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Abstract: Four species of the genus Hedychium can be found in Brazil. Hedychium coronarium is a
species endemic to India and Brazil. In this paper, we collected six specimens of H. coronarium for
evaluation of their volatile chemical profiles. For this, the essential oils of these specimens were
extracted using hydrodistillation from plant samples collected in the state of Pará, Brazil, belonging
to the Amazon region in the north of the country. Substance compounds were identified with GC/MS.
The most abundant constituent identified in the rhizome and root oils was 1,8-cineole (rhizome:
35.0–66.1%; root: 19.6–20.8%). Leaf blade oil was rich in β-pinene (31.6%) and (E)-caryophyllene
(31.6%). The results from this paper allow for greater knowledge about the volatile chemical profile
of H. coronarium specimens, in addition to disseminating knowledge about the volatile compounds
present in plant species in the Amazon region.

Keywords: Zingiberaceae; Hedychium coronarium; essential oil; biological activities

1. Introduction

Zingiberaceae has more than 50 genera and about 1400 plants [1]. The species that
occur in Brazil are distributed in eight genera (Alpinia L., Amomum Roxb., Curcuma L.,
Etlingera Giseke, Hedychium coronarium J. Koenig, Kaempferia L., Renealmia L.f e Zingiber
Boehm) and, among these, the genus Hedychium stands out for having the second largest
number of representatives in Brazil (four species) [2].

The species Hedychium coronarium J. Koenig is endemic to India and China. In Brazil
it is considered invasive and is popularly known as “lily of the marsh”, “butterfly lily”,
“white-lily garland”, “narcissus”, “napoleon”, “Olympia” or “white ginger”, in addition to
having several uses in folk medicine [3,4].

Hedychium species are cultivated as medicinal plants, ornamental plants, spices, and
condiments [5]. The population of Malaysia uses this species for the treatment of gastric
disorders, such as indigestion [6], and the medicinal drink is produced in the form of tea
by infusion or decoction [7]. In Thailand, they use the tea from this plant, produced by
infusion, for the treatment of osteoarthritis, caused by the wear and tear of cartilage in the
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joints, in addition to using the tea produced with the stem to treat tonsillitis. The rhizome of
the plant has several medicinal properties, being used in Thailand to combat the excessive
amount of gases produced after digestion [8]. In Vietnam it is used as a healing treatment
and an antiseptic, fighting bacteria in the case of wounds. In Brazil it is consumed as a
diuretic or to treat hypertension [9]. EOs extracted from the rhizome of H. coronarium
have shown anthelmintic activities [10,11] and antimicrobial activities [12], in addition
to having a phytotoxic effect [13]. For the leaves and also the rhizomes, fibrinogenolytic,
coagulant [14], larvicidal [15], and antioxidant [16–18] activities have been found.

In Hawaii, the flowers are eaten as vegetables and used as garlands, and in Japan, they
are used for perfume production.

The chemical composition of EOs from H. coronarium depend on where the species is
collected. Previous studies showed that the EO from the leaves of a specimen collected in
Taiwan presented as major constituents β-pinene (33.9%), α-pinene (14.7%), and 1,8-cineole
(13.3%), while in the rhizomes, we found as the majority 1,8-cineole (37.3%), β-pinene
(23.0%), and α-terpineol (10.4%) [19]. The rhizome EO collected in India was characterized
by eucalyptol (37.6%), p-cymene (11.6%), and p-menth-1-en-8-ol (9.4%). On the other hand,
the rhizome EO of a specimen collected in Brazil showed 1,8-cineole (33.5%), β-pinene
(17.0%), and α-terpineol (7.7%) as the main constituents [20,21]. A specimen collected in
Ecuador had the EO characterized by 1,8-cineole (33.7%), β-pinene (30.0%), and α-pinene
(10.0%) [16].

Considering that EOs can lead to the discovery of new chemotypes of a species and
that these variations are influenced by geographic and environmental factors [22–25], the
present work aims to evaluate the chemical composition of the EOs for six specimens of
H. coronarium collected in different municipalities of the state of Pará, Brazil. We aim to
provide valuable scientific data to enhance the understanding of volatile compound profiles
in the Amazon region. Furthermore, our data significantly support the comprehension of
new specimens of H. coronarium. Through a comprehensive and rigorous approach, we
innovatively investigated the diversity and composition of volatile compounds present in
this unique region.

