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Abstract: Plant-based food produces significantly less greenhouse gases, and due to its wealth of
bioactive components and/or plant-based protein, it becomes an alternative in a sustainable food
system. However, the processing and production of products from plant sources creates byproducts,
which can be waste or a source of useful substances that can be reused. The waste produced during the
production and processing of food is essentially nutrient- and energy-rich, and it is recognized as an
excellent source of secondary raw materials that could be repurposed in the process of manufacturing
and preparing food, or as feed for livestock. This review offers an overview of the sources and
techniques of the sustainable isolation of bioactive substances and proteins from various sources
that might represent waste in the preparation or production of food of plant origin. The aim is to
uncover novel approaches to use waste and byproducts from the process of making food to provide
this waste food an additional benefit, not forgetting the expectations of the end user, the consumer.
For the successful isolation of bioactive ingredients and proteins from food of plant origin, it is crucial
to develop more eco-friendly and efficient extraction techniques with a low CO2 footprint while
considering the economic aspects.

Keywords: plant-based food; byproducts; sustainable extraction; proteins; bioactive compounds

1. Introduction

The production of human food has an extremely large impact on the environment,
which can be measured through the emission of greenhouse gases (GHG) [1], and expressed
in terms, it is about 13.6 billion tons of CO2 equivalent (or 26% of the total CO2 equivalent).
Land use produces 1.09 billion tons of CO2 equivalent (8%), food crops (excluding food
animals) account for 2.86 billion tons (21%), and the share of the food supply chain is
2.45 billion tons or 18% CO2 equivalent (which includes transport (6%); packaging (5%);
food processing (4%); and retail (3%)) [2]. Analysis of the developed farm-to-fork strategy
has shown an extremely positive effect on the reduction of primary food production impact
on the environment with the aim of adapting to climate change. The strategy is aimed at
economics, ecological well-being, and ethical awareness (of producers and consumers).
The goal of the strategy is to achieve the aforementioned benefits by (i) reducing the
impact of primary production on the environment and climate, while ensuring an economic
return for growers, fishermen, and aquaculture producers, but also (ii) improving animal
welfare and protecting plant health, and (iii) promoting the adoption of new green business
models, i.e., a circular economy that is primarily focused on sustainability [3]. As defined
in the strategy, “All stakeholders in the food chain must play their role in achieving its
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sustainability” [3], and the scientific community, which in any segment is related to food,
is invited to create new solutions (greener analytical methods and production processes,
reuse of food processing waste, etc.) that will contribute to sustainability.

The waste generated during food production and processing is basically rich in nutri-
ents and a good source of energy. Furthermore, it is recognized as a source of secondary raw
materials that can be reused in the process of food production and processing or as animal
feed. Energy and nutritionally rich waste is generated in the processing of fruits/vegetables
and oilseeds (such as grape pomace, cakes, etc.), which can be used as raw materials [4] to
obtain some other products (e.g., proteins, pectin, ethanol, flavonoids, polyphenols, etc.).
Namely, in this segment, the cooperation of the scientific community and entities in food
production is the key in order to find new ways of using waste and byproducts from the
food production process to give this waste food added value [5] in accordance with new
Green Deal solutions for sustainable food processing [6].

Consumers are increasingly becoming responsible segments in preserving the envi-
ronment and are turning to food and products that have a smaller CO2 footprint [7], which
includes a greater representation of foods of plant origin from regional cultivation, but also
those produced with the use of reused components, or upcycled foods, that are isolated
from waste [8] from the production process of foodstuffs [9] and are of plant origin [10].

Therefore, the aim of this work is to provide an overview of the sources and methods of
isolation of bioactive components and proteins from plant-based foods and those sources that
potentially represent waste (byproducts) in the processing or production of food of plant origin.

2. Processing of Waste Plant-Food Production

Plant-based food industrial byproducts, often characterized as waste and used as
animal feed [11], include the rest of foods such as: leaf, seed, shell, peel, stem, bran, kernel,
pomace, oil cake, etc. [12]. The potential to reuse this waste is based on its richness in
bioactive compounds and proteins [13].

A comprehensive systematic review of the important scientific articles published on
the topic of utilization/reuse food production waste/byproducts in the food production vs
plant-based food production was conducted by using the core collection in the WoS (Web of
Science database), including the last 10 years (2013–2022), adding also the information from
the first six months of 2023. Key words used were “food production” or “plant-based food
production” with refined results by the use of words such as “waste” or “by-products”,
refined with “reuse” or “utilization”. Results are presented in Figure 1.
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As presented in Figure 1, the share of reuse of byproducts and/or waste is in favor of
plant-based food production, whose share is significantly higher than the same topics related
to food production reuse of byproducts in general (p = 2 × 10−4). Food and drink labeled
as “vegetable” is the focus of almost half of consumers (48%) [14], and 25% of all consumers
declared that they increased their intake of plant-based proteins compared to the previous year
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(research conducted in 2021 by International Food Information Council [15]. The Western diet is
low in fruits and vegetables (which results in low intake of vitamins, minerals, and diversity
of amino acid intake) [16–18] and rich in refined carbohydrates, sugars, fats, and processed
foods, as well as animal-sourced foods [19,20]. Therefore, it is not surprising that consumers are
increasingly interested in food of plant origin, but also in food supplements that are sustainable
and come from byproducts of plant-based food production [16,17]. An overview of the most
represented byproducts (waste) in the processing of food of plant origin is given in Table 1, and
includes byproducts of fruit processing, oil production, mill-bakery, and sugar industries.

Table 1. Bioactive compounds from byproducts of plant-based food production (fruits and vegetables).

