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Abstract: The scarcity of freshwater resources has increased the use of nonconventional water
resources such as brackish water, reclaimed water, etc., especially in water-scarce areas. Whether
an irrigation cycle using reclaimed water and brackish water (RBCI) poses a risk of secondary soil
salinization to crop yields needs to be studied. Aiming to find an appropriate use for different
nonconventional water resources, pot experiments were conducted to study the effects of RBCI
on soil microenvironments, growth, physiological characteristics and antioxidation properties of
crops. The results showed the following: (1) compared to FBCI, the soil moisture content was
slightly higher, without a significant difference, while the soil EC, sodium and chloride ions contents
increased significantly under the RBCI treatment. With an increase in the reclaimed water irrigation
frequency (Tri), the contents of EC, Na+ and Cl− in the soil decreased gradually, and the difference
was significant; the soil moisture content also decreased gradually. (2) There were different effects
of the RBCI regime on the soil’s enzyme activities. With an increase in the Tri, the soil urease
activity indicated a significant upward trend as a whole. (3) RBCI can alleviate the risk of soil
salinization to some extent. The soil pH values were all below 8.5, and were without a risk of
secondary soil alkalization. The ESP did not exceed 15 percent, and there was no possible risk of
soil alkalization except that the ESP in soil irrigated by brackish water irrigation went beyond the
limit of 15 percent. (4) Compared with FBCI, no obvious changes appeared to the aboveground and
underground biomasses under the RBCI treatment. The RBCI treatment was conducive to increasing
the aboveground biomass compared with pure brackish water irrigation. Therefore, short-term
RBCI helps to reduce the risk of soil salinization without significantly affecting crop yield, and the
irrigation cycle using reclaimed-reclaimed-brackish water at 3 g·L−1 was recommended, according
to the experimental results.

Keywords: antioxidation property; brackish water; reclaimed water; cyclic irrigation; secondary
soil salinization

1. Introduction

Drought has a negative impact on the growth of crops and the quality of fruits, espe-
cially in water-scarce areas [1,2]. The scarcity of freshwater (FW) resources has increased
the use of brackish water (BW), especially in water-scarce areas [3], in order to sustain
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agriculture for sustainable development. However, long-term BW irrigation may increase
soil salinity, bulk density and water content [4–6], resulting in soil salinization, which
has adverse effects on soil physicochemical characteristics and nutrient transformation.
As much as 20% of the world’s arable land and 33% of irrigated farmland are impacted
by high salinity [7]. In addition, due to several primary causes, including low rainfall,
strong surface evaporation, primary rock weathering, saline water irrigation and poor
farming practices, salinized areas are growing at an annual rate of 10%; It is estimated that
more than 50% of arable land will be salinized by 2050 [7]. Soil salinity is one of the most
destructive environmental stresses, resulting in a significant decline in cultivated land area,
crop productivity and quality [8,9], which is the main limiting factor of the agricultural
economy in arid areas [10]. As an alternative source of FW, unconventional water will
be widely used in agriculture in the near future. Water scarcity in arid areas is driving
agriculture to make greater use of marginal or inferior water sources for irrigation [11], as
unconventional water (such as BW (2–5 g·L−1), saline water (5–8 g·L−1) or reclaimed water
(RW)) is increasingly used to irrigate crops [12,13]. Therefore, it is vital for agricultural
production to study the safe utilization of unconventional water resources.

Studies have shown that RW- or BW-irrigated cotton is viable [14,15]. To some extent,
BW irrigation can promote the growth of crops, maintain yield, and also improve water
use efficiency [16]. Although BW is rich in beneficial micronutrients, BW irrigation may
also result in toxic stress to plant growth through enriching some ions, such as Na+, Cl−

and HCO3
− [17,18]. Saline water contains a lot of sodium ions, which improves the

exchangeable sodium content in soil and causes soil particles to fragment, thus increasing
the content of dispersed clay particles [19]. While alleviating crop water stress, saline water
irrigation also can cause soil salt accumulation, especially root salt accumulation, which
may have an adverse impact on crop yield through osmosis and ion poisoning [20]. Results
have shown that short-term BW irrigation has no significant impacts on soil chemical
properties and soil salinization, but long-term BW irrigation may lead to secondary soil
salinization [21], soil water repellency [22] and crop growth [23]. The co-use of BW and
FW can alleviate secondary soil salinization and the impacts of salt in BW on the growth of
crops [24]. For example, the desalination effect in crops’ root-dense area (5~45 cm) under
intermittent combined irrigation is better, and can provide a better growing environment for
crops [25]. In view of the characteristics of abundant BW resources and its low utilization
rate in northern Shandong Province, an irrigation cycle system was established under
returning rice straw to the field, and the annual water–salt balance safe efficient technical
system was formed, including freshwater leaching salt, supplementary irrigation with
saline water, returning rice straw to the field to inhibit salt and precipitation leaching
salt [26]. In addition, cyclic irrigation using BW and FW was conducive to the accumulation
of soil carbon and the maintenance of the soil’s nutrient pool [27]. However, in areas
where freshwater resources are scarce, the utilization of BW is limited to a great extent,
and new utilization approaches need to be explored. As a kind of unconventional water
resource, reclaimed water is rich, and has a lower salt content than BW. The research
objects of reclaimed water utilization mainly focus on crop growth [28], quality [29], soil
environment [30], soil microbial community structure [31], underground water [32], suitable
irrigation technology [33] and so on. The results showed that under 15-year RW irrigation,
the concentration of trace elements on leaf surfaces did not exceed the threshold, and the
concentrations of trace elements in parks irrigated by RW for 10 years did not obviously
differentiate from those parks irrigated without reclaimed water [34]. RW irrigation did
not affect the concentrations of heavy metals and trace elements in leaves and fruits (e.g.,
Na, B, Zn), and it was viable to use RW to irrigate [35]. Romero-Trigueros et al. also
demonstrated the medium-and long-term feasibility of RW irrigation for citrus [36]. In
theory, the salinity in RW is less than that in BW, so irrigation with RW may play a role in
leaching salt and avoiding secondary soil salinization to a certain extent. We hypothesized
that RW could replace FW to irrigate crops with BW alternatively. Our objective was to
identify the irrigation cycle mode of using BW and RW based on crop characteristics and
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soil environmental indictors, and to provide some theoretical guidance for marginal quality
water use for agricultural irrigation in freshwater-scarce areas.

