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Abstract: Mangrove forests are one of the most productive and seriously threatened ecosystems in
the world. The widespread invasion of Spartina alterniflora has seriously imperiled the security of
mangroves as well as coastal mudflat ecosystems. Based on a model evaluation index, we selected
RF, GBM, and GLM as a predictive model for building a high-precision ensemble model. We used
the species occurrence records combined with bioclimate, sea–land topography, and marine envi-
ronmental factors to predict the potentially suitable habitats of mangrove forests and the potentially
suitable invasive habitats of S. alterniflora in the southeastern coast of China. We then applied the
invasion risk index (IRI) to assess the risk that S. alterniflora would invade mangrove forests. The
results show that the suitable habitats for mangrove forests are mainly distributed along the coastal
provinces of Guangdong, Hainan, and the eastern coast of Guangxi. The suitable invasive habitats
for S. alterniflora are mainly distributed along the coast of Zhejiang, Fujian, and relatively less in the
southern provinces. The high-risk areas for S. alterniflora invasion of mangrove forests are concen-
trated in Zhejiang and Fujian. Bioclimate variables are the most important variables affecting the
survival and distribution of mangrove forests and S. alterniflora. Among them, temperature is the
most important environmental variable determining the large-scale distribution of mangrove forests.
Meanwhile, S. alterniflora is more sensitive to precipitation than temperature. Our results can provide
scientific insights and references for mangrove forest conservation and control of S. alterniflora.

Keywords: Spartina alterniflora; mangrove forests; species distribution models; ensemble model;
invasive risk

1. Introduction

With the rapid development of China’s economy, especially the growth of trade
and transportation, biological invasions are occurring very frequently [1,2]. China has
become one of the countries in the world with the most serious damage from biological
invasions. At the end of 2018, there were nearly 800 invasive alien species in China;
638 species have been confirmed as having invaded agricultural and forestry ecosystems [3].
Spartina alterniflora is a perennial herb that originates from the Atlantic coast and Gulf
coasts of North America [4] It has successfully invaded coastal wetland areas worldwide
through intentional or unintentional introduction by human beings [5–8]. China introduced
S. alterniflora in 1979 to protect against wind, siltation, reclamation, and to improve beach
vegetation cover and productivity [9,10]. Since its introduction in China, S. alterniflora has
become the most important invasive plant in coastal wetlands due to its high adaptability
and reproductive capacity [11]. The outbreak scale of S. alterniflora in China is much larger
than in other countries and regions of the world [12].

Mangrove forests are mainly found in the intertidal zone of the world’s coastal tropics
and subtropics, acting as buffer zones between land and sea [13,14]. They are among the
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most productive ecosystems in the world [15,16], having not only great social, economic,
and ecological value, but also stabilizing coastlines to reduce the damaging effects of natural
disasters [17]. Mangrove forests also provide food, medicine, fuel, and building materials
for people as well as important social and economic services such as forest products for
residents [18]. When it comes to maintaining and protecting tropical and subtropical marine
biodiversity, mangrove forests play an important role [19,20]. However, mangrove forests
are one of the most threatened ecosystems [21], especially in Asia and the Pacific, where
70% of their original habitats have been lost [22]. As an important ecological barrier, the
survival and distribution of mangrove forests are influenced by climate and environmental
changes [23]. At the same time, human activities, such as urban development, aquaculture,
mining, over-exploitation of timber, and invasive alien organisms [24–28], have led to
extensive degradation of mangrove forests.

Although S. alterniflora has played a role in promoting siltation, land reclamation, and
soil improvement, its continuous expansion has also brought about more serious ecological
consequences and economic losses. Due to its adaptability and rapid growth, S. alterniflora
has invaded the native mangrove forests along the southern coast of China and is likely
to occupy increasing areas of mangrove forest habitat in the future [27]. Different areas
of S. alterniflora have rapidly occupied most of the outer edges of mangrove forests and
significantly inhibited the regeneration of native mangrove plants [29] while threatening the
security of coastal mudflat ecosystems. Current research on mangrove forests has focused
on the physiological characteristics of plants, chemical composition extraction, benthic
biodiversity distribution, genome identification and evolution, and ecological restoration
engineering [30–33]. Studies on S. alterniflora have focused on the dynamic responses of
S. alterniflora to tidal flat systems, native community diversity, food webs, and trophic struc-
ture [34,35]; the biogeochemical cycling processes of S. alterniflora in salt marshes [36–38];
the effects of climate change on the physiological characteristics, geospatial changes, and
expansion rates of S. alterniflora [39,40]; and the inter-population interactions of the ecosys-
tems in which S. alterniflora is located [41,42]. Previous studies have mainly investigated the
mechanisms of mangrove forest invasion by S. alterniflora at microscopic scales, including
differences in chemical substances in sediments of different plant habitats; physical and
chemical responses in ecosystems; intertidal benthic differences at small scales [43–45]; and
the suitability distribution of a particular species alone [46,47]. The spatial areas of mangrove
forest invasion by S. alterniflora at a large scale have been less studied.

Climate is an important environmental determinant of species distribution, and climate
change has significant impacts on biodiversity, including species distribution and interspe-
cific interactions [48,49]. The IPCC has finalized the first part of the Sixth Assessment Report,
which states that the climate system is expected to continue warming by mid-century, with
climate change bringing many different combinations of changes to different regions [50].
As a result, an increasing number of studies have focused on how climate change affects
species distribution, while also considering a variety of other factors, such as topography,
soils, and human activities [51–56]. However, species located in coastal areas are not only
subject to climate change, but also the marine environment. Factors such as sea surface
temperature, sea surface salinity, photosynthetically available radiation, and water quality
can directly or indirectly affect the distribution of coastal wetland plants [15,57].

