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Abstract: Hyperspectral technology offers significant potential for non-invasive monitoring and
prediction of morphological parameters in plants. In this study, UV−VIS−NIR−SWIR reflectance
hyperspectral data were collected from Nicotiana tabacum L. plants using a spectroradiometer. These
plants were grown under different light and gibberellic acid (GA3) concentrations. Through spec-
troscopy and multivariate analyses, key growth parameters, such as height, leaf area, energy yield,
and biomass, were effectively evaluated based on the interaction of light with leaf structures. The
shortwave infrared (SWIR) bands, specifically SWIR1 and SWIR2, showed the strongest correlations
with these growth parameters. When classifying tobacco plants grown under different GA3 con-
centrations in greenhouses, artificial intelligence (AI) and machine learning (ML) algorithms were
employed, achieving an average accuracy of over 99.1% using neural network (NN) and gradient
boosting (GB) algorithms. Among the 34 tested vegetation indices, the photochemical reflectance
index (PRI) demonstrated the strongest correlations with all evaluated plant phenotypes. Partial least
squares regression (PLSR) models effectively predicted morphological attributes, with R2

CV values
ranging from 0.81 to 0.87 and RPDP values exceeding 2.09 for all parameters. Based on Pearson’s
coefficient XYZ interpolations and HVI algorithms, the NIR−SWIR band combination proved the
most effective for predicting height and leaf area, while VIS−NIR was optimal for optimal energy
yield, and VIS−VIS was best for predicting biomass. To further corroborate these findings, the SWIR
bands for certain morphological characteristic wavelengths selected with s−PLS were most significant
for SWIR1 and SWIR2, while i−PLS showed a more uniform distribution in VIS−NIR−SWIR bands.
Therefore, SWIR hyperspectral bands provide valuable insights into developing alternative bands for
remote sensing measurements to estimate plant morphological parameters. These findings under-
score the potential of remote sensing technology for rapid, accurate, and non-invasive monitoring
within stationary high-throughput phenotyping systems in greenhouses. These insights align with
advancements in digital and precision technology, indicating a promising future for research and
innovation in this field.

Keywords: algorithms; biophysical parameters; gibberellins; growth and development; partial least
square regression; plant phenotyping; vegetation indices; wavelengths

1. Introduction

The global population is projected to exceed 9.8 billion by 2050, necessitating ever-
increasing demand for efficient plant phenotyping and sustainable agricultural practices [1].
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This escalating pressure requires innovative approaches in plant science to optimize crop
growth and resource allocation [2]. High-throughput characterization, integrating remote
sensing technologies [3], plant breeding [4], and computational intelligence [5], has emerged
as a promising solution for enhancing phenotypic evaluation and, ultimately, crop per-
formance in diverse environments [6]. Hyperspectral remote sensing, in particular, has
gained prominence as a powerful tool for non-destructive and non-invasive evaluation of
numerous plant physiological [7], biochemical [8,9], and morphological properties [10,11].
This capability facilitates the prediction of essential plant development aspects, such as
size, growth cycle, and productivity, which are critical for the success of any agricultural
production system [12–14].

Tobacco (Nicotiana tabacum L.), an economically significant crop grown worldwide, is
an ideal model for research and studies [12,15,16]. The growth and development of tobacco
plants are strongly influenced by various environmental interactions, such as light quality
and intensity, as well as endogenous factors such as gibberellin [17], a key plant hormone
regulating several aspects of growth and development [18], including stem elongation [17],
leaf expansion [19], increased yield biomass [20], and flowering [21]. Investigating the
interactions between light environments and gibberellin levels is crucial for enhancing
tobacco cultivation practices and optimizing resource allocation. Applied studies for
modeling these interactions for productivity in greenhouses [17,20] are also significant. With
tobacco cultivation in southern Brazil experiencing rapid growth, evaluating biophysical
attributes highly correlated with hyperspectral reflectance offers opportunities for more
efficient, sustainable, and cost-effective analysis of this crop in greenhouses or indoor
environments through precision and digital agriculture.

Reflectance hyperspectral remote sensing facilitates the acquisition of continuous
and high-resolution spectral data, enabling detailed characterization of plant properties at
different growth stages [22–24]. Recent advancements in hyperspectral technology have
led to the development of more efficient algorithms for complex dataset analysis, allowing
for the extraction of relevant plant traits and their correlation with specific phenotypic
parameters [5,6,24]. Consequently, this technology provides a robust means for investigat-
ing the interplay between light conditions, gibberellin levels, and tobacco plant growth
characteristics [12,25].

Many studies have demonstrated that applying hyperspectral remote sensing to plant
phenotyping has numerous advantages [14,26]. This approach enables scientists and
researchers to gain valuable insights into the growth and development of crops without
causing damage, using toxic reagents, incurring high equipment costs, or performing
destructive analyses on plants [27,28]. In addition, hyperspectral remote sensing has
been used to predict and monitor various plant characteristics, including height, leaf area,
pigment concentrations, water status, lignin and cellulose contents, biomass, and grain
yield [17,20]. These parameters are essential for understanding plant growth dynamics and
sustainability practices [29].

In recent years, the significance of artificial intelligence (AI) and classification algo-
rithms in the analysis of remote sensing data has become increasingly evident [7,30,31].
Advanced machine algorithms and artificial intelligence facilitate the efficient processing of
large and complex datasets, allowing researchers to extract meaningful information from
the vast amounts of spectral data generated by reflectance hyperspectral data [7,32,33].
Accordingly, as shown in Mao et al. (2022) [34] and Matysiak et al. (2022) [35], machine
learning and AI techniques have been employed to develop accurate and robust classifi-
cation models, which can be used to predict numerous plant characteristics and growth
parameters [4,36–38]. For instance, higher prediction and classification accuracies have
been achieved in wheat, soybean, coffee, carrot, radish, and lettuce plants [3,10,32].

Vegetation indices, derived from spectral reflectance measurements, have been ex-
tensively employed in remote sensing applications for monitoring plant health, growth,
and productivity [16,39–41]. These indices are particularly useful in spectroscopy analyses,
as they can help identify specific wavelengths or range bands most strongly associated
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with particular plant morphological parameters [11,42,43]. For example, the selection of
appropriate wavelengths and the development of customized vegetation indices can signif-
icantly improve the accuracy and efficiency of hyperspectral remote sensing applications in
agriculture and environmental studies [7,20,37].

Our study aims to integrate advanced computational intelligence, classification
algorithms, and customized vegetation indices to extract valuable information from
UV−VIS−NIR−SWIR hyperspectral data on plant growth in greenhouses. We hypothesize
that this approach will enable non-destructive assessment, classification, and prediction of
morphological parameters, such as height, leaf area, energy yield, and biomass of tobacco
plants, with high accuracy and precision. The objective is to demonstrate that reflectance
hyperspectral remote sensing technology can provide alternative, rapid methods for esti-
mating plant attributes.

2. Results
2.1. Variance and Descriptive Analyses-Based Efficiency Parameters of Tobacco Plants

The morphological attributes relevant to the phenotyping of Nicotiana tabacum L. leaves
were evaluated in plants. These plants were cultivated under high irradiance (full light) and
low light (8.5% of full light; shade) conditions and under different gibberellin treatments.
The results presented in Table 1 and Figure 1 display significant differences (p <0.001) in
height (cm), leaf area (m2), yield energetic (LAD; m3), and biomass (g) values. In addition,
Table 1 and Figure 1 also include the coefficient of variation (CV%) of the parameters
for twelve gibberellin levels under distinct light conditions. The CV values ranged from
33.5 to 82.6%, with all four parameters classified as very high. The results suggest a
significant degree of variation in the studied plant characteristics.