2. Results
2.1. Variations in Physical and Chemical Properties of Soil under Cyclic Irrigation
2.1.1. Soil Moisture Content and EC

As seen in Figure 1, the soil moisture content in R improved slightly by 1.10% com-
pared to F, and the difference was not significant. The soil moisture content under an
irrigation cycle using reclaimed water and brackish water (RBCI) was slightly higher with-
out significant difference compared with FBCI. Under RBCI, as the irrigation times of RW
increased, the soil moisture content decreased gradually on the whole; the soil moisture
contents in the cyclic irrigation treatments were 16~24% lower than that in the BW irrigation
treatment, and the differences reached a significant level. For the same irrigation sequence,
the soil moisture content positively correlated with the salinity, and there was a significant
difference between B3 and B5. Therefore, there was no significant difference in the soil
moisture content between R and F, as well as between RBCI and FBCI. Meanwhile, the soil
moisture content tended to decrease as the irrigation times of RW increased.
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Figure 1. Variations in soil water and salt content under cyclic irrigation. (a) soil moisture content (θ)
under different treatments after harvest; (b) EC in soil extract under different treatments after harvest.
Note: different lowercase letters on the bars represent significant differences at the level of 0.05.

The soil EC in R was 817.67 µS·cm−1 and significantly increased by 49.6% compared
with F. The soil EC under RBCI increased significantly overall compared to soils under
FBCI, with an increase of 4.97~18.35%. Under RBCI, at the same salinity in BW, the soil’s EC
declined gradually as the irrigation times with RW increased, and the difference reached
an obvious level except that there was no significant difference between RB3 and RRB3.
In addition, compared to BW irrigation (B3 and B5), the soil’s EC under cyclic irrigation
treatments decreased by 22~39%. With the same irrigation sequence, the soil’s EC was
positively correlated with the salinity, and no significant difference existed between RRB3
and RRB5.

2.1.2. Contents of Water-Soluble Na+ and Cl− in Soil

As seen from Table 1, the soil’s Na+ and Cl− contents in R were obviously higher than
those in F, with increases of 438.17% and 50.96%, respectively. Compared with FBCI, the
soil Na+ and Cl− contents showed increasing trends under RBCI, and the difference in
soil Na+ content reached a significant level. Under RBCI, at the same salinity in BW, the
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soil’s Na+ and Cl− contents declined with the increase in irrigation times with RW, and
the cyclic irrigation treatments were significantly lower than the BW irrigation treatment,
with decreases of 48~61% and 36~54%, respectively. With the increase in salinity in BW, the
contents of soil Na+ and Cl− increased gradually, and the difference was significant (except
for the difference between RRB3 and RRB5).

Table 1. Variations in soil ion contents after cyclic irrigation.

Treatment Na+ Content/(mg·kg−1) Cl− Content/(mg·kg−1)

B3 676.67 ± 68.25 b 175.92 ± 17.68 b
FB3 230.00 ± 8.66 ef 96.90 ± 0.68 ef
RB3 351.67 ± 2.89 d 112.55 ± 1.33 de
FFB3 152.17 ± 0.76 f 95.71 ± 0.77 ef
RRB3 338.33 ± 23.09 d 107.83 ± 0.93 de

B5 1098.33 ± 146.32 a 257.75 ± 9.57 a
FB5 398.33 ± 7.64 d 131.31 ± 1.79 c
RB5 480.00 ± 13.23 c 132.79 ± 1.11 c
FFB5 231.67 ± 7.64 ef 105.61 ± 2.71 e
RRB5 425.00 ± 5.00 cd 118.61 ± 3.58 d

R 235.00 ± 5.00 e 93.21 ± 7.29 f
F 43.67 ± 1.04 g 61.74 ± 3.69 g

Note: different lowercase letters behind data in the same column represent significant differences at the level
of 0.05.

2.1.3. SOM and WDPT of Soil

As seen in Figure 2, (1) no obvious difference was observed in the SOM between R
and F. Under RBCI, the SOM content showed an increasing trend, and the SOM in RB3 was
obviously higher than that in FB3 compared to FBCI. Under RBCI irrigation, as the times
of RW increased, the SOM showed a downward trend, but the difference did not reach a
significant level (except RRB5 was significantly lower than B5). For the same irrigation
sequence, the SOM increased slightly as the salinity in BW increased, but the difference did
not reach an obvious level.
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Figure 2. Variations in SOM and WDPT under cyclic irrigation. Note: different lowercase letters on
the bars represent significant differences at the level of 0.05.