Species distribution models (SDMs) are widely used to predict the potential distribu-
tion of species [58]. SDMs are used to visualize the association of species occurrence records
and environmental variables through functional relationships to form various algorithms
and predict the potential distribution of target species [59]. Various SDMs have been devel-
oped based on the rapid development of computer software and technological innovation.
Commonly used SDMs are maximum entropy models (MaxEnt) [60,61], generalized lin-
ear models (GLM) [62], generalized add models (GAM) [63], classification tree analysis
(CTA) [64], artificial neural networks (ANN) [65], flexible discriminant analyses (FDA) [66],
generalized boosting models (GBM) [67], random forests (RF) [68], surface range envelopes
(SRE) [69], multiple adaptive regression splines (MARS) [70,71], support vector machines
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(SVM) [72], and maximum likelihood (Maxlike) [73]. A single model may lead to variation
in suitable habitats for the same species due to multiple factors, resulting in uncertainty
in prediction results. The proposed ensemble model (EM) fixes this problem [53]. The
advantage of EM is that it reduces or even eliminates the over-fitting caused by some
powerful single algorithms in an integrated manner, significantly enhancing modeling ac-
curacy and reducing model-fitting uncertainty [74,75]. Biomod2 is a collection of programs
developed in R for building SDMs. It can be used to simulate the potential distribution
of species by building a single model or EM to explore the relationship between species
spatial distribution and environmental variables and calibrate and evaluate models [76].

In this study, we used 1358 mangrove forest and 1314 S. alterniflora occurrence records
from the southeastern coast of China to simulate the potential distribution areas using
the EM with terrestrial and marine environmental factors. Then, we applied an invasion
risk index (IRI) and analyzed the invasive risk of S. alterniflora in the mangrove forest
distribution area. Our specific objectives are to (1) select multiple single models for simula-
tion and construct the EM by selecting a single model with a high accuracy of evaluation
index; (2) identify the most important environmental variables affecting the distribution of
mangrove forests and S. alterniflora; (3) predict potentially suitable habitats of mangrove
forests and potentially suitable invasion habitats of S. alterniflora; (4) analyze the risk of
invasion by S. alterniflora into mangrove forests in the southeastern coast of China. This
study is based on the premise hypothesis of SDM construction: Species distribution and
the environment are in an equilibrium stage. The locations where species occur represent
suitable environmental spaces and those where they do not occur represent unsuitable
spaces. The results of this study can provide the scientific reference for mangrove forest
conservation and S. alterniflora control.

2. Results
2.1. Model Evaluation

We simulated nine single models and selected RF, GBM, and GLM according to their
TSS values for modeling. Their TSS values were all superior to the other six single models.
RF, GBM, and GLM were combined to build the ensemble model (EM). Then, we evaluated
the model accuracy of RF, GBM, GLM, and EM. The results showed that the ranking of the
mean value of TSS of each model was EM > RF > GBM > GLM; the ranking of the mean
value of AUC of each model was the same as TSS (Figure 1). The simulation accuracy of
the EM is better than that of the single model as can be obtained from the results of the two
model metrics, i.e., TSS and AUC. From the simulation results, it can be concluded that the
integrated EM with a single model of high accuracy has a higher simulation accuracy.

2.2. Analysis of Environmental Variables

We derived the contribution of each variable through EM and analyzed the dominant
variables (Table 1). The cumulative contribution rates of bioclimate variables of mangrove
forests and S. alterniflora were 52.57% and 56.75%; the marine environment variables
were 29.44% and 34.18%; and the sea–land topography variables were 17.99% and 9.07%,
respectively. Specifically, bioclimate variables played a crucial role in the distribution of
mangrove forests and S. alterniflora. The role of Ele in sea–land topography variables was
relatively large. Among the marine environment variables, only CHL and PAR would play
a dominant role in the distribution of mangrove forests and S. alterniflora. The contributions
of sea surface temperature (SST1, SST2, SST3, SST4, and SST5) and sea surface salinity (SSS)
were both low. Among the variables whose cumulative contribution rate reached more than
90%, mangrove forests had 10 key variables, and S. alterniflora had 11 key variables (Table 1).
Eight variables were common, namely Bio2, Bio12, Bio15, Bio16, Bio19, Ele, CHL, and PAR,
but they played different roles in influencing the growth and distribution of mangrove
forests and S. alterniflora (Figure S2). Among the bioclimate variables, Bio1 played a key
role in the prediction of mangrove forests and was the most important temperature variable
with a contribution of 25.07% and an optimal threshold of 18.7–25.7 ◦C. For S. alterniflora,
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the proportion of precipitation reached approximately 3.3 times that of temperature. Bio16
was the highest contributing precipitation variable, with a contribution of 21.27% and an
optimal threshold of 438–1226 mm. Among the marine environment variables, CHL was
the key variable affecting mangrove forests and S. alterniflora: the contribution of CHL
was 17.84% and 22.34%, with optimal thresholds of 1.17–13.14 µg/L and 3.04–13.85 µg/L,
respectively. The contribution of PAR to mangrove forests and S. alterniflora was 3.18%
and 5.92%, respectively. The contribution of SST2 to mangrove forests was 5.14%, SST1
to S. alterniflora was 2.31%, and the contributions of other marine environment variables
were very low. Among the sea–land topography variables, only Ele had a relatively high
influence on the distribution of mangrove forests and S. alterniflora, with a contribution of
17.86% and 8.29%, respectively. Slop and Aspe had no effect (Table 1).
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Figure 1. Model evaluation of the single (RF, GBM, GLM) and the ensemble model (EM). The sphere
in the graph represents the average value. (a) is the TSS value of mangrove forests. (b) is the TSS
value of S. alterniflora. (c) is the AUC value of mangrove forests. (d) is the AUC value of S. alterniflora.