2. Results and Discussion
2.1. Chemical Composition

Tables 1 and 2 show the 65 chemical compounds found in the EOs of the six specimens.
The EO of specimen A, collected on the border between the states of Pará–Maranhão, Brazil,
was characterized by 1,8-cineole (66.1%) and β-pinene (21.9%) in the rhizomes; on the other
hand, the leaves from this species showed a majority of β-pinene (48.9%) and 1,8-cineole
(66.1%). A majority of 1,8-cineole (46.2%) and β-pinene (31.1%) characterized, respectively,
the EOs of the rhizomes and leaves from specimen B, collected in the municipality of
Tracuateua, Pará, Brazil. In the EO of sample C, collected in the municipality of Igarapé-
Miri, Pará, Brazil, 1,8-cineole (37.4%) in the rhizomes and β-pinene (34.8%) in the leaves
were found in the majority. In specimen D, collected in Santarém Novo, Pará, Brazil, the
EO was characterized by 1,8-cineole (35%) in the rhizomes and β-pinene (31.6%) in the
leaves. In Belém, Pará, Brazil, two samples were collected (E and F), the EO of sample E
presented the majority as β-pinene in the rhizomes (30.5%) and in the leaves (41%), while
sample F presented 1,8-cineole (33.5%) in rhizomes and α-pinene in the leaves (32.9%).

The results found in this study showed differences between them that may be associ-
ated with the climate, collection period, collection sites, and ecosystems [26,27]. Further-
more, our results differed from the findings for the EO extracted from the rhizomes of a
species collected in India that was characterized by the majorities: β-pinene (11.07–42.74%),
eucalyptol (11.48–40.59%), linalool (1.56–45.11%), coronarin E (1.01–39.57%), α-pinene
(3.80–16.60%), p-cymene (1.05–8.89%), γ-terpinene (1.73–5.82%), and 10-epi-γ-eudesmol
(1.11–4.86%) [12]. The contents of the monoterpene compounds, α-pinene and β-pinene, in
this work were lower than those in our study.
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In another study by Ray et al., 2017 [28], the EO of the rhizomes from a specimen of
H. coronarium collected in India showed the following major compounds: eucalyptol
(37.62%), p-cymene (11.68%), and p-menth-1-en-8-ol (9.44%). While in the research car-
ried out by Prakash et al., 2012 [29], the EO of the rhizomes presented the following
main components: linalool (29.3%) limonene (20.3%), trans-m-mentha 2,8-diene (12.9%),
γ-terpinene (8.9%), camphene (3.7%), α- pinene (3.5%), 10-epi-γ-eudesmol (3.7%), and
ar-curcumene (2.7%). The major compounds α-pinene (20.0%), linalool (15.8%), 1,8-cineole
(10.7%), α-pinene (10.1%), and α-terpineol (8.6%), characterized the EO of the leaves from
H. coronarium collected in Vietnam [30].

The monoterpene compound 1,8-cineole is the main constituent present in EOs of
H. coronarium [31], and studies report that this compound has activity against human colon
cancer cells HCT116 [32], antimicrobial action against fungi [33] of the type Trichoderma sp.
and Candida albicans, Bacillus subtilis and Pseudomonas aeruginosa [34,35], anti-inflammatory
action against acute pancreatitis [36], as well as antioxidant, sedative, antiviral, anesthetic,
and analgesic properties [37].

β-pinene is one of the major compounds that showed significant significance in
the results. This hydrocarbon monoterpene is found in the EOs of many coniferous
plants, such as pine (Araucaria angustifolia) [38], and some research involving EOs has
shown that this compound has antioxidant properties, biological activities against bacteria
(Acetobacter calcoacetica, Bacillus subtilis, Clostridium sporogenes, Clostridium perfringens,
Escherichia coli, Salmonella typhi, Staphylococcus aureus, and Yersinia enterocolitica) and fungi
(Candida albicans, Aspergillus niger, Aspergillus flavus and Penicillium notatum) [39]. In turn,
α-pinene is described in the literature as having a modulating action of antibiotic resis-
tance against the multidrug-resistant bacterium Campylobacter jejuni that causes gastroen-
teritis [40,41], and studies report that α-pinene has a greater antimalarial property than
β-pinene [41].

The sesquiterpenes (E)-caryophyllene and caryophyllene oxide showed significant
levels in the EOs of the leaves from sample D, the first compound with a content of 20%
and the second with 10.4%. (E)-caryophyllene is one of the main active compounds present
in the EOs of food plants and spices, such as basil (Ocimum spp.), cinnamon (Cinnamomum
spp.), black pepper (Piper nigrum), cloves (Syzygium aromaticum), cannabis (Cannabis sativa),
lavender (Lavandula angustifolia), oregano (Origanum vulgare L.), and rosemary (Rosmarinus
officinalis) [42]. This compound has anesthetic potential [43], is cytotoxic against MCF-7,
DLD-1, and L-929 cell lines [44], is anti-inflammatory [45], and anticonvulsant [46].

Caryophyllene oxide is a low water solubility compound with a strong wood odor and
is even used as a food additive [42]. The said sesquiterpene has cytotoxic potential against
HepG2, AGS, HeLa, SNU-1, and SNU-16 cancer cells [47], as well as anti-inflammatory
potential [48], antioxidant [49], antiviral [50], and analgesic properties [42,51].