(2) The WDPT in R was 5.21 s, representing a weak water repellency that was sig-
nificantly higher than that in F. Compared with FBCI, the WDPT showed no significant
difference under RBCI. Under RBCI, the WDPT in cyclic irrigation was the lowest; as the
salinity in BW increased, the WDPT showed no obvious changes.
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2.2. Soil Enzyme Activity

As seen from Table 2, the activities of S-AKP/ALP, S-SC and S-UE in R were 16.49%,
1.30% and 8.88% higher than those in F, respectively. Compared to FBCI, there was no
significant difference in S-AKP/ALP activity except that RB3 was significantly higher than
FB3, with no significant difference in S-SC activity except that RRB3 was significantly higher
than FFB3 under RBCI. The S-UE activity in “reclaimed-brackish water” cyclic irrigation
was significantly lower than that under the “freshwater-brackish water” cyclic irrigation
treatment, while S-UE activity under “reclaimed-reclaimed-brackish water” cyclic irrigation
was higher than that of “freshwater-freshwater-brackish water” cyclic irrigation as a whole.

Table 2. Variations in soil enzyme activities under cyclic irrigation.

Treatment S-AKP/ALP Activity
/(U·g−1)

S-SC Activity
/(mg·g−1·24 h−1)

S-UE Activity
/(mg·g−1·24 h−1)

B3 2105.95 ± 344.81 bc 9.59 ± 0.40 c 0.39 ± 0.01 e
FB3 1881.55 ± 431.21 c 11.37 ± 0.44 ab 0.46 ± 0.00 c
RB3 2744.64 ± 719.43 b 10.73 ± 0.26 bc 0.42 ± 0.01 d
FFB3 2641.07 ± 773.33 bc 10.91 ± 0.64 bc 0.45 ± 0.01 c
RRB3 2623.81 ± 837.16 bc 12.16 ± 1.16 a 0.44 ± 0.01 c

B5 2313.09 ± 367.4 bc 10.43 ± 0.55 bc 0.39 ± 0.01 e
FB5 3935.71 ± 499.41 a 10.04 ± 0.84 bc 0.48 ± 0.01 b
RB5 3521.43 ± 404.46 ab 11.69 ± 0.41 ab 0.45 ± 0.01 c
FFB5 2364.88 ± 239.18 bc 11.71 ± 0.68 ab 0.48 ± 0.01 b
RRB5 2606.55 ± 374.63 bc 10.92 ± 0.89 bc 0.51 ± 0.02 a

R 3901.19 ± 528.96 a 11.01 ± 0.39 b 0.45 ± 0.02 c
F 3348.81 ± 29.9 ab 10.86 ± 1.13 bc 0.41 ± 0.01 de

Note: different lowercase letters behind data in the same column represent significant differences at the level
of 0.05.

Under RBCI treatment, the S-UE activity increased significantly, and the difference
reached a significant level as the RW irrigation times increased, while the S-SC and S-
AKP/ALP activity decreased generally, and had no significant differences (except that the
S-SC activity in RB3 was significantly lower than that in RRB3). For the same irrigation
sequence, the activities of S-AKP/ALP, S-SC and S-UE increased with the increase in salinity
with BW, except that the activity of S-SC in RRB5 was significantly lower than that in RRB3.

2.3. Risk Analysis of Secondary Soil Salinization

As seen in Figure 3, (1) the soil pH was 7.91 in R, which was 1.54% higher than that in
F, and the difference was significant. Compared with FBCI, the soil pH increased under
RBCI, and the difference reached a significant level at a salinity of 5 g·L−1 in BW.

Under the RBCI treatment, the soil pH in the cyclic irrigation treatment was generally
higher than that of BW irrigation, and the difference was significant at low BW salinity
(3 g·L−1). For the same irrigation sequence, with the increase of salinity in BW, the soil pH
in the cyclic irrigation treatments increased, and the difference reached a significant level,
except that the difference was not significant between RB3 and RB5.

(2) The soil-exchangeable K/Na in R was 0.51, and was 5.56% lower than that in F, but
the difference did not reach a significant level. Compared with FBCI, the soil-exchangeable
K/Na decreased under RBCI, and the difference reached a significant level.

Under the RBCI treatment, at the same salinity in BW, the soil-exchangeable K/Na
increased as the RW irrigation times increased, and the difference reached a significant
level. At the same irrigation sequence, the soil-exchangeable K/Na decreased as the salinity
in BW increased, and the difference was significant.

(3) The soil ESP in R was 5.42%, which was much lower than the soil salinization
threshold (15%), and there was no risk of soil salinization. The soil ESP in R was 46.31%
higher than that in F, and the difference reached a significant level. Compared with FBCI,
the soil ESP showed an increasing trend under RBCI, and the difference was significant.
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Figure 3. Variations in soil pH value, K/Na, ESP and SAR under cyclic irrigation. Note: different
lowercase letters on the points represent significant differences at the level of 0.05.

Under the RBCI treatment, the soil ESP decreased as the RW irrigation times increased,
and the difference reached a significant level. For the same irrigation sequence, the soil ESP
increased with the increase in salinity in BW, and the difference was significant except the
difference between RRB3 and RRB5.

In addition, the ESP in B3 and B5 were both more than 15% with a certain risk of
alkalization, while the ESP in other treatments all did not exceed 15% without the risk of
possible soil alkalization.

