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Abstract: Mung bean, a legume, is sensitive to abiotic stresses at different growth stages, and its yield
potential is affected by drought and high-temperature stress at the sensitive stage. Melatonin is a
multifunctional hormone that plays a vital role in plant stress defense mechanisms. This study aimed
to evaluate the efficiency of melatonin under individual and combined drought and high-temperature
stress in mung bean. An experiment was laid out with five treatments, including an exogenous
application of 100 µM melatonin as a seed treatment, foliar spray, and a combination of both seed
treatment and foliar spray, as well as absolute control (ambient condition) and control (stress without
melatonin treatment). Stresses were imposed during the mung bean’s reproductive stage (31–40 DAS)
for ten days. Results revealed that drought and high-temperature stress significantly decreased
chlorophyll index, Fv/Fm ratio, photosynthetic rate, stomatal conductance, and transpiration rate
through increased reactive oxygen species (ROS) production. Foliar application of melatonin at
100 µM concentration enhanced the activity of antioxidant enzymes such as superoxide dismutase,
catalase, and ascorbate peroxidase and the concentration of metabolites involved in osmoregulation
and ion homeostasis; thereby, it improves physiological and yield-related traits in mung bean under
individual and combined stress at the reproductive stage.

Keywords: antioxidant enzyme; drought and high-temperature stress; gas exchange parameters;
melatonin; yield

1. Introduction

Pulses provide a vital source of proteins, minerals, and nutrients for millions living
below the poverty line in developing countries. The Indian Council of Medical Research
(ICMR) has suggested a minimum consumption of 40 g of pulses per day, while the World
Health Organization (WHO) advises 100 g [1]. The production of pulses has to meet the
recommendation of ICMR; still, the production needs to be increased to achieve the target
of the WHO. The current level of pulse production needs to be doubled by minimizing the
gap between supply and demand by growing pulses in nutrient-rich, fertile soils.

Among pulses, mung bean (Vigna radiata L.) is the third most important leguminous
crop next to chickpea and pigeon pea. Mung bean is popularly known as green gram and is
cultivated in India and other Asian countries. It is a short-duration annual crop. It improves

Plants 2023, 12, 2535. https://doi.org/10.3390/plants12132535 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants12132535
https://doi.org/10.3390/plants12132535
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0002-6438-8935
https://orcid.org/0000-0003-2231-7562
https://orcid.org/0000-0002-2930-0715
https://orcid.org/0000-0002-3402-1243
https://orcid.org/0000-0003-4341-9322
https://doi.org/10.3390/plants12132535
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants12132535?type=check_update&version=1


Plants 2023, 12, 2535 2 of 27

soil nitrogen levels by fixing atmospheric nitrogen by creating a symbiotic relationship
with microorganisms like Rhizobium and plays a major role in sustainable agriculture.
The low productivity of mung bean may be due to the cultivation of crops in marginal
and sub-marginal soil, poor management practices, inadequate rainfall, insufficient use of
fertilizers, and pest and disease attack [2].

Mung bean requires an appropriate quantity of water and optimum temperature for
higher yields. The optimum temperature for mung bean cultivation ranges from 25 to
30 ◦C [3]. The maximum temperature during the summer usually exceeds 40 ◦C, which
can severely affect the mung bean growth and yield [4]. Drought stress has been reported
to affect around 68 percent of India’s net cultivated land (140 million hectares), and a
significant reduction in soil moisture level reduces crop yield [5]. According to the IPCC [6]
assessment, an increase in temperature and water scarcity causes a significant impact on
agricultural productivity that affects the quality and yield of the crop [7].

Water stress alters plant water status and affects numerous physiological processes
like photosynthesis, translocation of photosynthates, nutrient absorption, ion uptake, and
the activity of several enzymes also found to decline in response to cell desiccation [8]. High
temperature disrupts synthesis, appropriate folding, and stability of proteins and causes
enzyme inactivation that increases cellular fluidity due to the production of reactive oxygen
species (ROS) and reactive nitrogen species (RNS) [9], which all lead to a negative impact on
plant growth. Drought and high-temperature stress during the crop’s reproduction stage
affects pollen and stigma viability, pollen tube growth, fertilization, and embryogenesis [10].

Several management options have been tried with nutrients, plant growth regulators
(PGRs), and chemicals to alleviate the adverse effects of drought and high temperature
on yield. Plant growth regulators are multifunctional compounds with well-established
physiological roles in plants. One such growth-regulating natural compound is “melatonin”,
which can alleviate the adverse effects of abiotic stresses. As melatonin is an anti-stressor
compound, it protects the plant from the harmful effects of oxidative stress induced by
drought and high-temperature stress [11].

Melatonin is structurally related to tryptophan, and its biosynthesis is analogous to
that of auxin, serotonin, and its isoforms [12]. It acts as an antioxidant and detoxifies
ROS and RNS by enhancing the antioxidant enzyme activity under stress conditions [13].
Melatonin act as a promoter of seed germination [14] and lateral root formation [15],
regulates flowering [16], and delays leaf senescence [17] to manage and control plant
growth and development under challenging environments.

Melatonin is an endogenous substance associated with seed germination, root growth,
pigment content, photorespiration, stomatal conductance, water use efficiency, and seed
yield [18]. Melatonin also protects the ultrastructure of chloroplasts from damage. It
promotes the efficiency of PSII, carbon fixation, and the electron transport system, which
results in enhanced photosynthetic processes under different abiotic stresses [19–21]. Ex-
ogenous melatonin can stimulate the biosynthesis of endogenous melatonin, reduce H2O2,
O2

−, and malondialdehyde generation under various abiotic stresses, and improve the
photosynthetic process [22].