Table 1. Statistical description of biophysical and efficiency parameters in Nicotiana tabacum L. plants.

Parameters Count (n) Mean Median Minimum Maximum CV (%)

Height (cm) 144 77.4 73.9 30.2 142.5 33.5
Leaf area (m2) 144 0.3 0.3 0.1 0.8 51.8

Yield energetic (m3) 144 9.6 8.8 1.3 29.5 59.7
Biomass (g) 144 21.3 11.4 2.5 55.1 82.6
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and submitted to different gibberellin (gibberellic acid–GA3) concentration. (A) Height (cm). (B) Leaf
area (m2). (C) Yield energetic (m3). (D) Biomass (g). CONT (Control; full light); GA10 (10 µM GA3;
full light); GA100 (100 µM GA3; full light); PAC (50 mg L−1 of paclobutrazol; full light); GA10P
(combined GA3 10 µM + PAC; full light); GA100P (combined GA3 100 µM + PAC; full light); SCONT
(Control; shade); SGA10 (10 µM GA3; shade); SGA100 (100 µM GA3; shade); SPAC (50 mg L−1 of
paclobutrazol; shade); SGA10P (combined GA3 10 µM + PAC; shade); SGA100P (combined GA3

100 µM + PAC; shade). Different letters above the box denote significant differences according to
Duncan’s test (p < 0.001). Mean ± SE. (n = 144).

Higher concentrations of GA3 induced an increase in light capture efficiency parame-
ters and plant growth, both under high and low light availability conditions (Figure 1). On
the other hand, applications of PAC under the plants reduced growth by more than (≈86%)
in both full or low light conditions in greenhouses. However, when GAs were added to the
PAC treatments, the plants partially reversed their growth and yield conditions toward dry
matter accumulation. In general, higher concentrations of GA3 (100 µM) and GA100+PAC
(Figure 1A,D) and increments valuable of parameters (Figure 1B,C) were observed (Figure 1;
light vs. GAs).

2.2. Leaf Hyperspectral Reflectance

The leaf photosynthetically active radiation (PAR) reflectance in vivo (350–700 nm)
exhibited the highest values in individuals treated with GA100P, reaching a peak of ap-
proximately 23% at the green wavelength (550 nm). In contrast, control plants grown
under high irradiance conditions displayed the lowest peak reflectance values (p < 0.001)
(Figure 2). Comparing the GA3 regimes to their corresponding control plants grown in
full light, there were minor differences (<5%) in reflectance values within the blue and red
bands. However, notable changes were observed when comparing shaded environments,
with an approximate increase of ≈37% between these distinct conditions. Generally, plants
grown under low light conditions demonstrated a decrease in their peak reflectance value
at 550 nm (Figure 2). In comparison to plants grown under full light, higher reflectance
values were observed in control (14.7%) and GA10P-treated (12.2%) plants, while lower
values were noted in PAC-treated plants (7.8%) at 550 nm. Among all treatments, only
control plants grown under low light conditions exhibited higher reflectance values in the
blue or red regions of the spectrum. PAC-treated plants displayed comparable reflectance
values to their GA3-treated corresponding in the blue or red spectral bands, both in high
irradiance and low light-grown plants.

In the NIR spectrum ranging from 700 to 1300 nm, distinct patterns were observed
in the hyperspectral curves of leaf development under light conditions (Figure 2). Leaves
grown in high light availability environments showed an average increase of 42.5% in
reflectance within this spectral band compared to shade-grown plants, except for SPAC,
which demonstrated similar increases to full light-grown plants. In the SWIR region
(1500–2500 nm), characteristic points of water absorption were observed at 1450, 1680, 1840,
1930, and 2490 nm, and three other peaks related to structural components (1192, 1678,
and 2220 nm), including cell walls, cellulose, lignin, pectin, and other compounds (1270,
1797, and 2130 nm) associated with phenolic compounds, were evident in the hyperspectral
curves (Figure 2). Furthermore, parameters such as photochemical−photosynthetic effi-
ciency and phenotyping were correlated with the bands close to 1500, 1600, and 1810 nm
in the SWIR band for photochemical efficiency. These spectral patterns were associated
with leaf development, with higher reflectance factors observed for leaves with more devel-
oped cells in the mesophyll and lower values for less developed cells (see Figure 2; SWIR
water structures).
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Figure 2. The factor of reflectance was calculated for spectral leaf curves spanning from 350 to 2500 nm
in Nicotiana tabacum L. leaves. The plants were cultivated under two different light conditions, high
irradiance (full light) and low light (8.5% of full light), and submitted to different concentrations of
gibberellic acid (GA3). The determination of the accurate inflection points at 700 and 1300 nm was
conducted (red dotted lines). Each repetition was generated by calculating the mean of measurements
taken for leaves. For abbreviations pertaining to other treatments, see Figure 1. F-test (p < 0.001).
(n = 144). To enhance clarity, the standard error was omitted.

2.3. Clustering and Correlation Analysis Using PCA

Figure 3 displays the relationship between wavelengths and principal components
(PCs) in tobacco plants that were grown under different levels of gibberellin treatment and
varying light conditions. The hyperspectral curves exhibit significant correlations (p < 0.001)
between PCs (PC1–PC3) and distinctive environmental factors, highlighting the potential
of hyperspectral analysis for clustering tobacco plants based on their morphological and
yield parameters (Figure 3A). The PCA explained 99% of the total variance, with PC1, PC2,
and PC3 accounting for 88%, 9%, and 2%, respectively, for the spectral range of 350 to
2500 nm.

The spectral curves demonstrate strong correlations throughout the full spectrum,
indicating that spectral analysis can provide valuable insights into the alterations in leaf
properties under full light and gibberellin treatments. Specifically, changes in the NIR
and SWIR regions of the hyperspectral curves (350–2500 nm) strongly correlate with the
effects of environmental factors on plant growth and phenotyping for height, leaf area,
yield energetic, and biomass (Figure 3), resulting in two distinct clusters.

Figure 3B shows that the VIS spectrum region near the blue (435 nm), green (555 nm),
and red (650 nm) bands has increased correlation coefficient values for the first components,
while minor correlations are observed for the second and third components, indicating good
differentiation properties among tobacco plants. Additionally, near-infrared and shortwave-
infrared bands (760–850 nm, 880–1000 nm; 1450–1600, and 1800–2100) exhibit strong
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correlations for the separation of treatments, highlighting the potential of hyperspectral
analysis for assessing the effects of environmental factors on tobacco plant growth and
phenotyping for the second and third components.
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Figure 3. Principal component analyses (PCAs) of spectral leaf reflectance curves ranging from
350 to 2500 nm in Nicotiana tabacum leaves from plants cultivated in high irradiance (yellow; full light)
and low light (grey; 8.5% of full light) environments and submitted to different GA3 concentrations.
(A) 3D plot of the PCA scores for the PC1, PC2, and PC3 of hyperspectroscopy data. (B) Correlation
of coefficients with three principal components (dark to light green lines; PC1, PC2, and PC3). The
red line represents −0.70 and +0.70 correlation coefficients. For detailed information on treatments
and their abbreviation, please refer to Figure 1. (n = 144).