2.3. Simulation Analysis of Potential Distribution for Mangrove Forests and S. alterniflora

In this study, the EM prediction results show that the suitable areas of mangrove
forests are mainly distributed in eight provinces and regions along the southeastern coast
of China, including Guangxi, Guangdong, Hainan, Fujian, Zhejiang, Taiwan, Hong Kong,
and Macau (Figure 2a). Highly suitable habitats for mangrove forests are mainly found in
harbors or estuaries that are well covered by waves. Specifically, highly suitable mangrove
forest habitats in Guangxi are mainly distributed on the southern coast of Beihai city, the
east coast of Fangchenggang city, and the coastal harbors and bays of Qinzhou city. In
Guangdong province, they are mainly distributed in the coasts of Zhanjiang, Maoming,
Yangjiang, and Jiangmen city; other coastal areas, such as Shenzhen city, Shanwei city,
and Shantou city, are sporadically distributed (Figure 2d). Most coastal areas in Hainan
province are highly adaptable to mangrove forests, including the coast of Haikou city,
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where mangrove forest nature reserves, such as Dongzhai Port and Qinglan Port, are
located. Mangrove forest highly suitable areas are distributed in all coastal sections of
Fujian province, such as the Zhangjiang River estuary, Chiu-lung River estuary, Quanzhou
Bay, and Xiamen Bay (Figure 2c). Among these, Ningde city is the northernmost boundary
of the natural distribution of mangrove forests in China while the rest of the coast has a
sporadic distribution. The highly suitable habitats in Taiwan are mainly distributed in
the west coast and concentrated in the coastal areas of Taipei freshwater estuaries and the
northern area of Tainan City (Figure 2a). Zhejiang is the northernmost distribution area of
mangrove forest introduction and cultivation in China, with relatively few highly suitable
habitats areas that are sporadically distributed in and around Ximen Island of Yueqing city
and the Rui’an coast of Wenzhou city (Figure 2b). The moderate and low suitable habitats of
mangrove forests are concentrated around the highly suitable habitats and spread around
from the highly suitable areas, with a wide range that extends to Taizhou, Ningbo city in
Zhejiang at the northern end.

Table 1. Contribution rate and cumulative contribution rate of each environmental variable based on
the ensemble model.

Mangrove Forests S. alterniflora

Variables Contribution
Rate (%)

Cumulative
Contribution

Rate (%)

Best Suitable
Range (Unit) Variables Contribution

Rate (%)

Cumulative
Contribution

Rate (%)

Best Suitable
Range (Unit)

Bio1 25.07 25.07 18.7–25.7 ◦C CHL 22.34 22.34 3.04–13.85 µg/L
Ele 17.86 42.93 −140–16 m Bio16 21.27 43.61 438–1226 mm

CHL 17.84 60.77 1.17–13.14 µg/L Ele 8.29 51.90 −149–165 m
Bio16 7.63 68.40 438–1642.76 mm Bio19 7.05 58.95 69–332 mm
Bio12 7.30 75.70 949–2669 mm Bio3 6.34 65.29 116–276
SST2 5.14 80.84 25.41–38.4 ◦C Bio12 6.08 71.37 932–2491.4 mm
Bio19 3.19 84.03 23.6–566 mm Bio2 6.06 77.43 25–70

PAR 3.18 87.21 28.13–39.56
E/m2day PAR 5.92 83.35 26.25–35.48

E/m2day
Bio15 2.63 89.84 20–100 mm Bio18 3.68 87.03 302–1137 mm
Bio2 2.54 92.38 20–62 Bio15 2.61 89.64 32–87 mm
Bio18 1.83 94.21 302–1586.94 mm SST1 2.31 91.95 8.8–35.4 ◦C
SSS 1.65 95.86 30.9–33.9% Bio5 1.91 93.86 28.4–33.3
Bio5 1.31 97.17 29.7–32.5 Bio1 1.75 95.61 16.9–23.8 ◦C
Bio3 1.08 98.25 150–297 SST2 1.16 96.77 22.1–37.3 ◦C
SST4 0.89 99.14 13.29–32.03 ◦C SSS 1.04 97.81 21.4–33.1%
SST3 0.31 99.45 19.82–36.87 ◦C Slop 0.75 98.56 0–90◦

SST1 0.29 99.74 16.6–36.5 ◦C SST3 0.75 99.31 15.9–36.1 ◦C
SST5 0.14 99.88 22.39–34.9 ◦C SST4 0.56 99.87 8.8–31.1 ◦C
Slop 0.10 99.98 0–90◦ SST5 0.10 99.97 15.88–34.42 ◦C
Aspe 0.02 100.00 −1–359.82◦ Aspe 0.03 100.00 −1–359.82◦