Exogenous melatonin improves the soluble protein, proline, and relative water con-
tent of the plant under drought stress, which may aid in maintaining the turgor pressure
and integrity of the cell [23]. The activities of enzymatic antioxidants such as superoxide
dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase
(GR) and non-enzymatic antioxidants like ascorbate, glutathione, and carotenoid were
increased by melatonin in response to various environmental stresses [24] that minimized
the production of ROS and RNS and protected the plant from cell membrane damage
through reduced lipid peroxidation [25]. The synthesis and accumulation of primary and
secondary metabolites like carbohydrates, proteins, lipids, and phenols were increased by
melatonin application, which improves the plant’s osmotic adjustment and water status
under abiotic stresses [26]. Melatonin increases the growth-related attributes by stimulating
the seed germination process, maintaining a robust root system, and improving photo-
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synthetic capacity by delaying leaf senescence, contributing to enhanced yield and yield
characteristics under stress conditions [27]. However, little information and research were
available on melatonin-mediated regulation of abiotic stress tolerance in pulses, especially
mung bean, under combined stress like drought and high temperature. Considering these
aspects, the current study has been conducted to increase mung bean production under
drought and high-temperature stress.

2. Results
2.1. Effect of Melatonin on Physiological, Biochemical, and Yield Characteristics of Mung Bean
under Drought Stress

The physiological parameters such as chlorophyll index, Fv/Fm ratio, photosynthetic
rate, stomatal conductance, and transpiration rate were significantly (p < 0.05) reduced in
drought-stressed control plants. Applying 100 µM of melatonin enhanced the physiological
activity of mung bean under drought stress (Figure 1a–e). Combined seed treatment and
foliar spray of 100 µM melatonin increased the chlorophyll index, Fv/Fm ratio, photosyn-
thetic rate, stomatal conductance, and transpiration rate by 42%, 12%, 43%, 52%, and 53%,
respectively, compared to control plants.
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superoxide (O2−) in mung bean leaves exposed to drought stress is presented in Figure 2. 

Figure 1. Impact of melatonin on (a) chlorophyll index, (b) Fv/Fm ratio, (c) photosynthetic rate,
(d) stomatal conductance, and (e) transpiration rate of mung bean under drought stress conditions.
AC—absolute control (green); C—control (red); ST—seed treatment of 100 µM melatonin (yellow);
FS—foliar spray of 100 µM melatonin (brown); ST + FS—seed treatment plus a foliar spray of
100 µM melatonin (blue). Least significant difference test was used to compare the differences among
group means, and the critical difference was computed at p ≤ 0.05. Values with different letters are
significantly different (n = 4).

Histochemical analysis of the production of ROS like hydrogen peroxide (H2O2) and
superoxide (O2

−) in mung bean leaves exposed to drought stress is presented in Figure 2.
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Under irrigated conditions, H2O2 and O2
− radical generation and accumulation were

negligible in mung bean leaf tissues. In contrast, the plants subjected to drought stress
showed a significant increase in H2O2 and O2

− production in leaf tissues of mung bean,
which is indicated by brown and blue staining. The application of melatonin significantly
reduced the concentration of H2O2 and O2

− compared to drought-stressed control plants.
Among the melatonin treatments, seed treatment plus the foliar application of 100 µM
melatonin showed minimum H2O2 and O2

− accumulation in leaf tissues and exhibited
less brown and blue staining in mung bean leaves than other leaves melatonin treatments
at the reproductive stage under drought stress.
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Figure 2. In situ detection of H2O2 and O2
− production by histochemical analysis in mung bean

leaves exposed to drought stress. AC—absolute control; C—control; ST—seed treatment of 100 µM
melatonin; FS—foliar spray of 100 µM melatonin; ST + FS—seed treatment plus a foliar spray of
100 µM melatonin. Representative images in each treatment are presented.

The results of the malondialdehyde and electrolyte leakage assay, which indicates
membrane damage, was high in control plants subjected to drought stress, as shown in
Figure 3a,b. In contrast, the melatonin-treated plants exhibited significantly (p < 0.05)
reduced membrane damage under drought stress during the reproductive stage of mung
bean. Combined application of 100 µM melatonin as seed treatment and foliar spray
reduced malondialdehyde and electrolyte leakage by about 22% and 20%, respectively,
compared to control plants.

The activity of antioxidant enzymes such as superoxide dismutase, catalase, and
ascorbate peroxidase were enhanced in melatonin-treated plants compared to control
plants under drought stress (Figure 3c–e). Increases of about 35%, 23%, and 26% in the
activity of superoxide dismutase, catalase, and ascorbate peroxidase were observed in the
foliar spray of 100 µM melatonin as a combination of both seed treatment and foliar spray
under drought stress in mung bean during the reproductive stage. Proline was recorded
nearly 28% more during drought stress after the exogenous application of melatonin at
100 µM as combined seed treatment and foliar spray compared to control plants (Figure 3f).
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Figure 3. Impact of melatonin on (a) malondialdehyde content, (b) electrolyte leakage, (c) superoxide
dismutase, (d) catalase, (e) ascorbate peroxidase, and (f) proline of mung bean under drought stress
conditions. AC—absolute control (green); C—control (red); ST—seed treatment of 100 µM melatonin
(yellow); FS—foliar spray of 100 µM melatonin (brown); ST + FS—seed treatment plus a foliar spray
of 100 µM melatonin (blue). Least significant difference test was used to compare the differences
among group means, and the critical difference was computed at p ≤ 0.05. Values with different
letters are significantly different (n = 4).