Regarding the specific question on whether the chemotypes of the leaves and rhizomes
were the same for the same sample, our research indicates that there are variations in
the chemical composition of both plant parts within a single specimen. The differences
observed between the leaves and rhizomes highlight the importance of considering different
plant organs when studying volatile compounds in H. coronarium. These findings suggest
that the biosynthesis and accumulation of volatile compounds may be organ specific,
indicating potential variations in their ecological roles and chemical profiles.

Table 1. Chemical composition of the oils derived from the rhizomes.

RIL RIC Constituents A1 B1 C1 D1 E1 F1

924 930 α-thujene 0 0.6 0.7 0.6 0.7 0

932 938 α-pinene 4.5 9.1 11.5 9.6 12.5 19.6

946 952 camphene 0 0.7 0.8 0.7 0.9 0

969 975 sabinene 0.6 1.3 1.3 2.3 2.6 0

974 979 β-pinene 21.9 23 28.9 25.9 30.5 7.6
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Table 1. Cont.

RIL RIC Constituents A1 B1 C1 D1 E1 F1

988 990 myrcene 0.3 1.3 1.5 1.4 2.3 10.7

1002 1003 α-phellandrene 0 0 2.3 3.4 0 10.3

1003 1004 p-mentha-1(7),8-diene 0 0 0.4 0 0 0

1014 1017 α-terpinene 0 0.4 0.6 0.4 0.7 1.5

1020 1027 p-cymene 0 0.8 0.5 1.3 0.5 0

1024 1029 Limonene 0 3 3.3 3.5 4.4 0

1026 1032 1,8-cineole 66.1 46.2 37.4 35 26 33.5

1036 1036 phenyl acetaldehyde 0 0.1 0 0.1 0.2 0

1044 1048 (E)-β-ocimene 0 0 0 0 0 0.2

1054 1060 γ-terpinene 0.5 0.9 1.1 1.1 1.6 3.4

1086 1089 terpinolene 0 0.3 0.4 0.4 0 1.2

1095 1097 linalool 1.1 0.1 0.9 0.2 0.3 0.5

1098 1099 (E)-sabinene hydrate 0 0 0 0.7 0.1 0

1114 1117 endo-fenchol 0 0 0 0 0 0.1

1128 1126 α-campholenal 0 0 0 0.1 0 0

1132 1131 allocymene 0 0 0 0 0 0

1137 1137 (E)-limonene oxide 0 0.1 0 0.3 0 0

1135 1140 trans-pinocarveol 0 0 0 0.1 0 0.2

1141 1142 Camphor 0 0.1 0.9 0.2 0.3 0.1

1165 1166 borneol 0.2 0.6 0.8 1.2 0.6 1.8

1174 1178 terpinen-4-ol 1.5 1.8 2.1 1.8 1.2 2.7

1179 1179 p-cymen-8-ol 0 0 0 0.1 0 0

1186 1190 α-terpineol 3.3 3.1 4.1 5.2 2.8 4.2

1194 1195 myrtenol 0 0 0 0 0 0.2

1284 1289 bornyl acetate 0 0 0 0 0.1 0.2

1335 1340 δ-elemene 0 0 0 0.7 0.1 0

1346 1351 α-terpinyl acetate 0 0 0 0.1 0 0.3

1417 1417 (E)-caryophyllene 0 0.1 0 0.3 0.3 0.5

1452 1455 α-humulene 0 0 0 0 0 0.1

1505 1506 β-bisabolene 0 0 0 0.4 0.1 0

1582 1580 caryophyllene oxide 0 0 0 0.1 0.1 0.3

1640 1644 epi-α-muurolol 0 0 0 0.1 0.1 0

1759 1763 benzyl benzoate 0 0 0.3 0 0 0

Hydrocarbon monoterpenes 27.8 41.4 53.3 50.6 56.7 54.5

Oxygenated monoterpenes 72.2 52.0 46.2 45.0 31.4 43.8

Hydrocarbon sesquiterpenes 0 0.1 0 1.4 0.5 0.6

Oxygenated sesquiterpenes 0 0 0 0.2 0.2 0.3

Other Class 0.1 0.3 0.2 0.2 0

Total 100 93.6 99.8 97.4 89.9 99.2

RIL: literature retention index [52]; RIC: retention index (on DB-5MS column).

Table 2. Chemical composition of the oils derived from the leaves.

RIL RIC Constituents A2 B2 C2 D2 E2 F2

924 930 α-thujene 0.1 0.4 0.4 0.3 0.5 0

932 938 α-pinene 11.6 16.3 15.9 14.7 20.7 32.9
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Table 2. Cont.