The results of the EM prediction show that in this study area, the Zhejiang and
Fujian coastal areas are the concentrated distribution areas of highly suitable habitats
for S. alterniflora. Most of the coasts are distributed, the harbor and estuary areas are
concentrated, and the width of the distribution strips is wide (Figure 3a). The highly
suitable habitats for S. alterniflora are scattered in the Fangchenggang, Qinzhou, and Beihai
coastal areas of Guangxi Province, and the Zhanjiang, Maoming, Yangjiang, Jiangmen, and
Shantou areas of Guangdong Province (Figure 3b–d). In the Zhejiang and Fujian coastal
areas, the moderate and low suitable habitats of S. alterniflora are mainly at the periphery
of the high suitable habitats and extend towards the sea (Figure 3a). In the coastal areas of
Zhuhai and Macau, the highly suitable habitats of S. alterniflora have not formed a strip,
and the moderate and low suitable habitats have a bigger distribution area (Figure 3c). In
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Guangxi, the highly suitable habitats are mainly in the surrounding areas, and the moderate
and low suitable habitats are less distributed (Figure 3d).

Figure 2. Potential distribution predicted for mangrove forests covering the southeastern coast of
China based on the EM. (b–d) are local enlargements of (a).

2.4. Risk Analysis of S. alterniflora Invades Mangrove Forests along the Southeastern Coast of China

In the coastal areas of Guangdong, Guangxi, and Hainan, the potential suitability of
mangrove forests is higher than that of Fujian and Zhejiang, while the high suitability areas
of S. alterniflora are mostly distributed in the coastal areas of Fujian and Zhejiang. The poten-
tial distributions of mangrove forests and S. alterniflora have overlapping ecological niches
in Zhejiang, Fujian, Guangdong, and Guangxi provinces (Figures 2a and 3a). In Zhejiang
and Fujian, the distribution of S. alterniflora is very concentrated and the invasive suitability
is high. In the range from low to high potential invasion suitability of S. alterniflora, the
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invasive risk to native mangrove forests is relatively high (Figure 4a,b). In Guangdong and
Guangxi, the distribution of highly suitable invasive habitats for S. alterniflora is small, and
the invasive risk to native mangrove forests is relatively low in areas with high potential
invasion suitability for S. alterniflora (Figure 4c,d). In Hainan and Taiwan, the distribution of
highly suitable invasive habitats of S. alterniflora and the invasive risk to native mangrove
forests are low (Figures 3a and 4e,f). Specifically, the areas with high risk of invasion
of S. alterniflora are concentrated in the Zhejiang and Fujian coasts (Figure 5a). The risk
in northern Zhejiang is higher than that in southern areas (Figure 5b). Compared with
Zhejiang, the invasion risk area along Fujian is narrower (Figure 5c). The risk of invasion of
S. alterniflora is sporadically distributed in Chaozhou, Shantou, and the Jieyang coast of
Guangdong (Figure 5d). Meanwhile, the risk of invasion of S. alterniflora in the rest of the
region is low.

Figure 3. Potential distribution for predicted S. alterniflora covering the southeastern coast of China
based on the EM. (b–d) are local enlargements of (a).
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Figure 4. The relationship between invasion suitability and invasion risk of S. alterniflora to mangrove
forests in the southeastern coast of China. (a) Zhejiang, (b) Fujian, (c) Guangdong, (d) Guangxi,
(e) Hainan, and (f) Taiwan. The horizontal axis represents the HSI of S. alterniflora, and the vertical
axis represents the IRI of S. alterniflora to mangrove forests. The red line shows the result of the linear
fit; the gray band indicates a 95% confidence band.
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Figure 5. Invasion risk analysis of S. alterniflora to mangrove forests in the southeastern coast of
China. Red is the area with high invasion risk, and green is the area with low invasion risk. (b–d) are
local enlargements of (a).

3. Discussion
3.1. Applicability of SDMs

SDMs mainly use species distribution data and environmental data to estimate the
ecological niches of the species base through specific algorithms. They are then projected
onto the landscape to reflect the preference of species for habitats in the form of proba-
bilities [77,78]. In recent years, SDMs have been widely used for the species response to
climate change in the context of global change [51]; for potential range prediction of inva-
sive species [52]; for determining the effects of regional climate change on species richness
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and community stability [79]; for range delineation of protected areas for endangered and
rare species; and for determining the impact of human activities on endangered species [80].
In the modeling process for different purposes, species ecological niche characteristics, and
modeling database, researchers need to choose different modeling algorithms. In recent
years, EM prediction using multiple model information has become a trend in species
distribution studies to reduce model uncertainty and increase modeling accuracy [80,81].
Therefore, it is reasonable to use EM in this study.

3.2. Ensemble Model Simulation Accuracy

A single model may result in differences in suitable habitat for the same species
due to multiple factors. Different algorithms have different architectures and input data
assumptions, such as species ecological characteristics, environmental complexity, and
data availability, which can result in uncertainty in prediction results [53,82]. Simulations
using a single model inevitably produce under-fitting or over-fitting problems, but the EM
can reduce the uncertainty of model fitting [52,83]. The EM can combine the predictive
strengths of multiple models, reduce the weaknesses of individual models, improve overall
predictive accuracy, and effectively address the uncertainty of model extrapolation [84–86].
In this study, we selected the TSS > 0.9 models to construct the EM by using a weighted
average algorithm to predict the suitable habitats of species. The evaluation metrics of the
EM were generally higher than those of the three single models (Figure 1). We can conclude
that the model integrated by the good single algorithms can be more reliable and overcome
the degree of uncertainty in algorithm selection with higher prediction accuracy and better
fitting results.