Drought stress reduced the yield to about 53% in control plants compared to the
irrigated plants (Figure 4). The combined effect of seed treatment and foliar application of
100 µM melatonin increased the number of pods per plant by 28%, the number of seeds
per pod by 55%, pod length by 14%, the total number of seeds per plant by 45%, total pod
weight by 50%, seed yield per plant by 74%, 100 seed weight by 30%, and harvest index by
34% under drought stress when compared to control plants.
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Figure 4. Impact of melatonin on (a) number of pods per plant, (b) number of seeds per pod, (c) pod
length, (d) total number of seeds per plant, (e) total pod weight, (f) seed yield per plant, (g) 100 seed
weight, and (h) harvest index of mung bean under drought stress conditions. AC—absolute control
(green); C—control (red); ST—seed treatment of 100 µM melatonin (yellow); FS—foliar spray of
100 µM melatonin (brown); ST + FS—seed treatment plus a foliar spray of 100 µM melatonin (blue).
Least significant difference test was used to compare the differences among group means, and the
critical difference was computed at p ≤ 0.05. Values with different letters are significantly different
(n = 4).
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2.2. Effect of Melatonin on Physiological, Biochemical, and Yield Characteristics of Mung Bean
under High-Temperature Stress

Foliar spray of 100 µM melatonin at 34 ◦C and 36 ◦C increased the chlorophyll index
by 23% and 20% and Fv/Fm ratio by 7% and 8% over unsprayed control (Figure 5).
Similarly, photosynthetic rate, stomatal conductance, and transpiration rate were increased
by foliar spray of melatonin at 100 µM as combined seed treatment and foliar spray during
reproductive stage stress. About 45% and 54% increases in photosynthetic rate, 54% and
56% increases in stomatal conductance, and 45% and 51% increases in transpiration rate
were observed at 34 ◦C and 36 ◦C of high-temperature stress, respectively, compared to
the control.
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Figure 5. Impact of melatonin on (a) chlorophyll index, (b) Fv/Fm ratio, (c) photosynthetic rate,
(d) stomatal conductance, and (e) transpiration rate of mung bean under high-temperature stress
conditions. AC—absolute control (green); C—control (red); ST—seed treatment of 100 µM melatonin
(yellow); FS—foliar spray of 100 µM melatonin (brown); ST + FS—seed treatment plus a foliar spray
of 100 µM melatonin (blue). Least significant difference test was used to compare the differences
among group means, and the critical difference was computed at p ≤ 0.05. Values with different
letters are significantly different (n = 4).
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The generation of H2O2 and O2
− in mung bean leaves under high-temperature stress

was examined histochemically (Figures 6 and 7). Compared to control plants, plants that
were treated with 100 µM of melatonin showed reduced accumulation of H2O2 and O2

− in
leaf tissues exposed to 34 ◦C and 36 ◦C of high-temperature stress, as shown by the reduced
intensity of brown and blue colors.
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Figure 6. In situ detection of H2O2 production by histochemical analysis in mung bean leaves
exposed to high-temperature stress. AC—absolute control; C—control; ST—seed treatment of 100 µM
melatonin; FS—foliar spray of 100 µM melatonin; ST + FS—seed treatment plus a foliar spray of
100 µM melatonin.
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Figure 7. In situ detection of O2
− production by histochemical analysis in mung bean leaves ex-

posed to high-temperature stress. AC—absolute control; C—control; ST—seed treatment of 100 µM
melatonin; FS—foliar spray of 100 µM melatonin; ST + FS—seed treatment plus a foliar spray of
100 µM melatonin.

Exposure to high-temperature stress significantly (p < 0.05) increased the malondialde-
hyde and electrolyte leakage of mung bean exposed to 34 ◦C and 36 ◦C (Figure 8a,b). Foliar
spray of melatonin at 100 µM concentration as a seed treatment and foliar spray decreased
the malondialdehyde by 32% and 26% and electrolyte leakage by 23% and 24% at 34 ◦C
and 36 ◦C, respectively, compared to the untreated plants.
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Figure 8. Impact of melatonin on (a) malondialdehyde content, (b) electrolyte leakage, (c) super-
oxide dismutase, (d) catalase, (e) ascorbate peroxidase, and (f) proline of mung bean under high-
temperature stress. AC—absolute control (green); C—control (red); ST—seed treatment of 100 µM
melatonin (yellow); FS—foliar spray of 100 µM melatonin (brown); ST + FS—seed treatment plus a
foliar spray of 100 µM melatonin (blue). Least significant difference test was used to compare the
differences among group means, and the critical difference was computed at p ≤ 0.05. Values with
different letters are significantly different (n = 4).

Application of melatonin at 100 µM as combined seed treatment and foliar spray to
mung bean plants significantly (p < 0.05) increased the activity of antioxidant enzymes such
as superoxide dismutase by 31% and 48%, catalase by 17% and 35%, ascorbate peroxidase
by 68% and 66%, and proline by 40% and 28% for 34 ◦C and 36 ◦C, respectively, compared
to the control plants (Figure 8c–f).

Compared to the plants grown under ambient conditions, the yield of unsprayed
plants exposed to high-temperature stress was significantly reduced by about 45% at 34 ◦C
and 51% at 36 ◦C (Figure 9). Application of 100 µM melatonin as combined seed treatment
and foliar spray under 34 ◦C and 36 ◦C increased the number of pods per plant (17%
and 22%), number of seeds per pod (31% and 47%), pod length (33% and 32%), and total
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number of seeds per plant (30% and 34%) compared to the unsprayed control plants. The
same trend was noticed for pod weight, seed yield per plant, 100 seed weight, and harvest
index. Melatonin-treated plants exposed to 34 ◦C and 36 ◦C exhibited increases in pod
weight by 39% and 46%, 100 seed weight by 25% and 39%, and harvest index by 41% and
43%, respectively, compared to control plants. Compared to control plants, melatonin-
treated plants exhibited significantly increased seed yield per plant by nearly 55% and 59%,
respectively, at 34 ◦C and 36 ◦C.
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Figure 9. Impact of melatonin on (a) number of pods per plant, (b) number of seeds per pod, (c) pod
length, (d) total number of seeds per plant, (e) total pod weight, (f) seed yield per plant, (g) 100 seed
weight, and (h) harvest index of mung bean under high-temperature stress. AC—absolute control
(green); C—control (red); ST—seed treatment of 100 µM melatonin (yellow); FS—foliar spray of
100 µM melatonin (brown); ST + FS—seed treatment plus a foliar spray of 100 µM melatonin (blue).
Least significant difference test was used to compare the differences among group means, and the
critical difference was computed at p ≤ 0.05. Values with different letters are significantly different
(n = 4).
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2.3. Effect of Melatonin on Physiological, Biochemical, and Yield Characteristics of Mung Bean
under Combined Drought and High-Temperature Stress