RIL RIC Constituents A2 B2 C2 D2 E2 F2

946 952 camphene 0.1 0.3 0.3 0.2 0.2 0

969 975 sabinene 0.2 1.6 3.1 2.7 5.7 0

974 979 β-pinene 48.9 31.1 34.8 31.6 41 9.9

988 990 myrcene 0.2 0.5 0.7 0.5 1.1 5.2

1001 1001 δ-2-carene 0 0 0 0 0 0.1

1002 1003 α-phellandrene 0 0.1 0.2 0 0 0

1014 1017 α-terpinene 0.2 0.5 0.3 0.4 0.2 0.4

1020 1027 p-cymene 0.1 0.3 0.2 0.2 0.1 0

1024 1029 Limonene 0 1.6 1.9 1.5 1.9 4.5

1026 1032 1,8-cineole 16.9 2.2 5.5 1.9 2.7 8.9

1036 1036 phenyl acetaldehyde 0 0.2 0 0.3 0.6 0

1044 1048 (E)-β-ocimene 0 0 0.2 0 0 1.1

1054 1060 γ-terpinene 0.5 0.9 0.7 0.7 0.4 1.2

1086 1089 terpinolene 0 0.3 0.2 0.2 0.1 0.5

1095 1097 linalool 1.1 0.1 0 0.1 0 0

1098 1099 (E)-sabinene hydrate 0 0.1 0 0 0.1 0

1128 1126 α-campholenal 0 0 0 0.2 0.1 0

1132 1131 allocymene 0 0 0 0 0 0.8

1137 1137 (E)-limonene oxide 0 0.7 0 0.2 0 0

1135 1140 trans-pinocarveol 0.1 0.1 0.4 0 0 0.4

1141 1142 camphor 1.1 0.1 0 0.1 0 0

1140 1145 trans-verbenol 0 0.1 0.4 0 0 0

1160 1163 pinocarvone 0.3 0.1 0.4 0 0 0.7

1165 1166 borneol 0.3 0.6 0 0.1 0.1 0

1174 1178 terpinen-4-ol 0.7 1.5 0.9 0.1 0.4 1

1179 1179 p-cymen-8-ol 0 0.1 0 0.1 0 0

1186 1190 α-terpineol 2 2.7 1.6 0.7 0.4 0.5

1194 1195 myrtenol 0 0 0 0 0 0.6

1204 1205 verbenone 0 0.1 0 0 0 0

1284 1289 bornyl acetate 0 0.1 0 0 0.1 0.1

1285 1292 safrole 0 0 0 0 0 0.1

1298 1298 (E)-pinocarvyl acetate 0 0.2 0 0 0 0

1335 1340 δ-elemene 0 0.1 0 0 0.1 0.3

1346 1351 α-terpinyl acetate 0.1 0 0 0.2 0.1 0

1356 1361 eugenol 0 0 0 0 0 0.1

1389 1392 β-elemene 0 0.6 0 0 0 0.2

1417 1417 (E)-caryophyllene 3.1 15.1 13.2 20 14.1 10.5

1428 1432 (E)-α-ionone 0 0 0 0 0 0.1

1434 1437 γ-elemene 0 0 0 0 0 0.1

1442 1448 guaia-6,9-diene 0 0 0 0 0 0.1

1452 1455 α-humulene 0.3 1 0.9 1.4 0 1.5

1454 1457 (E)-β-farnesene 0 0.3 0 0 0.3 0

1480 1486 germacrene D 0 0 0 0 0 0.1

1487 1491 (E)-β-ionone 0 0 0 0 0 0.1

1505 1506 β-bisabolene 0 0.1 0 0 0.1 0

1513 1515 γ-cadinene 0 0 0 0 0 0.1
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Table 2. Cont.