2.4. Physiological and Growth Characteristics of Crops
2.4.1. Biomass of Crops

As shown in Figure 4, AFW and ADW in R were 7.07% and 5.25% higher than that
in F, respectively, but no significant difference appeared. Compared with FBCI, AFW and
ADW under RBCI increased slightly at low BW salinity (3 g·L−1), and decreased slightly
at high BW salinity (5 g·L−1); however, the difference was not significant. Under the
RBCI treatment, the crops irrigated by reclaimed water had the highest AFW and ADW,
and the crops’ AFW and ADW under cyclic irrigation were higher than those under BW
irrigation, with increases of 7~30% and 23~43%, respectively. Under the same irrigation
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sequence, AFW and ADW declined as the salinity in BW increased, but no significant
difference existed.
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Figure 4. Variations in biomass of pakchoi under cyclic irrigation. Note: different lowercase letters
on the bars represent significant differences at the level of 0.05.

Although UFW and UDW in R increased by 24.29% and 11.40% compared with
F, respectively, no significant difference existed. Compared with FBCI, no significant
difference existed in UFW and UDW under RBCI. Under RBCI, at the same salinity level in
BW, the UFW and UDW in cyclic irrigation treatments were higher than those in the BW
irrigation treatment, with increases of 12–42% and 0–22%, respectively; the highest UFW
and UDW appeared in RB3/RB. For the same irrigation sequence, there was no significant
difference in UFW and UDW with the increase in salinity in BW.

2.4.2. Chlorophyll Content

As seen from Table 3, compared with F, the contents of chlorophyll a, chlorophyll b
and total chlorophyll in R decreased by 12.43%, −7.26% and 8.54%, respectively, but no
significant difference existed. Compared with FBCI, the chlorophyll a and total chlorophyll
contents both showed an increasing trend, while the chlorophyll b content showed a
significantly increasing trend at low salinity (3 g·L−1), and decreased at high BW salinity
without a significant difference under RBCI.
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Table 3. Variations in chlorophyll contents of pakchoi under cyclic irrigation.

Treatment Content of Chlorophyll
a/(mg·g−1)

Content of Chlorophyll
b/(mg·g−1)

Content of Total
Chlorophyll/(mg·g−1)

B3 1.67 ± 0.18 ab 0.43 ± 0.01 cd 2.1 ± 0.18 ab
FB3 1.5 ± 0.08 b 0.47 ± 0.02 c 1.96 ± 0.1 b
RB3 1.92 ± 0.14 a 0.52 ± 0.02 b 2.44 ± 0.13 a
FFB3 1.59 ± 0.08 ab 0.5 ± 0.02 bc 2.08 ± 0.1 ab
RRB3 1.73 ± 0.03 ab 0.56 ± 0.07 a 2.29 ± 0.1 ab

B5 1.78 ± 0.11 ab 0.44 ± 0.01 cd 2.22 ± 0.1 ab
FB5 1.65 ± 0.07 ab 0.49 ± 0.02 bc 2.14 ± 0.09 ab
RB5 1.78 ± 0.29 ab 0.47 ± 0.02 c 2.25 ± 0.29 ab
FFB5 1.46 ± 0.07 b 0.46 ± 0.02 c 1.92 ± 0.09 b
RRB5 1.77 ± 0.3 ab 0.45 ± 0.02 cd 2.21 ± 0.29 ab

R 1.62 ± 0.38 ab 0.44 ± 0.02 cd 2.07 ± 0.39 b
F 1.85 ± 0.26 a 0.41 ± 0.03 d 2.26 ± 0.25 ab

Note: different lowercase letters behind data in the same column represent the significant differences at the level
of 0.05.

Under the RBCI treatment, at the same salinity in BW, the highest chlorophyll a and total
chlorophyll leaf contents appeared in RB3/RB5, but the difference between the treatments
was not significant. The chlorophyll b content in RRB3/RRB5 was significantly higher than
those of other treatments at low BW salinity (3 g·L−1), but the highest chlorophyll b content
appeared in RB3/RB5 at high BW salinity (5 g·L−1) without a significant difference between
treatments. For the same irrigation sequence, with the increase in salinity in BW, there was no
significant difference in chlorophyll a and total chlorophyll leaf contents, but the chlorophyll
b content decreased significantly in the cyclic irrigation treatments.

2.5. Antioxidant Characteristics of Crops
2.5.1. Antioxidant Enzymes of Leaves

Compared to F, the CAT and POD activities in R decreased by 42.23% and 22.45%,
respectively, without significant difference, while the SOD activity significantly increased
by 3.39 times (Figure 5). Compared with FBCI, the CAT activity increased slightly under
the RBCI treatment, but the difference was not significant. The SOD activity increased
significantly on the whole, except that the difference was not obvious between RRB5 and
FFB5; the POD activity decreased slightly without a significant difference.

Under the RBCI treatment, at the same salinity in BW, the leaf CAT activity decreased
slightly, and the SOD activity increased significantly with an increase in reclaimed water
irrigation times; however, the POD activity in the cyclic irrigation treatments was inhibited
to a certain extent compared with the BW irrigation treatments. For the same irrigation
sequence, the activities of CAT, SOD and POD decreased slightly with the increase in
salinity in BW, but there was no significant difference between the treatments.

2.5.2. MDA

The MDA content in R increased by 20.36% compared to F without a significant
difference. Compared with FBCI, the MDA content had no obvious change except for RB3
under RBCI. Under RBCI, at the same salinity in BW, the MDA content in RRB3/RRB5 was
the lowest. At the same irrigation sequence, there was no significant difference in the MDA
content between treatments as the salinity in BW increased.