2.4. Selected Wavelength Cluster Heatmap

The relationship between different environmental conditions, gibberellin levels, leaf
colors, and hyperspectral data wavelengths in tobacco plants was examined using cluster
heatmap analysis, as shown in Figure 4. The colors on the cluster heatmap indicate the
Z-score between the hyperspectral values and the morphological and growth conditions of
the plants, which are strongly associated with components such as pigments and structure.
In this sense, Z-scores were employed to represent the variability of the data, with red
colors displaying a correlation slope of approximately 1.5, blue colors indicating a slope
of approximately −1.5, and light colors representing a weak association with values of
approximately 0.

A darker shade of blue for a specific wavelength band indicated a higher GA3 con-
centration of a particular environmental condition, which could be distinguished clearly.
Gibberellic acid regimes, which directly impact plant efficiency and morphological changes,
were strongly associated with bands in the near-infrared (NIR) region and, to a lesser
extent, in the visible (VIS) region. On the other hand, the bands between 1400 and
1450 nm were negatively correlated with components in all plants (PCA vs. light), while
those between 1900–1950 nm and 2450–2500 nm showed a strong interaction with the
increment of gibberellin levels in the plants (Figure 4). Furthermore, the data demon-
strated that in all NIR−SWIR bands, there were strong and significant changes in the
spectra associated with plants grown in full light and shade environments, with plants
grown in full light demonstrating a greater impact of structural changes compared to those
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grown in shaded environments, independent of the concentration of GA3 (Figure 4, see
750–1300 nm).
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Figure 4. The cluster heatmap displayed the correlation between the hyperspectral bands for Nicotiana
tabacum L. leaves from plants cultivated in high irradiance (full light) and low light (8.5% full light)
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wavelength bands (VIS, NIR, SWIR), environment (sun, shade), gibberellin regimes (low, normal,
high, very high), and leaf colors (very low, low, normal, dark). Positive correlations are shown in
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treatments and their abbreviation, please refer to Figure 1. (n = 144).

2.5. Classification of Morphological and Phenotyping for Plant Growth with Machine Learning and
Intelligence Algorithms Models

The assessment of morphological and phenotyping characteristics using VIS−NIR−SWIR
hyperspectral data is presented in Figure 5. Eight machine learning algorithms were
utilized, including neural network (NN), gradient boosting (GB), random forest (RF),
support vector machine (SVM), K-nearest neighbors (KNN), naive Bayes (NB), logistic
regression (LR), and stochastic gradient descent (SGD), each showing varying levels of
performance ranging from low to high accuracy. To assess the performance of these
algorithms, three accuracy parameters were employed, namely, correct classification (CC),
F-score, and kappa coefficient. The variance analysis depicted in Figure 5 demonstrates
a significant interaction between the morphological inputs and the machine learning
algorithms tested for F-score, with a significant difference for ML techniques concerning
CC and Kappa.

Regarding the classification of tobacco plants under different GA3 regimes and light
environments, the neural network (NN) and gradient boosting (GB) algorithms demon-
strated the highest performance, with an average accuracy of over 99% (Figure 5). The
study used a total of 100 training samples and 44 validation samples. The random for-
est (RF) and support vector machine (SVM) algorithms also had relatively high accuracy,
averaging approximately 88% to 95%, with similar values for the training and testing
datasets. In contrast, the K-nearest neighbors (KNN), naive Bayes (NB), logistic regression
(LR), and stochastic gradient descent (SGD) algorithms had higher error rates based on the
F1-test, Kappa, and accuracy performance (Figure 5). These findings suggest that both the
complete range of bands and individual wavelength values have the potential for accurate
classification when applied with artificial intelligence techniques (Figure 5).



Plants 2023, 12, 2526 8 of 27Plants 2023, 12, x FOR PEER REVIEW 8 of 27 
 

 

 
Figure 5. Evaluation of models for precision and recall for 8 machine learning and artificial intelli-
gence algorithms (AIAs) for Nicotiana tabacum L. leaves from plants cultivated in high irradiance 
(full light) and low light (8.5% of full light) environments and submitted to different GA3 concen-
trations. Confusion matrix for neural network (NN), gradient boosting (GB), random forest (RF), 
supervision vector machine (SVM), K-nearest neighbors (KNN), naive Bayes (NB), logistic regres-
sion (LR), stochastic gradient descent (SGD). Inset shows LogLoss for error accumulation in models 
for classification. Boxes show overall accuracy/precision for correct classification (accepted in green) 
and mistake (error in red). A total of 100 training samples and 44 validation samples were used. For 
abbreviations V01−12, which indicate the order of treatments, see Figure 1. (n = 144). 

  

Figure 5. Evaluation of models for precision and recall for 8 machine learning and artificial intel-
ligence algorithms (AIAs) for Nicotiana tabacum L. leaves from plants cultivated in high irradiance
(full light) and low light (8.5% of full light) environments and submitted to different GA3 concen-
trations. Confusion matrix for neural network (NN), gradient boosting (GB), random forest (RF),
supervision vector machine (SVM), K-nearest neighbors (KNN), naive Bayes (NB), logistic regression
(LR), stochastic gradient descent (SGD). Inset shows LogLoss for error accumulation in models for
classification. Boxes show overall accuracy/precision for correct classification (accepted in green)
and mistake (error in red). A total of 100 training samples and 44 validation samples were used. For
abbreviations V01−12, which indicate the order of treatments, see Figure 1. (n = 144).
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2.6. Vegetation Indices for Morphological and Phenotyping Monitoring Parameters

Several vegetation indices (VIs) were evaluated for their effectiveness in monitoring
plant status, photosynthetic pigment assessment, and structural parameters. The simple
ratio index ρ680 (SR680) emerged as the most effective VI for monitoring plant status. For
photosynthetic pigment assessment, the strongest correlations were observed with the
ratio analysis of reflectance spectra (RARS), pigment-specific simple ratio Chl a (PSSRa),
pigment-specific simple ratio Chl b (PSSRb), and pigment-specific simple ratio (PSSRc)
(Figures 6 and S1). These indices were found to be effective in assessing the levels of chloro-
phyll a, chlorophyll b, and carotenoids in the plants. Additionally, carotenoid reflectance
index 1 (CRI1) and carotenoid reflectance index 2 (CRI2) emerged as the most suitable
indices for pigment monitoring (Figures 6 and S1). These indices were found to be effective
in assessing the levels of carotenoids in the plants (Table S1). Finally, the structurally insen-
sitive pigment index (SIPI) was identified as the optimal index for evaluating structural
parameters. This index was found to be effective in assessing the structural characteristics
of the plants, such as leaf area and biomass (Figure 6; see Structural in grey).
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Figure 6. Relative contribution of narrowbands (VIs) to total variability for spectral leaf reflectance
data from 350 to 2500 nm in Nicotiana tabacum L. leaves from plants cultivated in high irradiance (full
light) and low light (8.5% of full light) environments and submitted to different GA3 concentrations.
For abbreviations of the vegetation indices, see Table S1. Each vegetation index was separated for
more correlation of specific differences in biochemical and structural compounds. Monitoring status
(pink bars), photosynthetic pigments (yellow bars), photochemical efficiency (orange bars), water
(blue bars), pigments (green bars), and structural (grey bars).