RIL RIC Constituents A2 B2 C2 D2 E2 F2

1520 1522 7-epi-α-selinene 0 0 0 0.2 0 0

1522 1527 δ-cadinene 0 0 0 0 0 0.1

1561 1563 (E)-nerolidol 0 0.3 0.5 0.9 0.3 0.1

1577 1577 spathulenol 0 1.2 1.1 1.3 0 0

1582 1580 caryophyllene oxide 5.7 10 5.3 10.4 2.8 4.9

1608 1605 humulene epoxide II 0 0.9 0.5 1 0.2 0.5

1620 1624 dillapiole 0 1 0.3 1.1 0.4 0.1

1627 1632 1-epi-cubenol 0 1.2 0 0 0 0

1638 1640 epi-α-cadinol 0 1.6 1 1.1 0 0

1639 1641 cariophylla-(12),8(13)-dien-5α-ol 0 0 0 0 0 0.3

1639 1642 cariophylla-(12),8(13)-dien-5β-ol 0 0 0 0 0 0.9

1640 1644 epi-α-muurolol 0 0.6 2 2.1 0.2 0

1644 1645 α-muurolol 0 1.4 0 0.2 0 0

1652 1654 α-cadinol 0 0 0.5 0 0 0.1

1759 1763 benzyl benzoate 0.3 0 0.2 0 0 0

Hydrocarbon monoterpenes 61.9 53.9 58.9 53.0 71.9 55.8

Oxygenated monoterpenes 22.6 8.8 9.2 3.7 4.0 12.4

Hydrocarbon sesquiterpenes 3.4 17.2 14.1 21.6 14.6 13.0

Oxygenated sesquiterpenes 5.7 17.2 10.9 17.0 3.5 6.8

Other Class 0.3 1.2 0.5 1.4 1.0 0.3

Total 93.9 98.3 93.6 96.7 95.0 88.3

RIL: literature retention index [52]; RIC: retention index (on DB-5MS column).

2.2. Multivariate Analysis

The chemical compounds were identified in the different fractions of EOs of H. coro-
narium. The multivariate analysis PCA (principal component analysis) is shown in Figure 1
and the HCA (hierarchical cluster analysis) is shown in Figure 2. In Figure 1, we can see that
PC1 explains 49.4%, while PC2 explains 27.3% of the variations, and the two components
add up to 76.7% of the variance. When analyzing the HCA, considering the Euclidean
distances and complete bonds (Figure 2), we have the formation of three distinct groups
formed by the fractions, with group I formed only by sample A1, while group II is formed
by samples B1, E1, C1, and D1, with a similarity of 41.01% (Figure 2), while group III did
not show a significant level of similarity with any sample rhizome EO.

In addition, Figure 1 shows the compounds that each characteristic group formed in
the multivariate analysis, for example, group I, which comprises the largest number of
grouped samples, was formed by the compounds 1,8-cineole and linalool. On the other
hand, in group II, the compounds that contributed positively to the similarity between the
different fractions were p-cymene, sabinene limonene, camphene, (E)-sabinene hydrate, d-
elemene, a-thujene, b-pinene, and camphor, and in group III α-terpineol, (E)-caryophyllene,
borneol α-terpinyl acetate γ-terpinene, α-phellandrene, terpinolene, terpinen-4-ol, myrcene,
α-terpinene, and α-pinene (Figure 1).

A multivariate analysis was applied to analyze the similarity in the chemical composi-
tion between the different fractions of EOs isolated from the H. coronarium leaves. Figure 3
shows the principal component analysis (PCA), while Figure 4 shows the hierarchical
cluster analysis (HCA), according to which we can observe with the results obtained in
the PCA (Figure 3) that the first component explains 36.9%, while PC2 explains 31.9% of
the variances, the sum of the two components explains 68.8% of the variations observed in
Figure 4 of the HCA. We note that there was the formation of three groups, the first group
was formed by the samples of oils A2 and E2, group II was formed by the samples B2, C2,



Plants 2023, 12, 2626 7 of 18

and D2, while group III was formed only by the sample F2, with a similarity of 26% of sam-
ples A2 and B2, 36.59% between samples B2, C2, and D2, and 5.11% of sample III in relation
to sample II, that is, a low similarity between them (Figure 4). In addition, in Figure 3,
it is possible to observe which compounds were responsible for positively or negatively
impacting the formation groups, for example in group I the highest number of compounds
were 1,8-cineole, β-pinene, and camphor, in group II they were 1-epi-cubenol, α-terpineol,
sabinene, α-muurolol, spathulenol, epi-a-muurolol, caryophyllene oxide, epi-α-cadinol,
terpi-ne-4-ol, humulene epoxide II, and (E)-caryophyllene, while in group III they were
limonene y-terpinene, (E)-β-cimene, α-humulene, myrcene, and α-pinene. Chemometric
analysis has been shown to be an important tool for researchers of natural products, be-
cause through it they can analyze the differences between samples of EOs using matrix
correlation, which shows the differences and similarities between samples of different
plants or samples collected at different times, or different regions of ions [53].
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Figure 1. Biplot (PCA-rhizomes) results from the analysis of compounds identified in the
H. coronarium EO.

Multivariate analysis was used to verify the potential similarity of the different frac-
tions of EOs obtained from the vegetative organs, rhizomes, and leaves of H. coronarium. In
addition, we can see in the graph that each component explains a value of the variance in
the analyzed data, for example, the first component explains 40% and the second compo-
nent explains 22% of the variance (Figure 5). In the HCA hierarchy analysis, Figure 6, we
can analyze the formation of the different groups. In general, there was the formation of
four groups, with different degrees of similarity. Group I, with a similarity of 54.03%, was
formed by the samples A1 and A2, essential oils from the rhizome and leaves, respectively.
Group II was formed by samples of the EO only isolated from the rhizome, namely B1,
E1, C1, and D1, with a similarity of 59.64%. Group III, with a similarity of 39.26%, was
formed only by a sample of essential oils isolated from the leaves, namely B2, D2, E2, and
F2. The sample F1 group IV followed the same pattern already described in Figure 2, that
is, it had no similarity with the other samples. These results demonstrate that plant organs
can biosynthesize different substances in qualitative and quantitative terms.
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Figure 3. Biplot (PCA-leaves) results from the analysis of compounds identified in the
H. coronarium EO.