2.5.3. Soluble Protein Content

As seen in Figure 6, the soluble protein content in R increased by 25.33% compared to
F without a significant difference. Compared with FBCI, the soluble protein content under
RBCI increased at low salinity (3 g·L−1) in BW, but decreased at high salinity (5 g·L−1) in
BW, with a significant difference. Under the RBCI treatment, at the same salinity in BW, the
soluble protein content had no obvious change as the RW irrigation times increased. At
the same irrigation sequence, the higher the salinity in BW, the lower the soluble protein
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content, except for those under BW irrigation, and no significant difference existed between
the treatments.
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Figure 5. Variations in enzyme activities of leaves under cyclic irrigation. Note: different lowercase
letters on the bars represent significant differences at the level of 0.05.
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Figure 6. Variations in MDA and soluble protein contents of leaves under cyclic irrigation. Note:
different lowercase letters on the bars represent significant differences at the level of 0.05.
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2.6. Distribution of Na+ in Soil–Crop
2.6.1. Na+ Content in Soil and Leaves

As seen from Table 4, (1) the soil Na+ content in R was 4.38 times higher than that in F.
The soil Na+ contents under FBCI were significantly higher than those under RBCI, except
there was no significant difference between RB5 and FB5. Under RBCI, the soil Na+ content
declined as the RW irrigation times increased; at the same irrigation sequence, the higher
the salinity, the higher the soil Na+ content, except that no significant difference was found
between RRB3 and RRB5.

Table 4. Variations in Na+ content of soil and leaves under cyclic irrigation.

Treatment Na+ Content in Soil/(mg·g−1) Na+ Content in Leaf/(mg·g−1)

B3 0.68 ± 0.0683 b 15.07 ± 0.26 b
FB3 0.23 ± 0.0087 ef 10.01 ± 0.04 e
RB3 0.35 ± 0.0029 d 12.36 ± 0.33 cd
FFB3 0.15 ± 0.0008 f 11.60 ± 0.43 d
RRB3 0.34 ± 0.0231 d 12.43 ± 0.25 cd

B5 1.1 ± 0.1463 a 17.85 ± 1.26 a
FB5 0.4 ± 0.0076 cd 14.63 ± 0.54 b
RB5 0.48 ± 0.0132 c 14.34 ± 1.06 b
FFB5 0.23 ± 0.0076 ef 12.86 ± 0.83 c
RRB5 0.43 ± 0.005 cd 13.01 ± 0.67 c

R 0.24 ± 0.005 e 10.02 ± 0.18 e
F 0.04 ± 0.001 g 6.85 ± 0.73 f

Note: different lowercase letters behind the data in the same column represent significant differences at the level
of 0.05.

(2) The Na+ content of leaves in R increased by 46.40% compared with F, and the
difference reached a significant level. Compared with FBCI, the leaf Na+ content decreased
under RBCI, and there was a significant difference between RB3 and FB3, as well as
between RRB5 and FFB5. Under RBCI, the leaf Na+ content decreased with an increase in
RW irrigation times, and the difference reached a significant level except for the difference
between RB3 and RRB3. At the same irrigation sequence, the higher the salinity in BW, the
higher the leaf Na+ content without a significant difference between treatments, except for
the difference between B3 and B5. Therefore, compared with BW irrigation, cyclic irrigation
can obviously reduce the absorption of Na+ content by the leaves.

2.6.2. Accumulation of Na+ in Soil and Na+ Uptake Efficiency of Leaves

According to the soil Na+ content and the initial soil Na+ content, the Na+ accumula-
tions in soil were calculated, and the results are shown in Figure 7. The change trend of
Na+ accumulation in soil was consistent with that of the soil’s Na+ content, and there was
no accumulation of Na+ in soil in F.
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Figure 7. Accumulations of Na+ content in soil under different irrigation rotation methods. Note:
different lowercase letters on the points represent significant differences at the level of 0.05.
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According to the Na+ content in leaves, crop biomass and soil Na+ accumulation, the
total Na+ input could be calculated, and then the Na+ uptake efficiency of leaves could be
calculated, as shown in Figure 8.
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Figure 8. Na+ absorption efficiency of leaves under different cyclic irrigation methods. Note: different
lowercase letters on the points represent significant differences at the level of 0.05.

As seen in Figure 8, compared with FBCI, the Na+ absorption efficiency by the leaves
tended to decrease under RBCI, with a significant difference at high BW salinity (5 g·L−1).
Therefore, cyclic irrigation may reduce the efficiency of Na+ absorption by leaves. Under
RBCI, the Na+ absorption efficiency by leaves generally increased on the whole as the
RW irrigation times increased; at the same irrigation sequence, the higher the salinity, the
higher the Na+ absorption efficiency by leaves without a significant difference. Therefore,
an increase in irrigation times with reclaimed water may promote the Na+ absorption
efficiency of leaves.

3. Discussion
3.1. Response of Soil Physicochemical Properties to RBCI

Some reports have proven that reclaimed water or saline water could be reasonably
used for agricultural irrigation. However, long-term irrigation may lead to soil salt accumu-
lation [37], resulting in an increase in soil bulk density [38]. In addition, excessive utilization
of BW can lead to the accumulation of salt and toxic ions, which can have a negative impact
on the mineralization process, and lead to the reduced availability of essential nutrients [39].
The results in this study showed that the soil water content and EC under BW irrigation
were significantly higher than those under freshwater irrigation, and the soil water and salt
contents under RBCI were also higher than those under FBCI (Figure 1). This is due to the
salinity in BW reducing soil water potential and causing crops to suffer from saline–alkali
stress, which has a negative impact on root water uptake, thus increasing the soil moisture
content [16]. The accumulation of Na+ and Cl− can cause osmotic and ion stress in plants,
causing cytotoxic effects [40,41]. High concentrations of sodium ions have toxic effects
on cell metabolism, inhibiting enzyme activity, cell division and expansion, leading to
irregular cell membrane and osmotic imbalance, and restraining the growth of crops [42].
Our results showed that the contents of soil Na+ and Cl− under RW irrigation and BW
irrigation were both significantly higher than those under FW irrigation treatment, and the
soil Na+ and Cl− contents under RBCI showed an increasing trend compared with FBCI
(Table 1); this mainly depended on the ion concentrations in the irrigation water. However,
compared with BW irrigation, the contents of Na+ and Cl− in soil under cyclic irrigation
decreased significantly.