Application of melatonin at 100 µM as combined seed treatment and foliar spray
enhanced chlorophyll index by 21% and 26% and Fv/Fm ratio by 7% and 9% under 36 ◦C
and 38 ◦C, respectively (Figure 10). Application of melatonin at 100 µM as combined seed
treatment and foliar spray significantly (p < 0.05) increased photosynthetic rate by 56%
and 57%, stomatal conductance by 51% and 52%, and transpiration rate by 55% and 61%,
respectively, at 36 ◦C and 38 ◦C compared to control plants. Plants treated with melatonin
exhibited reduced abscisic acid (ABA) levels under drought and high-temperature stress
compared to control plants.
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Figure 10. Impact of melatonin on (a) chlorophyll index, (b) Fv/Fm ratio, (c) photosynthetic rate,
(d) stomatal conductance, (e) transpiration rate, and (f) ABA content of mung bean under combined
drought and high-temperature stress. AC—absolute control (green); C—control (red); ST—seed treat-
ment of 100 µM melatonin (yellow); FS—foliar spray of 100 µM melatonin (brown); ST + FS—seed
treatment plus a foliar spray of 100 µM melatonin (blue). Least significant difference test was used to
compare the differences among group means, and the critical difference was computed at p ≤ 0.05.
Values with different letters are significantly different (n = 4).

From the histochemical analysis, it was observed that a significant variation in the
production of ROS, such as H2O2 and O2

−, was recorded under combined drought and
high-temperature stress (Figures 11 and 12). Melatonin-untreated plants exposed to com-
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bined drought and high-temperature stress at 36 ◦C and 38 ◦C showed a significant increase
in H2O2 and O2

− accumulation which was evident from the brown and blue staining
intensity in the stressed leaves of mung bean.
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Figure 11. In situ detection of H2O2 production by histochemical analysis in mung bean leaves
exposed to combined drought and high-temperature stress. AC—absolute control; C—control;
ST—seed treatment of 100 µM melatonin; FS—foliar spray of 100 µM melatonin; ST + FS—seed
treatment plus a foliar spray of 100 µM melatonin.
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Figure 12. In situ detection of O2
− production by histochemical analysis in mung bean leaves exposed

to combined drought and high-temperature stress. AC—absolute control; C—control; ST—seed
treatment of 100 µM melatonin; FS—foliar spray of 100 µM melatonin; ST + FS—seed treatment plus
a foliar spray of 100 µM melatonin.

Malondialdehyde and electrolyte leakage were higher in combined drought and high-
temperature stress at 36 ◦C and 38 ◦C, as shown in Figure 13a,b. Malondialdehyde levels
were reduced by 23% and 24% and electrolyte leakage was reduced by 17% and 23% under
combined drought and high-temperature stress of 36 ◦C and 38 ◦C, respectively, upon
application of 100 µM melatonin as seed treatment and foliar spray when compared to
melatonin-untreated plants.
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Figure 13. Impact of melatonin on (a) malondialdehyde content, (b) electrolyte leakage, (c) superox-
ide dismutase, (d) catalase, (e) ascorbate peroxidase, and (f) proline of mung bean under combined
drought and high-temperature stress. AC—absolute control (green); C—control (red); ST—seed treat-
ment of 100 µM melatonin (yellow); FS—foliar spray of 100 µM melatonin (brown); ST + FS—seed
treatment plus a foliar spray of 100 µM melatonin (blue). Least significant difference test was used to
compare the differences among group means, and the critical difference was computed at p ≤ 0.05.
Values with different letters are significantly different (n = 4).

Under combined drought and high-temperature stress, melatonin-treated plants had
higher levels of activity of antioxidant enzymes such as superoxide dismutase, catalase,
and ascorbate peroxidase than melatonin-untreated plants (Figure 13c–e). Combined
application of 100 µM melatonin as seed treatment and foliar spray significantly (p < 0.05)
enhanced superoxide dismutase by 30% and 47%, catalase by 41% and 50%, and ascorbate
peroxidase by 52% and 53% under drought and high-temperature stress at 36 ◦C and 38 ◦C,
respectively, over control plants. Similarly, increased proline content of about 38% and
27% was observed in combined seed treatment and foliar application of 100 µM melatonin
under combined drought and high temperatures at 36 ◦C and 38 ◦C (Figure 13f).

The seed yield of control plants (combined drought and high-temperature stress)
decreased by around 51% at 36 ◦C and 58% at 38 ◦C compared to plants under ambient
conditions (Figure 14). A combination of seed treatment and foliar application of 100 µM
melatonin increased the number of pods per plant by 12% and 31%, the number of seeds
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per pod by 63% and 48%, pod length by 40% and 63%, the total number of seeds per plant
by 47% and 49%, total pod weight by 30% and 38%, seed yield per plant by 57% and 72%,
100 seed weight by 40% and 47%, and harvest index by 37% and 41% in plants exposed
to 36 ◦C and 38 ◦C, respectively, under combined drought and high-temperature stress in
mung bean (Figure 15).
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Figure 14. Impact of melatonin on (a) number of pods per plant, (b) number of seeds per pod, (c) pod
length, (d) total number of seeds per plant, (e) total pod weight, (f) seed yield per plant, (g) 100 seed
weight, and (h) harvest index of mung bean under combined drought and high-temperature stress.
AC—absolute control (green); C—control (red); ST—seed treatment of 100 µM melatonin (yellow);
FS—foliar spray of 100 µM melatonin (brown); ST + FS—seed treatment plus a foliar spray of
100 µM melatonin (blue). Least significant difference test was used to compare the differences among
group means, and the critical difference was computed at p ≤ 0.05. Values with different letters are
significantly different (n = 4).
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Figure 15. Effect of melatonin on mung bean exposed to individual and combined stresses of drought
and high temperature.