3.3. Selection of Environmental Factors

SDMs is a method for predicting the potential habitats of species by establishing
relationships between species distribution points and environmental factors [56]. Therefore,
understanding the complexity between species and their environmental factors as well
as the selection of appropriate environmental variables are key to building good mod-
els [15,86]. In most studies of SDMs, only climatic variables are selected as environmental
variables [86], or factors such as climate, topography, and soil are selected as environmental
variables [51,82]. Mangrove forests and S. alterniflora belong to the intertidal wetland
vegetation of coastal mudflats. In this study, two major dual influencing factors, i.e., the
terrestrial and marine environments, were considered based on the growth environment of
mangrove forests and S. alterniflora and previous research results [15,46,57]. Considering
the correlation between climate variables, the main climate variables were selected, while
the topographic data, as well as sea surface temperature, sea surface salinity, and water
quality factors representing the marine ecological environment were selected for predictive
simulations. The results of the study show that both terrestrial and marine environmental
factors have different degrees of influence on coastal wetland vegetation (Table 2). The
response of coastal plants, including mangrove forests and S. alterniflora, to factors such
as bioclimatic, elevation, and the marine environment, is attributed to the fact that the
environmental and material supply required for growth is obtained mainly from both ma-
rine and terrestrial sources [15]. Environmental factors, such as temperature, precipitation,
salinity, and topography, are the main factors that control the distribution and growth of
mangrove forests and S. alterniflora in the Chinese coastal zone [87].

3.4. Uncertainty in Species Distribution Model Simulations

In the process of simulating the spatial pattern of species, uncertainties in the simula-
tion results are often caused by a variety of factors, such as species distribution data [88],
subjectivity and multi-collinearity of environmental variables [89], selection of species
distribution models and setting of parameters [90,91], etc. In this study, we chose to use
remote sensing data to obtain species point distributions and selected a single model with
high model accuracy to construct EM and run it several times to reduce the uncertainty of
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model prediction. However, the prediction of species distribution still has a large amount of
uncertainty, and the distribution of suitable habitats for species changes due to a variety of
factors, such as the physical properties of the environment, resource demand, and human
activities. Further exploration on how to reduce the uncertainty of species distribution
prediction is needed in future studies.

Table 2. Environmental variables used to simulate predictions of mangrove forests and S. alterniflora.

Factors Variables Description Unit Data Sources

BioClimate

Bio1 Annual mean temperature ◦C

CHELSA (https://chelsa-climate.org/
(accessed on 12 March 2023))

Bio2 Mean diurnal range ◦C
Bio3 Isothermality -

Bio5 Max temperature of
warmest month -

Bio12 Annual precipitation mm
Bio15 Precipitation seasonality mm
Bio16 Precipitation of wettest quarter mm
Bio18 Precipitation of warmest mm
Bio19 Precipitation of coldest quarter mm

Sea–land
topography

Ele Elevation m National Marine Data Center
(http://mds.nmdis.org.cn/ (accessed on 12
March 2023)), Slop and Aspe are extracted
from the sea–land topography by ArcGIS.

Slop Slope ◦

Aspe Aspect ◦

Marine envi-
ronment

CHL Chlorophyll concentration µg/L NASA MODIS-Aqua Level-3
(http://oceancolor.gsfc.nasa.gov

(accessed on 12 March 2023))PAR Photosynthetically
available radiation E/m2day

SSS Annual mean sea surface salinity %
National Marine Data Center
(http://mds.nmdis.org.cn/

(accessed on 12 March 2023))

SST1 Annual mean sea
surface temperature

◦C

NASA MODIS-Aqua Level-3
(http://oceancolor.gsfc.nasa.gov

(accessed on 12 March 2023))
SST2 Sea surface temperature

of warmest quarter
◦C

SST3 Sea surface temperature
of wettest quarter

◦C

SST4 Sea surface temperature
of coldest quarter

◦C

SST5 Sea surface temperature
of driest quarter

◦C

3.5. Important Variables Affecting Mangrove Forests and S. alterniflora

Previous studies have shown that temperature is a key factor affecting the distribution
of mangrove forests, and that temperature affects the growth and reproduction of mangrove
forests [46]. The annual average temperature of the mangrove forest distribution area in
China is 19–26 ◦C, the average temperature of the coldest month is 7.4–21 ◦C, and the
average annual precipitation is 1200–2200 mm [92]. This is consistent with the conclusion
reached in this study (Table 1). If the temperature rises by 2 ◦C, the distribution area of
mangrove plants in China will likely expand northward by about 2.5◦, and the northern
boundary of the introgression can reach Hangzhou Bay from the current location in Yueqing
County, Zhejiang Province [93,94]. Currently, with the warming climate, the northern
boundary of the introduced mangrove forests has reached Wenzhou and Taizhou, Zhejiang
Province [93]. In the present study, the northern boundary of the highly suitable distribution
area of mangrove forests predicted by the EM can reach Wenzhou and Taizhou, Zhejiang
Province (Figure 2). This is consistent with the results of previous studies [93]. In addition

https://chelsa-climate.org/
http://mds.nmdis.org.cn/
http://oceancolor.gsfc.nasa.gov
http://mds.nmdis.org.cn/
http://oceancolor.gsfc.nasa.gov
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to the effect of temperature, Ele, CHL, and precipitation have an influence on the growth of
mangrove forests, and studies have shown that mangrove forests are also more suitable
to grow in lowland coastal and water body eutrophic level relatively high areas [15,95,96].
Precipitation can regulate nutrient uptake and thus affect mangrove forest productivity [97],
and seasonal precipitation can lead to changes in mangrove forest habitat suitability [98].