2.7. Matrix of Correlations for Vegetation Indices for Monitoring Morphological Parameters

The correlation matrix of vegetation indices for monitoring morphological parameters
revealed strong relationships between the indices and their corresponding parameters,
as well as some negative correlations. The photochemical reflectance index (PRI) demon-
strated the highest and strongest correlations (r = 0.87, 0.87, 0.88, 0.86; p < 0.001) for
monitoring plant morphological parameters, including height, leaf area, yield energetic,
and biomass, respectively (Figure 7). However, the simple ratio index ρ680 (SR680) showed
a strong positive correlation (r = 0.75) with plant height. The energy yield parameter was
strongly correlated with the NDVI680 (r = 0.77) and SR680 (r = 0.78) indices. However,
some indices showed negative correlations with certain parameters. For instance, the PSSRa
index had a negative correlation with chlorophyll b content (r = −0.64), while the PSSRb
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and PSSRc indices exhibited negative correlations with chlorophyll a content (r = −0.58 and
r = −0.65, respectively). In addition, the normalized difference vegetation index750
(NDVI750) showed a low correlation with plant height (r = 0.41). Regarding the assessment
of photosynthetic pigments, the ratio analysis of reflectance spectra (RARS), pigment-
specific simple ratio Chl a (PSSRa), pigment-specific simple ratio Chl b (PSSRb), and
pigment-specific simple ratio (PSSRc) indices yielded the strongest correlations. Among
the pigments, the carotenoid reflectance index 1 (CRI1) and carotenoid reflectance index 2
(CRI2) showed the strongest correlations, while the structurally insensitive pigment index
(SIPI) was found to be the best index for evaluating structural parameters. In this way,
the cellulose absorption index (CAI) demonstrated the highest and negative correlations
(r = −0.83, −0.92, −0.84, −0.83; p < 0.001) for monitoring the structure and ultrastructure
of cell components and leaf tissues for phenotyping such height, leaf area, yield energetic,
and biomass, respectively (Figure 7). Overall, these findings suggest that a combination of
different vegetation indices can be utilized to accurately monitor morphological and photo-
synthetic parameters in plants. The identified correlations provide a basis for developing a
comprehensive monitoring strategy that incorporates a suite of vegetation indices tailored
to the specific monitoring needs of the plant species of interest (Figure 7).
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2.8. Prediction of Morphological and Efficiency Phenotyping Parameters

The statistical metrics of the PLSR models for height, leaf area, yield energetic, and
biomass parameters obtained from the calibration (Cal) and cross-validation (Cva) methods
are presented in Table 2. The analysis of hyperspectral data collected from 350 to 2500 nm
indicated a clear difference in behavior between the Cal and Cva phases. The four best
results had excellent calibration scores (>0.83 and >2.45, respectively) for the R2

C and RPDC
metrics. The full hyperspectral data (350–2500 nm) provided the best R2

CV and RPDCV
metrics (R2

CV > 0.81, RPDCV > 2.3) (Table 2).

Table 2. Statistical parameters obtained for Nicotiana tabacum L. plants during the calibration, cross-
validation, and validation phases of the unspoked state models. (n = 144).

PLSR Models Attributes
PLSR Parameters

Factors r R2 Offset RMSE RPD Bias

Calibration

Height (cm) 3 0.93 0.86 10.6 9.4 2.70 −
Leaf area (m2) 3 0.91 0.83 0.1 0.1 2.45 −

Yield energetic (m3) 1 0.93 0.86 1.8 2.3 2.67 −
Biomass (g) 3 0.94 0.88 2.4 6.1 2.94 −

Cross-Validation

Height (cm) 3 0.92 0.84 11.6 10.2 2.52 −
Leaf area (m2) 3 0.90 0.81 0.1 0.1 2.30 −

Yield energetic (m3) 1 0.91 0.84 2.0 2.5 2.48 −
Biomass (g) 3 0.93 0.87 2.7 6.6 2.73 −

Prediction

Height (cm) 3 0.88 0.77 15.0 12.2 2.09 1.6
Leaf area (m2) 3 0.89 0.79 0.1 0.1 2.18 0.0

Yield energetic (m3) 1 0.90 0.81 1.9 2.4 2.31 0.2
Biomass (g) 3 0.93 0.87 2.6 6.3 2.76 0.3

Models containing 1 to 3 factors were considered the most appropriate for capturing
the relationship between predictor variables (reflectance) and predicted variables (tobacco
growth and phenotyping parameters), as shown in Table 2. The R2

CV values indicated
very good models (0.81–0.87) for height, leaf area, yield energetic, and biomass, while the
RPDP values indicated excellent models (>2.09) for all variables evaluated. The RMSECV
values were similar or slightly smaller than RMSEP, and the bias was close to zero for
all parameters.

To evaluate the predictive capacity of the PLSR models for the four proposed parame-
ters, an independent dataset of hyperspectral data was used. For example, a model with
1 factor for yield energetic and 3 factors for height, leaf area, and biomass was considered
excellent for predicting tobacco parameters.

The β−loadings and weighted coefficients of the PLSR model are illustrated in Figure 8,
which identifies the peaks and valleys with significant impacts on the prediction model
construction. These features were distributed evenly across all spectra (VIS−NIR−SWIR).
To create the PLSR models, RC and VIP values were employed, and the models were
based on 5 to 12 wavelengths (peaks and valleys). The wavelengths with the highest
coefficients were found to be near 400 nm (violet), 435 nm (blue), 555 nm (green), 672 nm
(red), 700–750 nm (red edge), 1350 nm (NIR), 1460 nm (SWIR), 1950 nm (SWIR), and
2200 nm (SWIR). These wavelengths were found to effectively contribute to high precision
in predicting parameters such as plant height (Figure 8A), leaf area (Figure 8B), yield
energetic (Figure 8C), and biomass (Figure 8D).
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Figure 8. β−loadings and weighted-coefficient method-based reflectance hyperspectral data between
350 and 2500 nm for Nicotiana tabacum L. leaves from plants cultivated in high irradiance (full
light) and low light (8.5% of full light) environments and submitted to different GA3 concentrations.
(A) Height (cm). (B) Leaf area (m2). (C) Yield energetic (m3). (D) Biomass (g).

2.9. XYZ Interpolates Pearson’s Coefficient by Morphological and Efficiency Parameters

Figure 9 presents a count plot map that displays the correlation coefficients (R2)
obtained from the linear regression between each parameter and Pearson correlation.
Those coefficients were interpolated using combinations of two hyperspectral bands and
reflectance hyperspectral sensors. The full spectra (350–2500 nm) from the hyperspec-
tral sensors were analyzed at this stage, which improved the prediction of parameters.
The analysis revealed that the NIR/SWIR band combination was the most effective for
predicting height (Figure 9A) and leaf area (Figure 9B), whereas the VIS−NIR combina-
tion was the best combination for predicting yield energetic (Figure 9C). Meanwhile, the
VIS−VIS combination was optimal for predicting biomass (Figure 9D) when using inter-
polation between wavelength1 and wavelength2 (Figure 9). When using hyperspectral
sensors, the VIS/VIS band combination exhibited the highest values of R2 for the same
spectral interval.