2.4. Effect of Melatonin Treatment on Metabolomics Profiling of Mung Bean under Drought and
High-Temperature Stress

The result of metabolite profiling of leaves exposed to combined drought and high-
temperature stress is presented in Figure 16. A total of 13 metabolites were identified
with their recognized identity in melatonin untreated and treated mung bean leaves under
drought and high-temperature stress. The metabolites comprise five organic acids, four
amino acids, two sugars, and two sugar alcohols.

Plants 2023, 12, x FOR PEER REVIEW 15 of 27 
 

 

 Drought High temperature Drought + High Temperature 

Control 

   

Seed treatment + 
Foliar spray of 100 

µM melatonin 

   

Figure 15. Effect of melatonin on mung bean exposed to individual and combined stresses of 
drought and high temperature. 

2.4. Effect of Melatonin Treatment on Metabolomics Profiling of Mung Bean under Drought and 
High-Temperature Stress 

The result of metabolite profiling of leaves exposed to combined drought and high-
temperature stress is presented in Figure 16. A total of 13 metabolites were identified with 
their recognized identity in melatonin untreated and treated mung bean leaves under 
drought and high-temperature stress. The metabolites comprise five organic acids, four 
amino acids, two sugars, and two sugar alcohols. 

Several metabolites synthesized in melatonin-treated plants were also observed in 
control plants. However, their peak and area of expression were significantly reduced in 
control plants compared to melatonin-treated plants under combined drought stress and 
high temperature at 36 °C and 38 °C. Combined seed treatment plus a foliar application 
increased the accumulation of amino acids (proline, aspartic acid, glutamic acid, and tryp-
tophan), sugars (sucrose and glucose), organic acids (succinic acid, malic acid, shikimic 
acid, citric acid, and phosphoenol pyruvic acid), and sugar alcohols (sorbitol and treha-
lose) over control plants under drought and high-temperature stress of 36 °C and 38 °C. 

 

Figure 16. Profiling of metabolites present in mung bean leaves exposed to combined drought and
high-temperature stress by GC-MS analysis.

Several metabolites synthesized in melatonin-treated plants were also observed in
control plants. However, their peak and area of expression were significantly reduced in
control plants compared to melatonin-treated plants under combined drought stress and
high temperature at 36 ◦C and 38 ◦C. Combined seed treatment plus a foliar application
increased the accumulation of amino acids (proline, aspartic acid, glutamic acid, and
tryptophan), sugars (sucrose and glucose), organic acids (succinic acid, malic acid, shikimic
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acid, citric acid, and phosphoenol pyruvic acid), and sugar alcohols (sorbitol and trehalose)
over control plants under drought and high-temperature stress of 36 ◦C and 38 ◦C.

2.5. Effect of Melatonin Treatment on Differentially Expressed Genes of Mung Bean Leaves
Exposed to Combined Drought and High-Temperature Stress

The distribution of differentially expressed genes (DEGs) among the various compari-
son groups like AC vs. C, AC vs. M, and C vs. M was evaluated. Based on the log fold
change (|log_2 FC| ≥ 2), the top five expressed genes and their functions are listed in
Figure 17.
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Figure 17. Volcano plot of DEGs between absolute control (AC), control (C), and seed treat-
ment plus foliar spray of 100 µM of melatonin (M) treatments exposed to combined drought and
high−temperature stress.

3. Discussion

Results indicated that abiotic stresses like drought, high temperature, and combined
drought and high temperature decreased the traits associated with photosynthetic rate. The
abiotic stresses reduced the chlorophyll molecule content, which could indicate chloroplast
ultrastructure degradation [28]. In contrast, seed treatment and foliar application of mela-
tonin increased the chlorophyll content compared to unsprayed control, indicating that
melatonin could maintain the ultrastructure of chloroplasts under abiotic stresses [29–32].

The integrity and function of chloroplasts were assessed using chlorophyll fluores-
cence. Drought, high temperature, or combined drought and high-temperature stress
decreased the quantum yield of PSII (Fv/Fm ratio) compared to the absolute control. How-
ever, with foliar application of melatonin under drought, high temperature, or combined
stresses, the Fv/Fm ratio was higher than that of the unsprayed control, and this could
be associated with decreased or repaired photooxidative damage and improved electron
transport rate [33–36].

Photosynthesis is one of the most important physiological processes, and it is severely
affected by individual or combined drought and high-temperature stress [37]. The decrease
is associated with decreased stomatal conductance and increased abscisic acid content [38].
Foliar application of melatonin under drought, high temperature, or combined drought
and high-temperature stress increased the stomatal conductance and decreased the ABA
content; thereby, the photosynthetic rate was sustained under stresses [38–40]. In melatonin-
sprayed plants, the decreased ABA level might have reduced the production of H2O2 in
guard cells, which may keep the stomata open and maintain the plant’s photosynthetic
rate under abiotic stresses [41–45]. This study also proved that the application of melatonin
increased the expression of photosynthesis-associated proteins like LHCa, PsbA, PsbB, PsbD,
and PetE under stresses, which might have been involved in enhanced photosynthetic
rate [42].

Rapid ROS accumulation under drought and high-temperature stress might have
decreased the membrane fluidity and altered ion homeostasis [46,47]. Under drought, high
temperature, or combined drought and high-temperature stress conditions, the plants had
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an imbalance between ROS scavenging and antioxidant defense systems [48,49]. In the
present study, the unsprayed plants had more membrane damage than the melatonin-
sprayed plants, indicating that melatonin could have scavenged the ROS, maintained the
membrane integrity, and increased the antioxidant enzyme activity [50–52]. In the present
study, enhanced antioxidant enzyme activity reduced ROS production and accumulation,
electrolyte leakage, and malondialdehyde content in plants under drought and high-
temperature stress [53].