S. alterniflora is highly suitable and tolerant to climate and environment. Studies have
shown that S. alterniflora is subject to multiple stresses from precipitation patterns, sea level rise,
and nutrient enrichment [99]. Higher nutrient concentrations and increased eutrophication
of habitats promote the invasion and expansion of S. alterniflora populations [10,100,101].
Precipitation affects the growth of S. alterniflora mainly by affecting the salinity of soil pore
water, and higher precipitation promotes the growth of S. alterniflora [102,103].

3.6. Potential Distribution of Mangrove Forests and S. alterniflora

Mangrove forests are mainly located in the warm and humid subtropical and tropical
monsoon regions in some harbors or estuaries with good wave cover. Hainan, Guangdong
and Guangxi account for about 96% of China’s mangrove forest areas, with small areas in
Fujian, Taiwan, Hong Kong, and Macau and no natural distribution of mangrove forests
in Zhejiang, which were artificially introduced after the 1950s [24]. From the predicted
results, the potentially suitable habitats for mangrove forests are mainly distributed in eight
provinces and regions in China, with the northern end reaching Taizhou city, Zhejiang
province, and the southern end reaching Sanya city, Hainan province (Figure 2a). This is
consistent with previous results [87,92,104–106].

According to the survey, the area of S. alterniflora in Jiangsu, Zhejiang, Fujian, and
Shanghai accounts for 94% of the total distribution area of the national coastal zone; this is
the most concentrated distribution of S. alterniflora in China [107]. The Zhejiang and Fujian
provinces have winding coastlines and easy to form harbors, which provide favorable
conditions for the growth of S. alterniflora [11]. In this study, the highly suitable invasive
areas for S. alterniflora are mainly distributed in the coastal areas of Zhejiang and Fujian.
Most of the coasts in these two provinces are distributed, with continuous distribution
in the harbor and estuary areas. The width of the distribution strip is wide and extends
towards the ocean (Figure 3a).

3.7. S. alterniflora Invades Mangrove Forests along the Southeastern Coast of China

At present, S. alterniflora invasion seriously threatens the mangrove forest resources
in Fujian and Guangdong, China and replaces the mangrove forest communities in some
areas [11,108]. Previous studies have shown that S. alterniflora has a wider range of salinity
adaptations, greater flood tolerance, and more rapid reproductive dispersal than native
mangrove plants [12,27]. Thus, S. alterniflora can spread rapidly in mangrove forest commu-
nities and form significant competitive exclusion to mangrove plants, affecting the renewal
and growth of mangrove forest seedlings. S. alterniflora causes not only degradation of
mangrove habitats, but also changes the biodiversity and behavioral patterns of mangrove
forests [109]. In this study, we used an invasion risk index (IRI) to assess the invasive risk
of S. alterniflora in mangrove forest distribution areas along the southeastern coast of China.
Zhejiang and Fujian are at high risk of invasion, while other southern provinces are at
lower risk of invasion (Figure 5a). This is because Zhejiang and Fujian are the areas with
the most invasive S. alterniflora. Mangrove forests in the southern provinces of Guangdong
and Guangxi are relatively intact and can withstand the invasion of S. alterniflora [110].
Through the analysis of the IRI results, mangrove forest protection and restoration using S.
alterniflora control plans and measures can be set more intuitively. This has significance as a
practical reference.

3.8. Conservation of Mangrove Forests and Control of S. alterniflora

Mangrove forest wetlands are rich in biodiversity and are one of the most produc-
tive ecosystems in the world [15]. Due to its high environmental adaptability and rapid
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population spread, S. alterniflora poses a serious threat to native coastal ecosystems [43].
One of the major causes of the extensive destruction of mangrove forests in China since
the 1980s is the invasion of S. alterniflora [26]. Therefore, mangrove forest conservation
and S. alterniflora control are urgent. Based on the results of the current study, we propose
the following recommendations for future mangrove forest conservation and S. alterniflora
control along the southeast coast of China.

3.8.1. Rationalize Mangrove Forest Protection Actions

With an increasing number of people recognizing the unique ecological value of man-
grove forests, their restoration and protection have received great attention. In recent years,
China has made positive progress in mangrove forest restoration and initially reversed
the trend of drastic decrease in mangrove forest area [24,111]. In 2020, China’s National
Forestry and Grassland Administration issued a plan called “Special Action Plan for Man-
grove Forest Protection and Restoration (2020–2025)”, which required the comprehensive
strengthening of mangrove forest protection and restoration work [112]. According to
the results of our study, the highly suitable distribution areas of mangrove forests are
mainly concentrated in southeastern Guangdong, southern Guangxi, and northern Hainan.
Therefore, mangrove forest protection and restoration work should be actively carried out
in Guangdong, Guangxi, and Hainan, including the establishment of nature reserves, man-
grove forest transplantation, cultivation of new species, and other measures. At present,
with the increasing awareness of the social and ecological value of mangrove forests, the
introduction of mangrove plants for artificial planting in Zhejiang has also achieved great
results, and the northern boundary of the introduction has reached Wenzhou and Taizhou,
Zhejiang [92]. At the same time, as the temperature rises, the distribution area of mangrove
forest plants will probably expand about 2.5◦ north, and the northern boundary of the
introduced species could reach Hangzhou Bay [92,93]. Mangrove forest priming projects
should be planned rationally in the Zhejiang and Fujian areas, using the high suitable
distribution area of mangrove forests as reference.