The multivariate PCA analyses were carried out in the factorial plane for the samples
of essential oils from the leaves and rhizomes. In the PCA, we can observe that PC1 explains
71.9% of the variance and PC2 explains 20.3%. In Figure 7, it is possible to analyze that
three oil samples are separated from F2, A1, and A2, corroborating the previous results of
the chemometric analysis for the compounds, Figures 3 and 5. In addition, a HCA hierarchy
analysis (Figure 8) was carried out, the results of which corroborate those presented in
all the previous graphs; for example, the compounds that had the highest weights for
the formation of the groups, the group was formed only by the F2 sample, this may be
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related to the presence of α-pinene in a higher concentration. Group II was formed by the
other samples (B1, C1, D1, E1, F1, A2, B2, C2, D2, and E2), and the relationship between
them is in the presence of the compounds sabinene, β-pinene, myrcene, α-phellandrene,
α -terpinene, p-cymene, Limonene, 1, 8-cineole, (E)-β-ocimene, γ-terpinene, terpinolene,
linalool, Camphor, borneol, terpinen-4-ol, p-cymen-8-ol, and α-terpineol. Group III and
IV are formed by separate samples A2 and A1, with the most representative compounds
β-pinene and 1,8-cineole, respectively, being in agreement with the HCA analysis, as shown
in Figures 4 and 6.
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Figure 4. The dendrogram (HCA-leaves) represents a similar relationship to the compounds identified
in the H. coronarium EO.
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Figure 6. The dendrogram (HCA compounds-leaves and Rhizome) represents a similar relationship
to the compounds identified in the H. coronarium EO.
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2.3. In Silico ADMET Analysis

Due to the limited pharmacokinetics and metabolic performance of essential oils, they
often fail to meet the requirements for antimicrobial/antibacterial drug
testing [54–56]. Therefore, we conducted an analysis of the ADMET profile for the main
constituents found in the tested essential oils. Our analysis retained the calculations of more
than 50 ADMET parameters for the studied compounds, namely 1,8-Cineole, α-Pinene,
β-pinene, and (E)-caryophyllene.

Table 3 provides an overview of the estimated ADMET properties for the selected
compounds. Lipinski’s Rule of Five, introduced by Dr. Christopher Lipinski, is a guideline
in drug design. It assesses a compound’s oral bioavailability based on its molecular
weight, lipophilicity, hydrogen bond donors, and acceptors. These criteria help determine a
compound’s drug-likeness and potential for successful oral administration. In accordance
with important drug-likeness guidelines, a compound should not violate more than one
Lipinski rule. Furthermore, its molecular weight should be below 500 g/mol, its topological
surface area (TPSA) should be less than 140 Å2, the number of H-bond acceptors (nOHA)
should not exceed five, the number of H-bond donors (nOHD) should be five or less, the
water partition coefficient (WLOGP) should not exceed 5.88, and the number of rotatable
bonds (nRB) should be ten or less [57,58]. As per Table 3, those compounds violating more
than one parameter would be considered as a Lipinski violation. Based on our findings,
all the compounds had a TPAS less than 30 Å2. Except for α-pinene, β-pinene, and (E)-
caryophyllene, all the compounds exhibited high gastrointestinal absorption (GI), indicating
their easy absorption through the gastrointestinal tract. Many of the compounds were
found to be (theoretically) soluble in water (except terpenes and sesquiterpenes), which
is an important criterion for their effectiveness as a drug. One of the major components
of the EO, α-pinene is a colorless, water-insoluble, but oil- and ethanol-soluble organic
liquid. β-pinene is also a colorless organic liquid, which is oil soluble but ethanol- and
water-insoluble. Moreover, 1,8-cineole is insoluble in water, 3.50 × 103 mg/L at 21 ◦C, and
also miscible with ether, alcohol, chloroform, glacial acetic acid, and oils. As per the data
available from the National Institutes of Health (NTP), 1992, it is insoluble at <1 mg/mL
at 68 ◦F. However, data published by the Joint FAO/WHO Expert Committee on Food
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Additives (JECFA) states that it is insoluble in water and miscible in oils. However, there is
different information about this on the PubChem website (https://pubchem.ncbi.nlm.nih.
gov/compound/Eucalyptol#section=Solubility, accessed on 1 July 2023). (E)-caryophyllene
is soluble in ether and ethanol, and insoluble in water.