Proline is one of the compatible solutes that accumulate in plant cells in response to
drought stress and increases the osmotic adjustment potential [54]. The enhanced proline
content in melatonin-sprayed plants could be due to enhanced biosynthesis [55]. Proline
can also act as an antioxidant that protects the plant cell membrane from ROS-induced
damage [56]. Sheikhalipour et al. [57] showed that an increase in proline concentration due
to melatonin treatment also increases the protection of protein structures from denaturation
under drought stress. The results of the current investigation also showed similar findings
that enhanced proline content improves plant water status through increased transpiration
rate and stomatal conductance in melatonin-treated mung bean plants subjected to drought
and high-temperature stress.

Metabolomics profiling of mung bean leaves subjected to combined drought and
high-temperature stress revealed that metabolites involved in osmotic adjustment, ion
homeostasis, and carbon and amino acid metabolism were upregulated by the exogenous
application of melatonin. Saddhe et al. [58] described that metabolites like proline and
some sugars such as glucose, fructose, sucrose, and trehalose regulated osmotic adjustment
under osmotic stress. Jiang et al. [59] found that higher concentrations of metabolites
related to amino acids were observed in melatonin-treated plants than in control, similar to
the present study. Similarly, the metabolites involved in carbon metabolism were increased
by melatonin treatment [60–62].

Transcriptomic analysis revealed that genes engaged in different metabolite path-
ways, signal transduction, transcription factors, and kinase activity were upregulated in
response to stress. Genes involved in energy metabolism encoding mitochondrial ATPase,
cytochrome c, ferredoxin, sucrose, and starch metabolism were identified in DEGs between
melatonin-treated and untreated plants [63,64]. Earlier findings of Zhao et al. [65] con-
firmed that applying melatonin increases the expression level of genes involved in signal
transduction and carbon metabolism of plants under stress, thereby improving the photo-
synthetic process. The MAP kinase pathway controls the melatonin-mediated regulation of
plant response to stress by activating either H2O2 or Ca2+-dependent pathways [66–68].

Yield traits like the number of pods per plant, number of seeds per pod, pod length,
the total number of seeds per plant, total pod weight, seed yield per plant, 100 seed weight,
and harvest index were found to be higher in melatonin-treated plants in comparison with
control plants. Overall application of melatonin increased the yield under stress compared
to that of unsprayed plants [69,70]. The increase in yield could be associated with increased
sink strength [71], hormonal balance [72], and less oxidative damage [73]. An increase in
seed yield due to foliar application of melatonin was proved in soybean and maize [74,75].

4. Materials and Methods
4.1. Plant Material and Growth Conditions

An experiment was conducted during 2021–2022 at the glasshouse and open-top
chamber at the Department of Crop Physiology, Tamil Nadu Agricultural University,
Coimbatore. Seeds of mung bean var. CO 8 were used in this study. The pot culture
experiment was conducted with five treatments in a completely randomized block design
(CRD). The soil mixture was red soil, sand, and vermicompost in a ratio of 3:1:1, and 20 kg
of the soil mixture was filled in each pot. The seeds were surface sterilized with 3% sodium
hypochlorite for two minutes and washed thrice with distilled water; then, the seeds were
treated with melatonin at 100 µM for 6 h and air dried. A separate set of melatonin-treated
and untreated seeds for stress and control treatments were sown directly in pots. The
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recommended dose of fertilizer was applied to the crop. The plants were allowed to grow
under normal conditions until the flowering stage for stress imposition.

4.2. Treatment Details and Stress Imposition

Treatments included the exogenous application of 100 µM melatonin as a seed treat-
ment, foliar spray, and a combination of both seed treatment and foliar spray; absolute
control (no spray and ambient condition) and control (stress without melatonin treatment)
were also included in the treatments to evaluate the efficiency of melatonin under stress
conditions. At the flowering stage, stress was imposed for ten days (31st to 40th day),
and a foliar melatonin spray was carried out on the third day (33rd day). Drought stress
was induced by withholding water, and soil moisture content was measured daily using
an ML2 Theta Probe moisture meter (Delta-T Soil moisture kit, Model: SM150, Delta-T
Devices, Cambridge). The high-temperature stress experiment was conducted in an open-
top chamber (OTC). Using an infrared heater, the chambers’ temperature was gradually
increased from 9.00 am to 5.00 pm to the desired level above the ambient temperature [76].
The average ambient temperature that prevailed during high-temperature stress was 32 ◦C,
and the temperature was elevated to 34 ◦C (32 ◦C + 2 ◦C) and 36 ◦C (32 ◦C + 4 ◦C) inside
the OTC. Likewise, in combined drought and high-temperature stress, the average ambi-
ent temperature was 34 ◦C, and stressed and melatonin-treated plants were exposed to
elevated temperatures (ambient + 2 ◦C and ambient + 4 ◦C), resulting in 36 ◦C and 38 ◦C.
The temperature and relative humidity of the OTC were continuously monitored using
wireless sensors.

4.3. Chlorophyll Index (SPAD Value)

The chlorophyll index was measured using a SPAD meter designed by the Soil Plant
Analytical Development (SPAD) section, Minolta, Japan. The Minolta SPAD-502 measures
chlorophyll content as the ratio of transmittance of light at a wavelength of 650 nm and
940 nm. In every treatment, three readings were taken from each replication, and in
each leaf, readings were taken from the top, middle, and bottom of the leaf. Finally, the
average value was computed using the method described by Minolta [77] and Monje and
Bugbee [78].

4.4. Chlorophyll Fluorescence

The leaf samples were dark adapted for 20 min, and the chlorophyll fluorescence was
computed using the portable chlorophyll fluorometer (Model-OS1p040111 Advanced, Opti-
Sciences, Hudson, NH, USA). The key fluorescence parameters, viz. Fo (initial fluorescence)
and Fm (maximal fluorescence), were measured, and the ratio of Fv/Fm was calculated [79].