3.8.2. Control S. alterniflora According to Local Conditions

The rapid and effective control of S. alterniflora, by limiting its proliferation rate and
scale and minimizing its ecological damage and impact, have become important issues to
be solved in coastal wetland ecosystem and rare species conservation. It was found that
low and sparse mangrove forests are vulnerable to the invasion of S. alterniflora because
it affects their spread. On the other hand, large and lush mangrove forests can shade the
growth of S. alterniflora, eventually depriving S. alterniflora of a suitable environment for
survival [113]. At present, various methods have been explored to control S. alterniflora,
including physical, chemical, and biological methods [114–117]. According to our results,
biological control can be carried out in dense mangrove forest areas in Guangdong, Guangxi,
and Hainan. This involves the use of a “Sonneratia apetala shade” plantation to control
the growth and spread of S. alterniflora. In areas where S. alterniflora invades mangrove
forests, fast-growing S. apetala suppresses the growth of S. alterniflora through shading and
chemosensory effects, while promoting the growth of native mangrove plants to restore
the mangrove forest community [118]. In Zhejiang and Fujian, where mangrove forests
are sparse and S. alterniflora is dense, the growth of S. alterniflora can be controlled by
physical or chemical methods, including artificial removal, mulching for shade, mowing,
fire, flooding, and chemical herbicides [119–122].

4. Materials and Methods
4.1. Occurrence Data

In this study, current mangrove forest distribution areas were selected. The study areas
in China include Guangdong, Guangxi, Hainan, Fujian, Hong Kong, Macau, Taiwan, and
Zhejiang provinces [87]. Mangrove forest occurrence records were obtained from the spatial
distribution dataset of Chinese mangrove forests at 30 m resolution in 2015 (National Earth
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System Science Data Center (NESSDC), http://www.geodata.cn, accessed on 8 July 2022).
Occurrence records of S. alterniflora were obtained from the spatial distribution dataset
of Chinese S. alterniflora at 30 m resolution in 2015 (NESSDC, http://www.geodata.cn,
accessed on 22 July 2022). The spatial distribution datasets of mangrove forests and
S. alterniflora were resampled into the occurrence records with a sampling accuracy of 1 km
using the fishnet method in ArcGIS. Then, the collected occurrence records were filtered to
eliminate the duplicate records. Finally, 1358 mangrove forest records and 1314 S. alterniflora
records were obtained for modeling (Figure 6).

Figure 6. Study area and species occurrence record distribution. The study area mainly includes the
provinces of Zhejiang, Fujian, Guangdong, Guangxi, Hainan, Taiwan, Hong Kong, and Macau in
China. The green triangles represent the location of mangrove forests. The red dots represent the
location of the invasive S. alterniflora.

4.2. Environment Data

We selected three categories of environmental factors, including 20 variables in biocli-
mate, sea–land topography, and marine environment (Table 2). CHELSA (Climatologies at
high resolution for the earth’s land surface areas, https://chelsa-climate.org/, accessed on
24 July 2022) was selected for the bioclimate data, and the elimination of autocorrelation
between predictors helped to avoid prediction errors caused by collinearity in biocli-
matic variables. Pearson correlation coefficients of 19 bioclimate variables were calculated
(Figure S1); only meaningful variables with |r| < 0.7 were retained [43], and 9 bioclimate
variables were selected to participate in the modeling. The sea–land topography was ob-
tained from the National Marine Data Center (NMDC, http://mds.nmdis.org.cn/, accessed
on 28 July 2022). Elevation (Ele), slope (Slop), and aspect (Aspe) were extracted from
sea–land topography by ArcGIS. The photosynthetically available radiation (PAR) and
chlorophyll concentration (CHL) represent the marine ecological environment and coastal
water quality changes. CHL is one of the key indicators of marine primary productivity; it

http://www.geodata.cn
http://www.geodata.cn
https://chelsa-climate.org/
http://mds.nmdis.org.cn/
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can visually reflect the degree of seawater eutrophication [123–125]. The PAR, CHL, and
sea surface temperature were obtained from NASA MODIS-Aqua Level-3 (NASA Goddard
Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group (OBPG),
http://oceancolor.gsfc.nasa.gov, accessed on 26 July 2022). Sea surface temperature in-
cluded annual mean sea surface temperature (SST1), sea surface temperature of warmest
quarter (SST2), sea surface temperature of wettest quarter (SST3), sea surface temperature
of coldest quarter (SST4), and sea surface temperature of driest quarter (SST5). The sea
surface salinity (SSS) was obtained from the NMDC (http://mds.nmdis.org.cn/, accessed
on 28 July 2022) (Table 2). Saga GIS was used to interpolate the environmental variables and
make the range in land and marine variables consistent. All the environmental variables
were resampled to a resolution of 30” (about 1 km) for model prediction and analysis.