Moreover, the results demonstrated that the R2 value addressing the correlation be-
tween the light environment and gibberellin levels for each hyperspectral curve depended
on the most efficient method for morphological and phenotyping attributes, depending
on the specific bands used to monitor the key parameter. Additionally, the shortwave
infrared spectrum featured numerous band combinations with high correlations (>0.61)
(Figure 9).
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Figure 9. Count plot map by XYZ interpolates Pearson’s coefficient of correlation by inverse distance
to a power math between morphological and efficiency parameters and wavelengths1 vs. wavelength2

for 350 to 2500 nm. (A) Height (cm). (B) Leaf area (m2). (C) Yield energetic (m3). (D) Biomass (g).
White line, correlation 1:1. The displayed color gradient from dark blue to light red indicates an
increase in associations.

2.10. Selection of Variables by PLS Algorithms and Hyperspectral Vegetation Index

The effectiveness of six algorithms was assessed in terms of their capacity to iden-
tify the most reactive wavelengths within the 350 to 2500 nm range. These algorithms
included VIP, GA, s−PLS, i−PLS, r−PLS, and n−PLS (Figure 10). All algorithms selected
wavelengths in the VIS, NIR, SWIR1, and SWIR2 bands. However, the VIP and GA algo-
rithms were unable to discriminate between a few wavelengths and essentially selected
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almost all of the 2151 bands collected during the performance for the generated phenotypic
classification models based on height (Figure 10A), leaf area (Figure 10B), yield energetic
(Figure 10C), and biomass (Figure 10D).

In contrast, the models generated by s−PLSR (dots in blue) were most significant
for SWIR1 and SWIR2, with few shared wavelengths in the VIS (570 and 630 nm). The
wavelengths of i−PLS exhibited a more uniform distribution, although they presented
between 22 and 33 selected wavelengths (Figure 10A−D, yellow dots).

Conversely, r−PLS and n−PLS (pink and red dots) showed the lowest levels of wave-
length selection but encompassed the entire spectrum (VIS−NIR−SWIR). This analysis
highlights the potential of the s−PLS, i−PLS, r−PLS, and n−PLS algorithms in identifying
the most responsive wavelengths for assessing phenotypic parameters of tobacco plants
and paves the way for more efficient and accurate monitoring of plant growth (Figure 10).
Therefore, height, leaf area, yield energetic, and biomass should be better characterized by
SWIR bands.
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Figure 10. The most responsive variables were selected wavelength range of 350−2500 nm by the VIP,
GA, s−PLS, i−PLS, r−PLS, and n−PLS algorithms for tobacco plant growth variables. (A) Height
(cm). (B) Leaf area (m2). (C) Yield energetic (m3). (D) Biomass (g).

On the other hand, the calculated hyperspectral vegetation indices (HVI; Figure 11)
exhibited a low correlation for VIS−VIS and VIS−NIR combinations, as well as an inter-
mediate VIS−SWIR band for height (Figure 11A) and leaf area (Figure 11B). The highest
correlations were found for NIR−SWIR at 1464 and 2095 nm (R2 = 0.78) for biomass
(Figure 11D) and the SWIR−SWIR band at 2212 nm and 2229 nm (R2 = 0.63) for yield
energetic (Figure 11C) combinations (Figure 11).
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Figure 11. The count plot map displays the coefficient of correlation (R2) obtained from linear regres-
sion analysis between morphological and phenotyping parameters and wavelengths1 vs. wavelength2

in the range of 350 to 2500 nm. (A) Height (cm). (B) Leaf area (m2). (C) Yield energetic (m3).
(D) Biomass (g). White line, correlation 1:1. The displayed color gradient from dark blue to light red
indicates an increase in associations.

3. Discussion
3.1. Efficiency Parameters and Leaf Hyperspectral Reflectance of Tobacco Plants

The significant differences observed in height (cm), leaf area (m2), yield energetic (m3),
and biomass (g) values (p < 0.001) under different light conditions and gibberellin treat-
ments in the present study underscore the complex interaction of environmental and
hormonal factors on the growth and productivity of Nicotiana tabacum L. plants (Table 1 and
Figure 1) [17,44,45]. In line with prior research, our results emphasize the importance of
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light conditions in plant growth and development [16], as well as in the accurate estimation,
classification, and prediction of phenotypic growth parameters. For example, studies by
Alabadí et al. (2008) [46], Lau and Deng (2010) [47], and Kurepin and Pharis (2014) [48]
reported that varying light conditions could lead to morphological and physiological ac-
climation in plants. This correlates with the observed changes in tobacco plants under
differing light intensities in greenhouses. Thus, the prediction of biophysical and morpho-
logical attributes using hyperspectral reflectance and non-invasive methods could provide
alternative monitoring techniques when large differences between plants are observed.

Our findings corroborate the well-established role of gibberellins (GAs) in promoting
plant growth [48,49]. Upon application, reflectance hyperspectral data reveal increased
variations in several analyzed parameters. The influence of GAs on cell elongation and
division, as discussed by Biemelt et al. (2004) [50], aligns with the observed increases
in height, leaf area, and biomass values in tobacco plants supplemented with GAs. For
instance, GA3 significantly affects the reflectance factor and, consequently, growth pa-
rameters (Figures 1–3). Conversely, paclobutrazol (PAC), which inhibits GA biosynthesis
and suppresses plant growth [17,18,51], aligns with our observation of reduced growth in
tobacco plants treated with PAC. These findings underscore the role of GAs in plant growth
regulation. These characteristics subsequently alter leaf optical properties and other mor-
phological, anatomical, biochemical, and genetic features that can be effectively quantified
using reflectance hyperspectroscopy. Thus, VIS−NIR−SWIR is an effective method for
understanding the interplay between gibberellin and light intensities in greenhouses for
protected cultivation.

The high degree of variability in plant characteristics, as evidenced by the high coeffi-
cient of variation (CV%) values, concurs with previous research on other crop species [11,52].
This variability may be ascribed to genetic and environmental factors, as well as their in-
teractions, as reported in [53,54]. Comprehending the sources of variability and devising
strategies to optimize plant growth and productivity under different environmental condi-
tions remains a crucial future research area for monitoring base leaf−clips in leaves.

Leaf-based hyperspectral reflectance has been recognized as a promising non-destructive
technique for monitoring plant growth and development, a view supported by an ex-
panding body of literature [43,55,56]. For example, studies by Calviño−Cancela and
Martín−Herrero (2016) and Sexton et al. (2021) [57] have demonstrated the potential of
hyperspectral remote sensing in assessing the physiological status of crops, consistent with
our findings regarding differences in visible (VIS) bands (Figures 2 and 3A,B). The distinct
patterns observed in the near-infrared (NIR) and shortwave infrared (SWIR) regions of the
spectrum (Figure 2) align with previous research, which has reported the potential of hyper-
spectral reflectance as a tool for assessing plant physiological processes and phenotyping
characterization [18,51]. However, further investigation of the relationships of spectral
patterns with physiological processes is crucial to enhance the accuracy and applicability
of hyperspectral remote sensing in crop science and agronomy fields [11,58,59].

3.2. Advanced Data Analysis and Wavelength Selection for Enhanced Plant Growth Estimation

Hyperspectral data analysis, principal component analysis (PCA), and correlation
coefficients were used to assess the impact of gibberellin treatments and light conditions on
the phenotyping of tobacco plants (Figure 3A). These methods have been previously shown
to be effective in capturing variability in plant growth and yield parameters under differ-
ent quality and intensity light environments [13,60]. Our findings successfully achieved
the initial objectives and corroborated the first hypotheses when they were analyzed by
classification and prediction-linked biophysical parameters.