In this research, the SOM under BW irrigation was higher than that under freshwater
irrigation (Figure 2), and the SOM under RBCI irrigation was also higher compared with
FBCI. Guo et al. also found that the average soil organic carbon concentration and total
nitrogen concentration under BW irrigation were higher than those under FW irrigation [4].
This may be due to successive BW irrigations weakening microbial activity, reducing
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microbial mineralization and inhibiting organic matter decomposition, thereby increasing
the soil organic carbon content with continuous salinization [43].

3.2. Response of Secondary Soil Salinization to RBCI

Soil pH and ESP are two general indexes used throughout the world for dividing
alkaline soil [44], and they are also the major elements that affect a soil’s dispersibility [45].
Overall, a pH that exceeds 8.5 and an ESP above 15% is alkaline soil. The results in this
study showed that the pH and ESP values in R were higher than those in F, but they all
did not exceed the threshold, and did not lead to secondary soil salinization. In previous
research, the physicochemical properties and functions of soil were not influenced by
short-term RW irrigation [46]. Our results indicated that the pH value under BW irrigation
exceeded that under FW irrigation, which was due to the higher pH value in BW and
the accumulation of the strong alkaline ion Na+; however, Guo et al. found that saline
water irrigation reduced the soil pH value [4], which mainly depended on salinization and
the accumulation of strong acidic ions, including NO3

−, SO4
2− and Cl−. The salinity in

irrigation water does not necessarily result in secondary soil salinization, but long-term
utilization requires corresponding farming measures to prevent it [47]. This study found
that the ESP under BW irrigation was over 15%, with a potential risk of alkalization, while
the ESP did not exceed 15% under cyclic irrigation without a risk of soil alkalization.
Guo et al. also found that there was no secondary salinization in soil that was treated with
FBCI [24].

3.3. Response of Growth and Physiological Index of Crops to RBCI

Salt stress could alter the physiological and biochemical traits of different plants [48–51].
Plants can change their physiological and biochemical responses as a defense mechanism
against salt stress [52,53]. It was found that salinity had adverse impacts on plant phys-
iological and biochemical processes, thus diminishing their yield [54,55]. For example,
salinity can restrain plant growth, photosynthesis, photosynthetic pigments, leaf water po-
tential and result in cell swelling, damage cell membranes, accumulation of reactive oxygen
species, and lead to nutritional and hormonal imbalances [56]. Neto et al. also found that
salinity had an adverse impact on the primary physiological response of Lippia alba [57]. In
general, salt stress leads to retrogressive development of the aboveground part of the plant,
which is related to the defoliation partially mediated by ethylene production. Tanveer et al.
(2020) found that salinity reduced the growth of tomato and significantly decreased the
fresh weight and dry weight of the roots and aboveground biomass [58]. The results in this
study also showed that BW irrigation declined crop biomass compared with freshwater irri-
gation, while reclaimed water irrigation increased crop biomass. This is because reclaimed
water contains certain salts, but also contains high nutrient elements such as potassium,
calcium and magnesium. In addition, RBCI can improve crop biomass compared to pure
BW irrigation, because plants have the ability to form some type of “pressure memory”.
This ability is defined as the ability of plants to store this information when they are initially
stressed, so that they can respond differently to stress when they are again subjected to it.
It usually triggers a more effective and faster response [59–62]. The chlorophyll content
of leaves represents a photosynthetic rate that is sensitive to stress [63,64]. Salt stress may
lead to the chlorophyll content increasing, which may lead to an increase in the number of
chloroplasts per cell in the leaves of stressed plants [65,66]. that the chlorophyll content
was found to decline significantly as the salinity increased [42,67]. The results in this
experiment showed that compared with FW irrigation, BW irrigation increased the content
of chlorophyll b, but decreased the chlorophyll a and total chlorophyll content.

3.4. Response of Antioxidant Enzymes of Leaves to RBCI

Salinity in the soil can diminish the water availability to plants and boost the change
in water status, which directly affects the main physiological processes of plants. The
biochemical responses to salt stress include the accumulation of organic and inorganic
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osmotic regulators, and improvements in the efficiencies of enzymatic and non-enzymatic
antioxidant systems [40,68]. Therefore, compared with roots, the Na+ accumulation in
leaves is less, delaying the toxic effects of salt, and this is an effective salt-tolerant mecha-
nism [41]. Our results revealed that the Na+ content in leaves under cyclic irrigation was
lower than that under pure BW irrigation, but that the Na+ content in leaves under RBCI
was higher than that under FBCI, which may be due to some Na+ in reclaimed water.

