated the volatile phytoconstituents and the biological activi-
ties of SSHF for the first time. The GC/MS analysis revealed that α-tocopherol, γ-sitosterol,
neophytadiene, and β-tocopherol are the major compounds of the lipophilic fraction. In
addition, SSHF showed significant anti-hyaluronidase, anti-collagenase, anti-tyrosinase
activity, and low anti-elastase activity. The four major compounds achieved acceptable
docking scores in the active sites of the target enzymes. The docking scores sometimes
exceeded those of the reference compounds. In addition, the constituents of SSHF showed
no skin toxicity in an in silico study. Based on these studies and previous reports, it can
be concluded that the antiaging activities of SSHF may be attributed to its high content of
vitamin E as well as to the synergistic action of all its constituents. Therefore, SSHF could be
considered an excellent antiaging candidate that could be incorporated in pharmaceutical
skin care products and cosmetics after further clinical trials.
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