4.5. Leaf Gas Exchange Parameters

Gas exchange parameters, viz. photosynthetic rate, transpiration rate, and stomatal
conductance, were recorded using a portable photosynthesis system (LI-6400 XT, LiCORInc.,
Lincoln, NE, USA). The readings were taken from 10.00 am to 12.00 noon on a clear sunny
day. The photosynthetically active radiation was set at 1500 µmol photons m−2 s−1, and the
CO2 level was set at 410 ppm. A fully expanded third leaf from the top was used for measur-
ing the gas exchange traits. The photosynthetic rate was expressed as µmol CO2 m−2 s−1,
stomatal conductance was expressed as mol H2O m−2 s−1, and transpiration rate was
expressed as mmol H2O m−2 s−1.

4.6. Hydrogen Peroxide (H2O2)

H2O2 present in the leaves was visually identified with the 3,3-diamino-benzidine
(DAB) staining technique [80]. The leaves were incubated overnight in DAB solution
(1 mg mL−1 DAB, 5 mM Na2HPO4, and 0.05% Tween 20 at pH 3.8). After incubation, the
leaves were destained with a destaining solution (ethanol:acetic acid in the ratio of 3:1).
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Development of brown color representing H2O2 accumulation in the leaves was examined
under a Leica microscope, and an image was captured.

4.7. Superoxide Radical (O2
−)

The nitro blue tetrazolium chloride (NBT) staining method was followed to detect
superoxide radicals [80]. The leaves were immersed in the staining solution (0.5 mg mL−1

NBT, 50 mM sodium phosphate buffer at pH 7.5) overnight. Later, the leaves were decol-
orized using a destaining solution (ethanol: acetic acid in a ratio of 3:1). Superoxide radicals
were identified by the development of blue color, and an image was captured.

4.8. Malondialdehyde

The malondialdehyde (MDA) content was assessed using the thiobarbituric acid (TBA)
reaction according to the method illustrated by Karabal et al. [81]. First, 0.5 g of leaf
tissue was homogenized with 5 mL of 0.1% trichloroacetic acid (TCA) and centrifuged
at 10,000 rpm for 5 min. About 4 mL of 20% trichloroacetic acid (TCA) containing 0.5%
thiobarbituric acid (TBA) was added to 1 mL of aliquot and heated at 95 ◦C for 30 min.
Immediately, the tubes were cooled and centrifuged at 10,000 rpm for 10 min. The super-
natant was collected, and absorbance was measured at 532 and 600 nm and expressed as
nmol g−1 of fresh weight.

4.9. Electrolyte Leakage

The electrolyte leakage was determined by the method mentioned by Zhang et al. [82].
Twenty-five leaf bits 2 cm2 in size were transferred into 10 mL of deionized water, and
the initial electrical conductivity was recorded as EC0. Then, the samples were subjected
to 25 ◦C for one hour, and electrical conductivity was noted as EC1. Finally, the samples
were autoclaved at 100 ◦C for 10 min, and the final electrical conductivity was measured as
EC2. The electrolyte leakage was computed using the following formula and expressed as
a percentage:

Electrolyte leakage = [(EC1 − EC0)/(EC2 − EC0)] × 100

4.10. Antioxidant Enzyme Activity

To estimate the activity of antioxidant enzymes like superoxide dismutase, catalase,
and ascorbate peroxidase, an enzyme extract was prepared by weighing 0.5 g of leaf sample
and grinding it into powder using liquid nitrogen. The enzyme extract was prepared by
homogenizing the leaf powder with 0.1 M phosphate buffer (pH 6.8) containing 0.1 mM
EDTA and 1% Polyvinylpyrrolidone (PVP) in a pre-chilled pestle and mortar. The collected
supernatant was used to estimate the activity of antioxidant enzymes, viz. SOD and CAT.
To estimate ascorbate peroxidase, 1 mM ascorbate was added to extract the enzyme, and
the homogenate was centrifuged at 10,000 rpm for 30 min at 4 ◦C.

4.10.1. Superoxide Dismutase

The SOD activity was examined according to the method of Dhindsa et al. [83]. The
reaction mixture consisted of 1.3 µM riboflavin,13 mM methionine, 63 µM nitro blue
tetrazolium chloride (NBT), 0.05 M sodium carbonate, 1% Triton X-100, 50 mM sodium
phosphate buffer (pH 7.8), and enzyme extract, and the final volume was made up to 3 mL
by using distilled water. Test tubes were kept under illumination for color development,
whereas the non-illuminated reaction mixture without enzyme extract served as a blank.
The SOD activity was determined as the amount of enzyme required to cause 50% inhibition
of the reduction of NBT and expressed as enzyme units mg protein−1 min−1.

4.10.2. Catalase

Catalase activity was analyzed using a method described by Hugo and Lester [84].
About 0.5 mL of 75 mM H2O2, 1.5 mL of 0.1 M phosphate buffer (pH 7), and 50 µL of
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enzyme extract were added; finally, the total reaction mixture volume was made up to
3 mL by adding distilled water. The addition of H2O2 started the reaction. The decrease
in absorbance at 240 nm was recorded for 1 min at 15 intervals, and enzyme activity was
computed by calculating the amount of H2O2 decomposed. For catalase activity, the
extinction coefficient of 39.4 mM−1 cm−1 was used, and activity was expressed as µg of
H2O2 reduced mg protein−1 min−1.

4.10.3. Ascorbate Peroxidase

Ascorbate peroxidase activity was determined according to the method of Nakano
and Asada [85]. The reaction mixture for ascorbate peroxidase contained 50 mM potassium
phosphate (pH 7.0), 0.5 mM ascorbate, 0.1 mM EDTA, enzyme extract, and 0.1 mM H2O2.
The final total volume was made up to 3 mL. The reaction was started by the addition of
H2O2. The absorbance decrease at 290 nm was recorded for 3 min at 30 s intervals. For
APX activity, the extinction coefficient was 2.8 mM−1 cm−1, and activity was expressed in
terms of change in OD at 430 nm g−1 min−1.