4.3. Model Construction and Evaluation

This study was completed using the Biomod2 package. We used the ANN, CTA, FDA,
GAM, GBM, GLM, MARS, RF, and SRE models in the Biomod2 package on the R platform. To
improve the fitting accuracy of the model, three sets of pseudo-absent points were randomly
generated. After several experiments, we finally determined that the model had the highest
accuracy when generating 5000 pseudo-random points per set. We entered species pres-
ence points, pseudo-absence points, and environmental data in the R software environment.
Seventy-five percent of the sample data were randomly selected as the training set to build
the model, and the remaining twenty-five percent were used for model validation. Each of
the nine single models was called and run ten times to reduce uncertainty.

In this study, we evaluated the model using the relative operating characteristic (ROC)
curve with the statistics of the AUC value (the area under the ROC curve) and the true skill
statistic (TSS). ROC is plotted with 1-specificity (the proportion of species non-occurrence
areas correctly predicted) as the horizontal coordinate and sensitivity (the proportion of
species occurrence records correctly predicted) as the vertical coordinate [52]. The size of
the area under the ROC curve is used to evaluate the ability of the model. A larger value
indicates a more accurate prediction, which is one of the indicators for the evaluation of
many models [126,127]. TSS (=sensitivity + (specificity-1)) is an improved assay for Kappa
that retains the advantages of Kappa [128]. This statistic is one of the default evaluation
metrics of the Biomod2 package. In general, when the TSS is greater than 0.8, the AUC is
greater than 0.9; this indicates very high accuracy of the model fit [56].

The evaluation results of the single-unit models were obtained, and RF, GBM, and
GLM were selected for modeling according to their TSS values which were all higher
than other single models. The selected models were run again to obtain 90 single models
(3 selected models × 10 repetitions × 3 sets of random datasets). Then, we constructed the
EM. All models with TSS values greater than or equal to 0.9 were selected. The weight of
the individual model was calculated according to Equation (1), the EM was constructed,
and the habitat suitability index [55] of the species was derived using Equation (2).

Wi =
ai

∑n
i=1 ai

. (1)

Wi represents the weight of a single model, ai represents the TSS value of the ith single
model, and n presents the number of models selected.

HSIi = ∑n
j=1 Wi × Pij. (2)

HSIi represents the habitat suitability index value of each pixel of model I; Wi repre-
sents the weight of the model I; and Pij represents the j pixel value of model i.

The habitat suitability index (0–1) output from the model reflects the probability of
species presence [9]. According to the statistical principle of “likelihood” in the presence
probability analysis [61], we classified the suitability results into four categories [52,55]: un-

http://oceancolor.gsfc.nasa.gov
http://mds.nmdis.org.cn/
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suitable (HSI < 0.3), low suitability (0.3 ≤ HSI < 0.5), moderately suitable (0.5 ≤ HSI < 0.7),
and highly suitable (HSI ≥ 0.7).

4.4. Risk Assessment of S. alterniflora Invading Mangrove Forests

In order to assess the areas where the distribution between mangrove forests and
S. alterniflora may shift, that is, the invasive risk of S. alterniflora within the mangrove
forest distribution area, we used the invasive risk index (IRI) (Equation (3)) combined with
SDMs simulation results of mangrove forests and S. alterniflora. We subtracted the habitat
suitability value of the native species (i.e., mangrove forests) from the invasive habitat
suitability value of the invasive species (i.e., S. alterniflora) to obtain the value of IRI of
S. alterniflora in the study area.

IRI = HSIs − HSIm. (3)

IRI represents the invasive risk index with thresholds ranging from −1 to 1; HSIs
represents the result of the SDM simulation of S. alterniflora; and HSIm represents the result
of the SDM simulation of mangrove forests. A positive value of IRI indicates that the region
is more suitable for the growth of S. alterniflora. The invasive risk of S. alterniflora in this
region is high, which may affect the growth and renewal of local mangrove forests. A
negative value suggests that the habitat suitability of mangrove forests in this region is
higher, and the invasive risk of S. alterniflora is lower.

5. Conclusions

S. alterniflora poses a serious threat to native coastal ecosystems due to its high environ-
mental adaptability and rapid population spread. The strong vitality of S. alterniflora has
led to the disappearance of large areas of mangrove forests because it crowds out mangrove
forest growing space. We used EM to simulate the geographic distribution of mangrove
forests and S. alterniflora in southeastern China and deduced the environmental threshold
for their growth. On this basis, we assessed the invasion risk of S. alterniflora to mangrove
forests along the southeast coast. According to our analysis, mangrove forests are mainly
concentrated in southern Guangxi, Guangdong, and S. alterniflora is mainly distributed in
Zhejiang and Fujian. We should strengthen the control of S. alterniflora and the introduction
and cultivation of mangrove forests in the coastal areas of Zhejiang, Fujian, Beibu Gulf,
and Zhuhai, Guangdong. Mangrove forest restoration projects should be increased in the
coastal areas of Guangdong and southern Guangxi. Our study provides a clear understand-
ing of the geographic distribution of mangroves and S. alterniflora and the high-risk areas
where S. alterniflora is more likely to invade mangrove forests. We believe that this study
can provide a basis for mangrove forest conservation and S. alterniflora control along the
southeast coast of China.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12101923/s1, Figure S1: Correlation analysis of 19 bioclimate
variables. The color and size of the circles represent the magnitude of the correlation between the
variables. The upper numbers and the lower circles correspond variables with one another; Figure S2:
Variables with a cumulative contribution greater than 90% affecting the growth of mangrove forests and
S. alterniflora. Blue represents the contribution rate of mangrove forests and pink is the contribution rate
of S. alterniflora.
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