Table 3. ADMET profile of the major compounds of different H. coronarium essential oils.

Constituents 1,8-Cineole α-Pinene β-Pinene (E)-Caryophyllene

TPSA * (Å2) 9.23 0.00 0.00 0.00

Consensus log Po/w 2.67 3.44 3.44 4.24

Mol wt. (g/mol) 154.25 136.23 136.23 204.35

nRB 0 0 0 0

nOHA 1 0 0 0

nOND 0 0 0 0

WLOGP 2.74 3.00 3.00 4.73

Water solubility Soluble Soluble # Soluble # Soluble #

GI absorption ** High Low Low Low

BBB permeant ** Yes Yes Yes No

P-gp substrate ** No No No No

CYP1A2 inhibitor ** No No No No

CYP2C19 inhibitor ** No No No Yes

CYP2C9 inhibitor ** No Yes Yes Yes

CYP2D6 inhibitor ** No No No No

CYP3A4 inhibitor No No No No

Log Kp (cm/s)
(skin permeation) −5.30 −3.95 −3.95 −4.44

Lipinski *** Yes Yes Yes Yes

Lipinski violation 0 1 1 1

Bioavailability score *** 0.55 0.55 0.55 0.55

Hepatotoxicity **** No No No No

Carcinogenicity **** No No No No

Cytotoxicity **** No No No No

Immunotoxicity **** No No No Yes

Mutagenicity **** No No No No

Predicted **** LD50
(mg/kg) 2480 3700 3700 5300

Toxicity class **** V V V V

ADMET: absorption, distribution, metabolism, excretion, and toxicity, lipophilicity *, pharmacokinetics **, drug
likeliness ***, toxicological properties ****, TPSA: topological polar surface area, nRB: no. of rotatable bonds,
nOHA: no. of H-bond acceptor, nOHD: no. of H-bond donor, WLOGP: water partition coefficient, GI absorption:
gastrointestinal absorption, BBB: blood–brain barrier, P-gp: permeability glycoprotein, CYP: cytochrome P450,
Toxicity class: (class I: fatal if swallowed (LD50 ≤ 5), class II: fatal if swallowed (5 < LD50 ≤ 50), class III: toxic
if swallowed (50 < LD50 ≤ 300), class IV: harmful if swallowed (300 < LD50 ≤ 2000), class V: may be harmful if
swallowed (2000 < LD50 ≤ 5000), class VI: non-toxic (LD50 > 5000)). # These components are non-soluble in water,
as reported from real experimental data.

During the absorption process, first-pass metabolism via P-glycoprotein (P-gp) and
cytochrome P450 enzymes in the small intestine and liver can negatively impact drug
bioavailability. However, our results indicated no P-glycoprotein (P-gp) substrates among
the compounds, suggesting good intestinal absorption, while some compounds mainly

https://pubchem.ncbi.nlm.nih.gov/compound/Eucalyptol#section=Solubility
https://pubchem.ncbi.nlm.nih.gov/compound/Eucalyptol#section=Solubility
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interacted with two isoenzymes of the cytochrome (CYP450) family, specifically CYP2C19
and CYP2C9, indicating their effectiveness with minimal toxicity. (E)-caryophyllene was
predicted to be unable to cross the blood–brain barrier (BBB), as shown in the boiled-egg
prediction. Compounds located in the yellow zone of the graph can permeate through the
blood–brain barrier (BBB). The drug-like properties and gastrointestinal (GI) absorption of
the chosen compounds from the essential oils were assessed using the boiled-egg prediction
(Figure 9) and bioavailability radar graph (Figure 10). Compounds located in the yellow
zone of the boiled-egg graph have the ability to cross the blood–brain barrier (BBB), while
the pink area on the bioavailability radar graph indicates their drug-like characteristics.
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Additionally, the toxicological properties of the compounds were assessed and pre-
sented in Table 3. None of the selected compounds exhibited organ or oral toxicity, except
for (E)-caryophyllene. In summary, based on the results, it can be concluded that these
compounds have the potential for further development as drug candidates. The LD50
values were also calculated to ensure the safety of the selected compounds, as shown
in Table 3. The compounds with LD50 > 2000 mg/kg suggest their safety for biological
administration and as potential drugs.

Our in silico results for the major compounds of different H. coronarium essential oils
match with earlier reported data [59].
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3. Materials and Methods
3.1. Material

Samples A–F of H. coronarium were collected in the state of Pará: Sample A (highway
Pará–Maranhão Km 290), Sample B (municipality of Tracuateua), Sample C (municipality
of Igarapé-Miri), Sample D (municipality of Santarém Novo), Samples E and F (Belém).
Voucher specimens were deposited in the herbarium at the Museu Paraense Emílio Goeldi
(Sample B: MG182,830, Sample E: MG182,843, and Sample F: MG177,796). The other
samples were identified by comparison with authentic voucher plants.