4.11. Proline

Proline content was determined by macerating the leaf sample with 10 mL of 3%
sulfosalicylic acid and centrifuging it at 3000 rpm for 10 min. In test tubes, 2 mL of each
supernatant, acid ninhydrin, glacial acetic acid, and orthophosphoric acid were added and
kept in a water bath for 1 h. After cooling, the contents were transferred to a separating
funnel, and 4 mL of toluene was added. Subsequently, it was shaken for 30 s, and the
colored solution was measured at 520 nm in a UV spectrophotometer [86] and expressed
as mg g−1.

4.12. Metabolomics Profiling

The leaf samples of different treatments exposed to drought and high-temperature
stress were collected for metabolite profiling, and the extractant was analyzed by GC-MS
technique [87]. Leaf samples of approximately 0.3 g were collected and homogenized with
liquid nitrogen. Then, 1 mL of methanol was added and ground. Then, it was incubated in
a thermomixer incubator at 850 rpm at 70 ◦C for 30 min. The contents were centrifuged at
14,000 rpm for 10 min, and the supernatant was collected and filtered through a 0.45 µm
membrane syringe filter. Derivatization was performed by adding 50 µL of methoxyamine
hydrochloride (20 mg mL−1 in pyridine) and vortexing for 30 s. After, it was incubated
at 37 ◦C in a thermomixer incubator at 500 rpm for 2 h. After that, 80 µL of MSTFA was
added and incubated for 30 min at 37 ◦C. The supernatant was centrifuged at 12,000 rpm at
4 ◦C for 10 min. Finally, the supernatant was subjected to GC-MS (Shimadzu, Canby, OR,
USA) analysis.

For GC-MS, 1 µL of the derivatized extract was introduced into a DB-5MS capillary
(30 × 0.25 × 0.25 µm) column. The temperature of the inlet was set at 260 ◦C. After a six
min solvent delay, the initial GC oven temperature was set at 70 ◦C. After 1 min of injection,
the GC oven temperature was raised to 280 ◦C at 15 ◦C per min and held at 280 ◦C for 15 min.
The injection temperature was set to 240 ◦C, and the ion source temperature was matched.
Helium was the carrier gas with a constant flow rate of 1mL per min. The measurement
was performed with electron impact ionization (70 eV) in the full scan mode (m/z from 30
to 550). The metabolites were identified based on retention time index specific masses via
comparing with reference spectra in mass spectral libraries (NIST 2005, Wiley 7.0).

4.13. Transcriptomic Analysis

Mung bean leaf samples exposed to drought and high-temperature stress during
the reproductive stage were collected. Later, the leaf samples were immersed in RNA
solution to maintain RNA stability and integrity. The study of the differential expression
pattern of genes included total RNA extraction, library preparation, sequencing, pre-
processing of RNA-Seq reads, reference mapping of RNA-Seq reads with Vigna radiata (L.)
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HISAT genome, and analysis of differentially expressed genes. Two replications for each
treatment were maintained. Total RNA was extracted from all six samples using the
RNAeasy Plant mini kit (Qiagen, Redwood City, CA, USA) according to the manufacturer’s
instructions after treatment with RNase-free DNase I to eliminate genomic DNA. The
concentration and integrity of the extracted RNA were assessed with a Thermo Scientific
NanoDrop 8000 Spectrophotometer and Agilent 2100 Bioanalyzer, respectively (Agilent
Technologies, Santa Clara, CA, USA). Raw data (raw reads) of the FASTQ format were
processed by fastqc. The cDNA library was prepared with ~20 ng of total RNA according
to the Illumina TrueSeq RNA Sample Preparation Kit (Illumina) protocol. The library
was then amplified, the final library yield was recorded, and the resulting library was
subjected to the paired-end sequence. High-quality reads were quantified for transcript
abundance by defining the “transcripts per million” (TPM) value for each transcript using
Salmon v1.14.0 (https://combine-lab.github.io/salmon (accessed on 12 March 2023)),
using genome and transcriptome sequences downloaded from “Ensembl” database (https:
//plants.ensembl.org/index.html, accessed on 12 March 2023)) for reference and indexing.

4.14. Yield Parameters

Yield components like the number of pods per plant, number of seeds per pod, pod
length, total number of seeds per plant, total pod weight, seed yield per plant, 100 seed
weight, and harvest index were recorded.

4.15. Statistical Analysis

The design of the experiment was a completely randomized design (CRD) with four
replications, and the data collected for various traits were statistically analyzed by using R
software (version 4.1.2) with analysis of variance (ANOVA). Critical difference (CD) was
computed at a five percent probability (p ≤ 0.05).

5. Conclusions

In summary, drought, high temperature, or combined drought and high-temperature
stress during the reproductive stage showed a pronounced negative effect on the physio-
logical and biochemical processes of the plant, which in turn was reflected in the yield of
mung bean. Drought and high-temperature stress affect the membrane integrity through
increased ROS generation. The seed treatment plus foliar application of 100 µM melatonin
alleviates the ill effects of drought and high-temperature stress. It enhanced physiological
processes such as chlorophyll index, PSII efficiency, and gas exchange parameters. In
addition, the application of melatonin significantly reduced lipid peroxidation and ROS
production through enhanced antioxidant enzyme activity (SOD, CAT, and APX) under
individual and combined stress due to drought and high temperature (Figure 18). Hence,
melatonin is recommended as an appropriate management strategy to sustain the potential
yield of mung bean under stress conditions.

https://combine-lab.github.io/salmon
https://plants.ensembl.org/index.html
https://plants.ensembl.org/index.html
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