The increase in MDA under salt stress depends on the ROS increasing and the damage
to the cell membrane. Salt stress may cause a significant increase in MDA [42], and the
MDA content was found to increase in tomato seedlings as the salinity increased [69]. The
results of this experiment revealed that no significant difference was found in the MDA
content between BW irrigation and FW irrigation, which may be caused by differences in
crop species and the duration of salt stress. However, in our experiment, RBCI decreased
the MDA content in leaves on the whole, indicating that it had a certain regulatory function
in easing salt stress.

The accumulation of osmotic protective agents, such as sugars, proteins and some
amino acids, leads to osmotic regulation, reduces the water potential of cells and maintains
water absorption even in low-water-potential soils, such as saline soils [70]. In addition,
these osmotic protective agents can also scavenge reactive oxygen species, stabilize proteins
and cell membranes, and are important molecules of salt-tolerant stress [71,72]. Drought
or salt stress was found to cause the proline content and protein content in lettuce to in-
crease [73–76]. The strengthening of salt stress leads to increasing protein content [3], which
is thought to help lettuce avoid oxidative damage. Analogous results were discovered in
our experiment, namely that the content of soluble protein in leaves under BW irrigation
was higher compared to that under FW irrigation. Compared with pure BW irrigation, the
leaf protein content under RBCI increased at a lower salinity in BW (3 g·L−1), but decreased
at a higher salinity in BW (5 g·L−1).

Superoxide dismutase (SOD) protects plants from oxidative damage by catalyzing the
conversion of O2

− to H2O2 [77]. Reactive oxygen species (ROS) were detected by POD [78],
while CAT catalyzed the decomposition of hydrogen peroxide into H2O and O2 to reduce
ROS levels [79]. The results of this study indicated that there was no significant change in
the activities of POD and CAT in leaves under BW irrigation compared with FW irrigation.
Similarly to our results, the water-salt stress did not increase the activity of defensive
enzymes involved in oxidative stress, such as SOD and POD [3], and did not induce SOD
under a salt stress of 40 mM [80]. However, some results were inconsistent, such as the
strengthening of water and salt stress significantly increasing CAT activity [3]. This may be
caused by differences in water stress, which was not involved in this experiment.

4. Materials and Methods
4.1. Tested Soil

The tested soil was taken from the topsoil in a field near the Xinxiang Agricultural soil and
Water Environment Field Scientific observation Station of the Chinese Academy of Agricultural
Sciences. The soil was dried, crushed and screened (2 mm). The soil bulk density was
1.40 g·cm−3, the field capacity was 17.27%, the total nitrogen content was 0.668 g·kg−1, the total
phosphorus content was 0.385 g·kg−1, the soil–water specific conductivity was 0.264 dS·m−1,
and the organic matter content was 2.31%. The BT-9300HT laser particle size analyzer was
used to analyze the soil sample particles. The clay (<0.002 mm), silt (0.002~0.02 mm) and sand
(0.02~2 mm) accounted for 20.90 percent, 44.62 percent and 34.48 percent, respectively, and
the soil texture belonged to loams (international system).

4.2. Experimental Device and Scheme

The experiment began in October and ended in December 2020, in the greenhouse of
the station. Shanghai green was selected as the tested crop. The pot experiment involved
setting up two factors, including the salinity of BW and irrigation sequence, in which
the salinity in the BW had two levels (3 and 5 g·L−1), the irrigation cycle sequence was
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established with four levels (BW, RW-BW, RW-RW-BW, and RW), and FBCI was used as the
control group. The experimental design was carried out in 12 treatments with 3 repetitions
(Table 5). The upper diameter, lower diameter and height of the plastic pot were 25, 14.5
and 19 cm, respectively, and 3 small holes were punched at the bottom. A mass of 7 kg of
soil was placed in each pot, and the compound fertilizer (N-P2O5-K2O of 15-15-15) dosage
used was 1 g per 1 kg soil, referring to the local fertilizer application rate. Sowing occurred
on 9 October 2020, and 5 seedlings were kept in each pot at the two-leaf stage (31 October)
to begin the watering treatment. Traditional surface irrigation was adopted when the soil
water content was below 75 percent of the field’s capacity, and irrigation amount was
approximately 300 mL. The soil moisture was monitored using a portable soil moisture
meter. No drainage occurred during the growing period. The qualities of the FW, BW
and RW are shown in Table 6. The RW was taken from the Luotuowan Domestic Sewage
Treatment Plant in Xinxiang City, Henan Province. The plant adopted a A2/O treatment
process, and the treated water quality met the “Farmland Irrigation Water quality Standard”
(GB5084-2021). The FW was tap water, and the BW was obtained by adding sea salt into
the FW according to the results of [81]. In the experiment, except for the different irrigation
sources, the other conditions were consistent, such as the irrigation amount, irrigation
method, irrigation time, fertilization amount, agronomic measures, etc.

Table 5. Design for cyclic irrigation using different water sources.

Treatment B3 FB3 FFB3 B5 FB5 FFB5 F RB3 RRB3 RB5 RRB5 R

Irrigation
water BW3 FW-

BW3
FW-FW-

BW3 BW5 FW-
BW5

FW-FW-
BW5 FW RW-

BW3
RW-RW-

BW3
RW-
BW5

RW-RW-
BW5 RW

Note: The 3 and 5 represent 3 and 5 g·L−1 of salinity in BW, respectively.

Table 6. Water quality of RW, BW and FW.