3.2. Preparation of the Botanical Material

The A–F samples of H. coronarium leaves were dried in an oven with air circulation at
35 ◦C for five days and then ground in a knife mill (Tecnal, model TE-631/3, Piracicaba,
São Paulo, Brazil).

3.3. Extraction of Volatile Compounds

The samples were subjected to hydrodistillation in modified Clevenger-type glass
systems for 3 h, coupled with a refrigeration system to maintain the condensation water at
around 12 ◦C, following protocols reported earlier by our research group [4,60].

3.4. Analysis of the Volatiles

The phytochemical profiles of the EOs were analyzed using chromatography/mass
spectrometry (GC/MS) using a Shimadzu QP Plus 2010 GC-MS (Kyoto, Japan), following
protocols reported earlier by our research group [4,60]. The retention index was calcu-
lated for all the volatile constituents using a homologous series of n-alkanes (C8-C40,
Sigma-Aldrich, St. Louis, MO, USA), according to Van den Dool and Kratz [61], and the
compounds were identified by comparing their mass spectrum and retention index with
the data from the libraries [52].

3.5. ADMET Analyses

In modern drug-like hit identification, estimations of the pharmacokinetic properties
have a crucial role in it [62,63]. Nowadays, many machine learning-based theoretical
ADMET analyses tools are available online, which helps scientists to get more insights
from these properties before actually going for higher pre-clinical studies. Although
they have their own limitations, certainly the tools with good applicability domains have
higher chances of accurate predictions. ‘SwissADME’ is one of the tools available online,
which is useful for theoretical ADMET assessments [64,65]. One important mechanism
that underpins drug–drug interactions is the induction or inhibition of CYP enzymes.
Considering this fact, our in silico analyses for CYP1A2 inhibition, CYP2C19 inhibition,
CYP2C9 inhibition, CYP2C9 substrate, CYP2D6 inhibition, CYP2D6 substrate, and CYP3A4
inhibition profiles were retained negatives. This also suggested that these EO components
can be used further or modified accordingly to more suitable derivatives in order to have
more drug-like candidates.

The chemical structures of the chosen compounds from the essential oils were drawn
first using the ChemDraw Ultra 8.0 software for the purpose of investigating their theoreti-
cal pharmacokinetics, which includes absorption, distribution, metabolism, and excretion
(ADME). The accompanying descriptions were converted into the SMILES format. To assess
the drug-like and pharmacokinetic characteristics of the selected compounds, we utilized
the ADME tool provided by the SwissADME online server (http://www.swissadme.ch/,
accessed on 1 June 2023), following a predefined procedure. To evaluate their toxicity pro-
file, we employed the ProTox-II webserver (http://tox.charite.de/protox_II, accessed on
1 June 2023). This server utilizes various parameters, such as organ toxicity (hepatotoxicity),
oral toxicity, and toxicological endpoints (cytotoxicity, mutagenicity, carcinogenicity, and
immunotoxicity), to make predictions. From our analyses of the EO components using this
tool we noted down important ADMET properties (Table 3).

http://www.swissadme.ch/
http://tox.charite.de/protox_II
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3.6. Statistical Analysis

Multivariate analysis was performed according to the methodology described by [27],
where the Minitab 17® software (free version, Minitab Inc., State College, PA, USA)
was used.

4. Conclusions

This paper investigated the chemical composition of the essential oils from six en-
demic specimens of H. coronarium in the Amazon region. The identification of variations in
the chemical composition of H. coronarium essential oils contributes to the exploration of
the species’ ecological and evolutionary aspects. By understanding how geographic and
environmental factors shape the volatile profiles, we can gain insights into the adaptive
mechanisms of H. coronarium and its interactions within its natural habitat. By uncovering
the chemical diversity and complexity within this species, we open new avenues for the
discovery of potential bioactive compounds and novel applications in various industries.
The use of multivariate analysis enabled us to monitor the variability of the volatile com-
pounds, both in terms of the compound classes and individual compounds, through the
construction of a correlation matrix. This analytical approach allowed us to identify distinct
chemotypes among the specimens studied, highlighting the intricate nature of H. coronarium
volatile composition. The utilization of multivariate analysis techniques, along with the
consideration of different plant organs, allowed us to unveil the complex variations and
chemotypes present within this species. These results not only contribute to our knowl-
edge of volatile compound profiles in the Amazon, but also have broader implications
for ecological, pharmaceutical, and agricultural research. Overall, our findings advance
the frontiers of knowledge in this field and lay the groundwork for future investigations
into the chemical diversity and ecological significance of H. coronarium. In conclusion, our
study contributes to a deeper understanding of the volatile compound profiles within the
Amazon region and sheds light on the chemical diversity present in six endemic specimens
of H. coronarium.
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