Furthermore, as shown in Figure 4 and demonstrated by Braga et al. (2021) [61], strong
correlations exist between the visible (VIS), near-infrared (NIR), and shortwave infrared
(SWIR) bands of the hyperspectral curves (350–2500 nm), and the morphological changes in
leaves and alterations in plant growth under different light and gibberellin treatments can
be successfully predicted [46,47,49]. This is in line with the findings of Ge et al. (2019) [40],
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who also observed strong correlations between the VIS and NIR regions for estimating plant
biophysical parameters. However, our study further highlights the importance of the SWIR
region in assessing the impact of environmental factors on plant growth and phenotyping,
such as water status, which was evaluated using the WBI, DSWI, and DSWI−5 indices
(Figures 7 and S1).

In contrast to our findings, some researchers have reported that the red edge (680–750 nm)
and NIR plateau (750–1300 nm) regions are more relevant for estimating plant growth
parameters [15,42,62]. Although these regions have demonstrated potential in considering
leaf ultrastructure and morphological variations under different GA3 regimes, our results
indicate that the VIS spectrum near the blue (435 nm), green (535 nm), and red (662 nm)
bands, along with specific intervals of the NIR region (750–860 nm, 870–1050 nm), as well
as numerous SWIR 1 and 2 bands, provide better differentiation among tobacco varieties
and treatments. For instance, SWIR exhibits excellent classification and predictive abilities
for changes in the structure and ultrastructure of leaves in tobacco plants when gibberellin
levels are increased (GA3) or decreased (PAC) (Figures 1–4).

The selected wavelength cluster heatmap (Figure 4) confirms the importance of specific
spectral bands for the discrimination and estimation of tobacco plant growth parameters
under different environmental conditions. This finding is in agreement with the work
of [63,64], who emphasized the role of certain wavelengths in detecting differences in
plant phenotyping characteristics. Nevertheless, our study expands on this knowledge by
identifying additional NIR intervals that can be useful for separating treatments.

The selection of variables by algorithms showcases the potential of machine learning
techniques (Figure 5) to enhance the efficiency of hyperspectral data analysis in estimat-
ing plant growth and phenotyping parameters [33,65,66]. This supports the findings of
Silva et al. (2017) [33], who also recognized the value of machine learning algorithms in
agricultural applications. However, our study provides a more comprehensive approach,
integrating PCA and AIAs and machine learning to extract meaningful information from
hyperspectral data.

In conclusion, our analysis demonstrates that the combination of hyperspectral anal-
ysis, PCA, and learning algorithms is a powerful tool for studying the effects of gib-
berellin treatments and light conditions on the growth and phenotyping of tobacco plants
(Figures 1–5). The selected wavelengths provide a solid foundation for developing discrim-
inant models that can be employed in future research and practical applications, ultimately
contributing to enhanced agricultural productivity and management.

3.3. Morphological and Phenotypic Classification and Prediction Using Machine Learning and
Artificial Intelligence Models

Morphological classification and phenotypic prediction of tobacco plants were con-
ducted using eight machine learning algorithms: neural networks, gradient boosting,
random forest, naive Bayes, K-nearest neighbors, support vector machines, logistic regres-
sion, and stochastic gradient descent (Figures 5 and 6). Our findings are in agreement with
previous research, indicating that neural networks and other machine learning algorithms
can effectively classify and predict plant morphological traits and yield parameters based
on hyperspectral data [15,31,42,67,68].

The excellent performance of neural networks and gradient boosting algorithms in
our study aligns with the findings of Yoosefzadeh−Najafabadi et al. (2021) [69], who
reported that deep learning models achieved superior accuracy in classifying plant species
based on hyperspectral data. Furthermore, our results contribute to the growing body of
literature highlighting the potential of AI and ML algorithms in enhancing the efficiency
and accuracy of plant phenotyping with high precision [68–70].

Vegetation indices (VIs) have been widely used for monitoring plant growth, assessing
pigment concentrations, and phenotyping in crop sciences [9,16,71,72]. They offer a rapid
and accurate evaluation of various phenotypic traits across a range of crops. However,
the specific reasons for their effectiveness in predicting certain traits or robust correlations
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without elucidating the underlying physiological phenomena remain unclear [33,73]. In our
study, we identified several VIs effective for tracking plant status, evaluating photosynthetic
pigments, and assessing structural parameters (Figures 6 and 7; Table S1 and Figure S1).
Although NDVI750, PVR, and PSND demonstrated reduced effectiveness, the performance
of PRI is consistent with prior research on the utility of VIs in plant growth and health eval-
uation and pigment concentration estimation [26,58,71,74–76]. This includes the detection
of structural alterations in carotenoids (lighter leaves with low chlorophyll concentrations)
and shifts in cell wall structure and nitrogen content associated with leaf and biomass
formation (cellulose, lignin, SIPI, CAI1, CAI2, NDNI, NDLI) [9,16,39,40,74,75,77,78].

The strong correlations identified between various VIs and morphological parameters in
our study support the view that these indices can serve as reliable tools for monitoring plant
growth and physiological status. This concurs with research by Fernandes et al. (2020) [58]
and Brocks and Bareth (2018) [79], who reported strong correlations between VIs and plant
attributes such as biomass, leaf area index, and pigment concentrations [38,58,79,80].

In predicting tobacco plant phenotypic parameters (Table 2), PLSR models demon-
strated high precision in estimating various parameters related to plant growth and de-
velopment. For instance, Crusiol et al. (2022a) [11] developed a method for monitoring
water status, Coast et al. (2019) [81] focused on monitoring respiration, and Falcioni et al.
(2023b) [12] examined nutritional deficiencies, among other research. Accurate yield pre-
diction for plant height, leaf area, energy yield, and biomass is crucial for effective crop
management and resource allocation in plant production. These findings are in line with
those of Cotrozzi et al. (2020) [82] and Crusiol et al. (2022a) [11], who reported that PLSR
models based on hyperspectral data could accurately predict crop phenotypic parameters
in alignment with crop science (Table 2 and Figure 8). The success of these models confirms
our initial hypothesis and underscores the potential of using PLSR with hyperspectral data
in other agricultural applications and crop management strategies.

3.4. Interpolation and Hyperspectral Vegetation Index Analyses for Biophysical and
Morphological Parameters

The analysis of interpolation and correlation between biophysical and morphological
parameters using hyperspectral reflectance represents a significant advancement in mon-
itoring biomass accumulation in tobacco plants (Figures 9 and 10). Specifically, distinct
combinations of hyperspectral bands based on leaves are necessary to monitor each stage
of growth and development [12,75,83,84]. The NIR/SWIR band combination was found
to be the most effective for predicting height and leaf area, while the VIS−NIR combi-
nation was best suited for predicting yield energetic. In consensus with Rodrigues et al.
(2022) [15], the VIS−VIS band displayed the highest correlation for biomass. Accordingly,
Hassanzadeh et al. (2020) [85] and previous studies [3,5,12,86] have shown that NIR−SWIR
bands are effective for predicting plant height and leaf area, while VIS−NIR bands have
been used to predict numerous biophysical, physiological, and metabolic attributes and
yield energetic in tissues. Thus, it may be possible that the interaction of light with matter
influences the differentiation of cellular structures in plants, particularly when these plants
are under the influence of GA3 and light exposure. This corroborates our initial hypotheses,
allowing for the evaluation of morphological parameters using hyperspectral reflectance in
SWIR bands.