Water Source EC pH Na+ K+ HCO3− Cl− Ca2+ Mg2+ SO42− SAR TN TP Pb Cu Zn Cd

FW 321 8.31 0.4 0.04 1.96 0.85 0.98 0.61 1.08 0.34 1.17 0.02 - - - -
RW 2120 8.17 13.5 0.36 4.56 8.85 2.28 3.10 5.28 5.81 0.52 0.05 - - - -
BW3 6100 8.41 57.8 0.05 2.32 54.20 1.08 0.71 0.96 43.21 1.31 0.02 - - - -
BW5 9432 8.44 87.0 0.07 2.28 90.90 0.92 0.77 1.14 66.86 1.18 0.02 - - - -

Note: EC represents electrical conductivity, µS·m−1; SAR represents sodium adsorption ratio, (mmol·L−1)0.5; TN
represents total nitrogen content, mg·L−1; TP represents total phosphorus content, mg·L−1; for Pb, Cu, Zn and
Cd, the units are mg·L−1; for Na+, K+, HCO3

−, Cl−, Ca2+, Mg2+ and SO4
2−, the units are mmol·L−1; “-” indicates

not detected: concentration was below the instrumental detection limit.

4.3. Measured Indices and Methods

(1) Physicochemical properties of soil. After crop harvest, soil samples were collected and
then air-dried, ground and sieved (2 mm). The soil moisture content was measured
with the oven-drying method. The soil sample was extracted with a soil-to-water
ratio of 1:5. Then, the extracts were used to measure the electrical conductivity (EC)
with a conductivity meter, Na+ by flame photometry, Cl− by AgNO3 titration, and
the soil organic matter (SOM) was determined using a low-temperature external-
heat potassium dichromate oxidation-colorimetric method according to the methods
of [82]; the water drop penetration time (WDPT) was measured via the water drop
penetration time method according to the methods of [22].

(2) Soil salinization index. The soil pH, exchangeable ions, exchangeable soil sodium
percentage (ESP) and effective action exchange capacity (ECEC) were determined and
calculated according to the methods of [83].

(3) Soil enzyme activity. The activities of soil alkaline phosphatase (S-AKP/ALP) were
determined with detection kits (Solarbio, Beijing), and the daily release of 1 nmol
phenol per gram of soil at 37 ◦C was used as an enzyme activity unit. The soil sucrase
(S-SC) activity was determined using 3,5-dinitrosalicylic acid colorimetry, and its
activity was expressed as milligrams of 1 g of soil glucose after 24 h. The activity of
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soil urease (S-UE) was determined with indophenol-blue colorimetry, and its activity
was expressed by the number of milligrams of NH3-N in 1 g of soil after 24 h.

(4) Growth and physiological index of crop. After harvesting (14 December), the above-
ground fresh weight (AFW), aboveground dry weight (ADW), underground fresh
weight (UFW) and underground dry weight (UDW) were determined, referring to the
methods described in [84]. A detection kit (Suolebao, Beijing) was used to measure
the leaf chlorophyll contents.

(5) Antioxidant index of crop. Using methods outlined in [84], the soluble protein con-
tent, catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) activities and
malondialdehyde (MDA) content were determined.

(6) Na+ content in leaves. The Na+ content in leaves was determined via a flame pho-
tometer method.

4.4. Data Analysis

The experimental data were calculated using Excel 2010. A multivariate analysis of
variance was used to analyze the differences among treatments, using SPSS25.0 software
(IBM Crop., Armonk, NY, USA). The significance level was set to 0.05. The figures were
illustrated using origin 2019b software.

5. Conclusions

In areas where BW resources are distributed, the available amounts of freshwater
resources are generally relatively low, resulting in less water used for agricultural irri-
gation. This limits the application of brackish water-freshwater cyclic irrigation to some
extent, thereby affecting the utilization of brackish water. China has a large amount of
reclaimed water resources, but the development and utilization rate of these resources is
low. Reclaimed water has a lower salt content compared to brackish water, and can replace
freshwater to leach salt. We studied the effects of brackish water and reclaimed water wheel
irrigation on soil and crops through pot experiments, and obtained the main conclusions,
as follows:

(1) Compared with FBCI, the soil water content increased without a significant level,
while the soil EC, sodium and chloride ions contents improved obviously under
RBCI. The contents of soil EC, sodium and chloride ions gradually declined, while
the soil moisture content decreased gradually as irrigation times were increased using
reclaimed water under RBCI.

(2) The responses of different soil enzyme activities to RBCI were different. As irrigation
times increased using reclaimed water, the difference in S-UE activity reached a signif-
icant level; for the same irrigation sequence, the activities of soil alkaline phosphatase,
sucrase and urease increased with the increase in salinity in brackish water.

(3) RBCI can alleviate the risk of secondary soil salinization to some extent. The soil pH
values were all below 8.5 without any soil alkalization risk. The ESP did not exceed
15%, and there was no possible risk of soil alkalization except that the ESP of B3 and
B5 went beyond the limit of 15%.

(4) Neither the aboveground or underground biomass reached an obvious difference
between FBCI and RBCI. RBCI was conducive to improving the aboveground biomass
compared to irrigating crops with brackish water.

(5) Cyclic irrigation using reclaimed-reclaimed-brackish water at 3 g·L−1 was recom-
mended under the experimental conditions.

The irrigation amount, especially of reclaimed water, is important to salt leakage. In
this experiment, only two levels in salinity of brackish water and one kind of reclaimed
water were considered, while the irrigation amount was not considered. In order to consider
the irrigation amount and the type of reclaimed water, further experimental research is
needed. In addition, for the pot experiment, the distribution of salt in the soil profile
could not be reflected due to the limited height of the pot. In the future, long-term field
experiments should be carried out.
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