Interestingly, the shortwave infrared (SWIR) spectrum displayed numerous band asso-
ciations with increased correlations (>0.61), indicating its potential for accurately predicting
plant growth parameters when GA3 levels and light fluctuations in environments [13,20,87],
although not directly related to greenhouses. Previous studies have also found the SWIR
region useful for predicting plant water content, stress, and nutrient uptake [61,86,88].
Furthermore, these band selections were the most responsive wavelengths for tobacco
plants based on a selected wavelength (Figures 8–11). Consequently, our results showed
that the s−PLS and i−PLS algorithms were more effective in selecting the most responsive
wavelengths for various plant characteristics (Figure 10). Specifically, the s−PLS algorithm
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was most significant for SWIR1 and SWIR2, while the i−PLS algorithm demonstrated a
more uniform distribution of selected wavelengths [8,75], as well as a wavelength1 vs.
wavelength2 by HVI analyses (Figure 11A–D).

Therefore, our study highlights the importance of selecting sensitive spectral bands
and using s−PLS and i−PLS algorithms for accurate plant phenotypic assessments [8,84,89].
Additionally, the SWIR spectrum’s potential to predict plant growth parameters makes
it valuable for monitoring plant health and productivity [8]. Overall, these insights un-
derscore the transformative potential of hyperspectral remote sensing to revolutionize
plant characteristic prediction and monitoring (Figure 11). Effective band selection can be
achieved through XYZ selection or HVI algorithms, correlating with wavelengths selected
by x−PLS and the vegetation indices proposed in our study. Leveraging these insights can
enhance agricultural productivity and sustainability, contributing to a brighter future in
crop production management.

3.5. Interaction of Light with Biophysical and Morphological Parameters in Leaves

Leveraging the full spectrum from 350 to 2500 nm offers a powerful method for the
non-invasive evaluation, classification, and prediction of biophysical parameters through
reflectance hyperspectroscopy. This technique could be extended to imaging with hyper-
spectral or multispectral sensors, including filters in the SWIR1 and SWIR2 regions, to
separate the spectral bands [38,58,79,80].

The spectrum captures many leaf components that are essential for biochemical and
photosynthetic processes. These include leaf pigments such as chlorophylls, carotenoids,
anthocyanins, and flavonoids, as well as anatomical and ultrastructural components [12,17,84].
Leaf structures in the shortwave infrared region can be represented through the spectrum,
reflecting the water content, but also cellular structures such as vacuoles, cell walls, and
vesicles filled with various molecular compounds [5,7,12,17,20,84].

Therefore, the spectrum provides a comprehensive understanding of leaf produc-
tion, extending beyond mere pigments to encompass texture, structures, and metabolic
activities [5,7,11,12,17,20,84,87]. These emerge from the interaction within cells and leaf tis-
sues, as well as the integration of all spectral bands from 350 to 2500 nm. Consequently, the
spectrum can provide valuable insights into biophysical parameters, facilitating evaluations
at both the canopy and individual leaf levels.

4. Materials and Methods
4.1. Experimental Design and Growth Conditions

Nicotiana tabacum L. (cv. HAV 425) plants were grown in greenhouses under controlled
lighting conditions. Two distinct light intensities were employed, i.e., full (100%) irradiation
and low light (8.5% of full irradiance), to investigate their growth parameter responses.
The plants were grown in 5 L pots filled with commercial potting mix. A group of plants
was treated with gibberellic acid (GA3) at different concentrations, and paclobutrazol
(PAC) was applied to the soil to observe the effect on plant growth and inhibition of GA
metabolism. All the plants were grown under these conditions for 20 days. The spraying
regime included five applications every two days, using reverse osmosis water, for the
controls (Cont), and 10 µM GA3 (GA10), and 100 µM GA3 (GA100). PAC 50 mg L−1 (PAC)
was applied as per the Falcioni et al. (2017) method [20] and combined with GA3 as follows:
GA3 10 µM + PAC (GA10P) and GA3 100 µM + PAC (GA100P). The experimental design
consisted of a 2 × 6 factorial scheme (light vs. GA3) with 12 treatments and 6 repetitions
for each treatment, totaling 144 samples.

The treatments were designated as follows: CONT (Control; full light), GA10 (10 µM
GA3; full light), GA100 (100 µM GA3; full light), PAC (50 mg L−1 of paclobutrazol; full
light), GA10P (combination of GA3 10 µM + PAC; full light), GA100P (combination of GA3
100 µM + PAC; full light), SCONT (Control; shade), SGA10 (10 µM GA3; shade), SGA100
(100 µM GA3; shade), SPAC (50 mg L−1 of paclobutrazol; shade), SGA10P (combination
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of GA3 10 µM + PAC; shade), and SGA100P (combination of GA3 100 µM + PAC; shade)
following Falcioni et al. (2017) [20].

4.2. Morphological Parameters of Yield and Efficiency of Plants

The growth parameters of yield, such as height (cm), were measured using a graduated
ruler from the plant base to the apex. Dry biomass (g) was measured using an analytical
balance after desiccating the plant material in a forced-air oven maintained at 70 ◦C.

4.3. Leaf Area Measure

To measure the leaf area (m2), a non-destructive analysis was performed by applying
the allometric equation following Antunes et al. (2017) [90]. The equation used to estimate
the leaf area was [LA = k × L × W], where LA represents the leaf area, k is a correction
factor (0.70014), and maximum length (L) and width (W) for leaves.

4.4. Determination of the Yield Energetic of Light for Plants

The leaf area index (LAI) was determined by applying the leaf area (LA) estima-
tion model developed by [90] and by projecting the area on the ground that is covered
(LAI = LA

πr2 ), with the largest leaf length being used as the radius (r). To calculate the leaf
area volumetric density (LAD = LA

plantvolume ) for the yield energetic attribute, the aerial part

of the plant was considered as a cone projection using the equation Vcone = πr2h, where
(h) represents the length of the stem, resulting in the relationship between the plant’s leaf
area and volume (leaf cm2 plant cm−3) by yield energetic [13].

4.5. Reflectance of Hyperspectral Measurements

Hyperspectral reflectance of leaves as measured using a FieldSpec® 3 (Analytical
Spectral Devices ASD Inc., Boulder, CO, USA) spectroradiometer and an ASD contact
PlantProbe® (Analytical Spectral Devices ASD Inc., Longmont, CO, USA). The spectrora-
diometer, equipped with three sensors, captured wavelengths from 350 to 2500 nm. The
PlantProbe® (Analytical Spectral Devices ASD Inc; USA) ensured that data were free from
atmospheric influence. Measurements were taken from the adaxial face of the leaves,
excluding the central nervure. Calibration of the spectroradiometers was performed us-
ing typical white reference plate standards (Spectralon®, Labsphere Inc., Longmont, CO,
USA), generating 2151 bands within the 350–2500 nm range [84]. From this procedure,
144 hyperspectral leaf curves were collected, which were subsequently correlated with
plant parameters. Specific bands for estimating growth light conditions, gibberellin regime,
and leaf colors were selected based on Pearson’s coefficient correlations (p < 0.001) and were
used to select specific bands for estimating parameters and generating a cluster heatmap.

4.6. Statistical Analyses
4.6.1. Descriptive and Univariate Statistical Analyses

Descriptive statistics for growth parameters, including mean, standard error, maxi-
mum, minimum, and coefficient of variation (CV, %), were calculated as per [91], with CV
classified based on [7]. One−way ANOVA was conducted to compare the means of growth
parameters, with statistical significance set at p < 0.001 [92], and a pairwise comparison
of means was performed using Duncan’s test, also at p < 0.001. Pearson’s correlation test
was applied to investigate relationships between the growth parameters and vegetation
indices. Statistical analyses were performed by Statistica 10® software (Statsoft Inc., Tulsa,
OK, USA). Graphs were generated using SigmaPlot 10.0® (Systat Inc., Santa Clara, CA,
USA) and CorelDraw 2020® (Corel Corp., Ottawa, ON, CAN).

4.6.2. Principal Component Analysis (PCA)

PCA was performed on the growth parameter data using The Unscrambler X software,
version 10.4 (CAMO Software, Oslo, NOR), with statistical significance set at p < 0.001. To
prevent underfitting and overfitting, the optimal number of principal components was
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selected based on the first maximum value of the overall accuracy. The resulting base PCAs
were classified according to [37].

4.6.3. Machine Learning and Artificial Intelligence Algorithm (AIA) Models

Eight different AI algorithms for machine learning and data mining were employed.
These algorithms were performed by Orange Data Mining 3.33 (Open−Software). The
algorithms used include neural network (NN), gradient boosting (GB), random forest
(RF), support vector machine (SVM), kernel k-nearest neighbors (KNN), naive Bayes (NB),
logistic regression (LR), and stochastic gradient descent (SGD), as detailed in Table S1. The
evaluated data were randomly separated into 70% for training and 30% for testing. The
results were analyzed based on precision and recall data, and the algorithms’ performance
was evaluated using a confusion matrix. Graphs were generated using CorelDraw, and an
online platform for generation and visualization (https://www.bioinformatics.com.cn/en,
accessed on 26 May 2023) was used to plot the data.

4.6.4. Vegetation Indices Analyses

The study involved testing each of the vegetation indices under different growth
conditions of full light and shade, as well as varying regimes of gibberellin. Furthermore,
the relative performance and contribution of the vegetation indices were compared in
monitoring the plant’s status, including photosynthetic pigments, photochemical efficiency,
water status, pigment content, and structural changes. The results of the vegetation indices
analysis are presented in Table S1 and Figure S1.

4.6.5. Analysis of Reflectance Non-Imaging Sensors Using Partial Least Squares
Regression (PLSR)

The dataset was divided into two groups: one comprising 100 samples for calibration
and cross-validation and the other consisting of 44 independent samples for external
prediction of the PLSR model. Plant growth parameters, including height (cm), leaf
area (m2), yield energetic (m3), and biomass (g), were compared to the spectral curves,
treating each variable as an independent factor. The PLSR models were constructed using
the NIPALS algorithm, and outlier limits were determined based on Leverage’s type
and analyzed using Leverage and Hotelling’s T2 (with a limit of 5%). To evaluate the
predictive performance of the models, coefficients of determination (R2) and root mean
square error (RMSE) were calculated for calibration, cross-validation, and prediction phases.
Following the criteria proposed by Minasny and McBratney (2013) [93], R2 values greater
than 0.75 were considered excellent predictors, values between 0.75 and 0.5 were considered
good, and values below 0.5 were regarded as low. Moreover, the ratio of performance to
deviation (RPD) was calculated using R2 for calibration (R2

C), cross-validation (R2
CV), and

predicted (R2
P) as an informative indicator of the expected accuracy of PLS predictions, as

described in [73].

4.6.6. Comparison of Wavelength1 vs. Wavelength2 for Improved Monitoring of Plant
Growth Parameters

To evaluate whether selecting specific hyperspectral bands can enhance the accuracy
of monitoring plant growth parameters, we conducted a study using Pearson’s correlation.
We evaluated all possible combinations of two spectral bands, with each combination
representing a single hyperspectral band that we assessed for height, leaf area, yield
energetic, and biomass at various wavelengths using the Pearson correlation coefficient (r)
and coefficient of determination (R2). We performed an analysis of the hyperspectral sensor
using the full spectrum ranging from 350 to 2500 nm and applied an inverse distance to
a power algorithm to ensure a fair comparison between the hyperspectral bands. Surfer
Software version 22 (Golden Software; Golden, CO, USA) was utilized to analyze the
results. A planar regression was applied using the equation Z = AX + BY + C, and the
analysis was conducted using the XYZ statistic with the contour map to compare the
selected hyperspectral bands and their corresponding attributes. This approach allowed us

https://www.bioinformatics.com.cn/en
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to determine whether selecting specific hyperspectral bands could enhance the accuracy of
monitoring morphological characteristics and yields for plant growth.

4.6.7. Phenotypic Parameter Assessment through Variable Selection Algorithms

Six algorithms were employed for variable selection: variable importance in projection
(VIP), genetic algorithm (GA), sparse partial least squares regression (s−PLS), interval
partial least squares regression (i−PLS), recursive partial least squares regression (r−PLS),
and nonlinear partial least squares regression (n−PLS) [8]. These algorithms were utilized
to identify and select the most responsive wavelengths within the 350 to 2500 nm range
for evaluating the phenotypic parameters of tobacco plants. Data analysis was conducted
using MATLAB 2022a software (MathWorks, Inc., Natick, MA, USA) and PLS_Toolbox
(Eigenvector Research, Inc., Manson, WA, USA). The efficacy of each algorithm was assessed
based on its capacity to differentiate between wavelengths and select the most responsive
ones for generating phenotypic classification models related to height (cm), leaf area (m2),
yield energetic (m3), and biomass (g).

4.6.8. Hyperspectral Vegetation Index for Phenotyping Tobacco Plants

To evaluate the potential enhancement in phenotyping accuracy through the selection
of two optimal narrow hyperspectral bands, a comprehensive analysis of all possible com-
binations of two spectral bands was conducted using the normalized difference vegetation
index (NDVI) formula (Equation (1)), as suggested by Crusiol et al. (2023) [94] and Crusiol
et al. (2022b) [67]. Each combination, representing a specific hyperspectral vegetation index
(HVI), was subsequently correlated with phenotyping efficiency parameters using the
Pearson correlation coefficient (r) and the coefficient of determination (R2). The calculations
were performed using custom-created code in the IDL language. The ground-based sensor
captures the complete spectra ranging from 350 nm to 2500 nm. The results are visually
represented as contour maps.

HVI =
Wavelength1 − Wavelength2
Wavelength1 + Wavelength2

(1)

5. Conclusions

The findings of this study demonstrate the substantial potential of reflectance hyper-
spectral technology in precision and digital agriculture. It has been effectively used in
phenotyping, classifying, and predicting growth parameters of tobacco plants under varied
light conditions and gibberellin levels. The applicability of this methodology extends
beyond tobacco, suggesting possible implementation for monitoring growth in other agri-
cultural crops within greenhouses. This technology, therefore, holds promise for enhancing
agricultural productivity and sustainability by providing accurate and efficient methods for
crop growth and development. Furthermore, the emphasis on the development of alterna-
tive methodologies for rapid plant characteristic quantification aligns with the anticipated
progression of digital and precision remote sensing technology, indicating a bright future
for research and innovation in this field.
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of full light) environments and submitted to a distinct gibberellin regime. Figure S1. Vegetation
index parameters calculated for arbitrary values (%) on Nicotiana tabacum L. leaves of plants grown in
high irradiance (full light) and low light (8.5% of full light) environments and submitted to distinct
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