Food By-Product

Bioactive Compounds

ReferencesClass Concentration
(mg/kg) Major Compounds

Vegetable By-Products

Beetroot Pomace
Phenolic acids 1513 Ferulic acid, Caffeic acid, p-Hydroxybenzoic acid, Vanillic

acid, Protocatechuic acid [21]Flavonoids 386 Catechin, Epicatechin
Betalains 558.8 Betaxanthins, Betacyanins (isobetanin and betanin)

Potato Pulp and Peel
Carbohydrates / Pectin
Glycoalkaloid 639–3580 α-Solanine, α-Chaconine [22–24]Phenolic acids 1830–9130 Caffeic acid, Chlorogenic acid

Broccoli leaves Glucosinolates 1332–1594
Glucoiberin, Gluconasturtiin, Glucoraphanin,

Glucobrassicin, Neoglucobrassin,
4-Methoxy-glucobrassicin

Broccoli stalks and florets
Flavonoids 56.6 Quercetin, Kaempferol

[25,26]Phenolic acid 74.6–193.8 Neochlorogenic acid, Chlorogenic acid, Sinapic acid

Glucosinolates 1836.6–5775.6
Glucoiberiin, Glucoraphanin, Glucoalyssin,

Neoglucobrassin, Glucobrassicin, Glucoerucin,
Gluconapin

Carrot Peel Carotenoids 205.6 Lutein, α-Carotene, β-Carotene, Lycopene

Cauliflower Stem and leaves
Phenolic acids / Sinapic acid, Ferulic acid [27,28]
Isothiocyanate / / [29]

Flavonoids Quercetin, Kaempferol, Glycosides [30]

Fruit By-Products

Apple Pomace

Phenolic acids 523–1542 Caffeic acid, p-coumaric acid, Sinapic acid, Chlorogenic
acid, Ferulic acid, p-coumaroylquinic acid

[31–36]
Anthocyanins 50–130 Cyanidin-3-O-galactoside
Triterpenoids / Oleanolic acid, Ursolic acid

Carbohydrates / Pectin, Pectin oligosaccharides

Flavonoids 2153–3734 Isorhamentin, Quercetin, Glycoconjugates, Kaemferol,
Rhamnetin, Epicatechin

Dihydrochalcones 688–2535 Phloretein, Phlorizin

Grape pomace

Phenolic acids
Hydroxybenzoic acids (Gallic acid, Syringic acid);

Hydroxycinnamic acids (Caffeic acid, p-Coumaric acid,
Ferulic acid);

[37–43]

Anthocyanins 13,169–78,537

Flavanols 1000–12,886
Procyanidin B1, (+)-Catechin, Procyanidin B2,

(-)-Epicatechin, (-)-Gallocatechin, (-)-Gallocatechin gallate,
(-)-Epicatechin gallate

Flavonols Kaempferol-3-glucoside, Quercetin

Plum Pomace
Flavonols 40.3 Quercetin, Kaempferol, Glycosides, Rutinoside

[44]Phenolic acid 95.7 Chlorogenic acid, Neochlorogenic acid
Anthocyanins 6.5 Cyanidin, Peonidin

Mango Peel Carotenoids 1900 β-cryptoxanthin, β-carotene, Lutein

Mango Kernel Seed

Flavonoids 7200–13,000 Fisetin, Isoquercetin, Quercetin

[45–47]Xanthanoids 13,600 Mangiferin
Phenoic acids / Gallic acid

Catechins / Epicatecin, Epigallocatechin

Berries Press Residue Anthhocyanins

84,120 (blueberries)
27,890 (lingonberries)

284,950 (bilberries)
43,530 (cranberries)

Malvidin, Cyanidin, Petunidin, Delphinidin

Banana Peel

Flavonols 1019.6 Rutin, Kaempferol, Laricitrin, Quercetin, Myricitin

[48,49]Catecholamines 4720 Dopamine
Phenolic acids 99.5 Ferulic acid, Sinapic acids, p-Coumaric acid, Caffeic acid

Catechins / Epicatechin, Catechin, Gallocatechin

Citrus Peel and Pulp
Phenolic acids 560 (orange)

276 (lemon) Caffeic acid, Hydroxybenzoic acid
[50,51]

Flavanones 22298 (orange)
10646 (lemon) Hesperidin, Eriocitrin, Narirutin

Flavones 55 (orange)
1659 (lemon) Diosmetin glucoside, Apigenin glucoside
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The sources of food waste production are significantly bigger than what is mentioned in
Table 1. However, the above represents the sources of exceptional amounts of production waste,
so the world’s largest fruit crop is grapes (Vitis sp., Vitaceae), mostly (about 80% of the total crop)
used in wine production [42]. However, what needs to be highlighted here is the fact that those
concentrations of bioactive compounds (Table 1) represent some average values that may differ
due to a change in detection method or as follows for the example of bioactive components in
the byproduct of grape processing in winemaking, which makes up almost 20% of the initial
mass in winemaking [52,53]. Scientific and professional research supports the pharmacological
application and therapeutic benefits of a number of bioactive components, especially those with
byproducts containing proanthocyanidins, e.g., grape seeds [53], which have been proven to
contain a high proportion of antioxidants. Antioxidants are proven to be effective in minimizing
oxidative stress, inflammatory processes, pathology associated with metabolic syndrome, and
immediately after that with obesity [53]. The study, which indicates exceptional ranges of
expected content of bioactive components in the byproduct, investigated 11 different remains
of wine production in Argentina, which represents almost 5% of the total world wine produc-
tion [54]. Fontana and coworkers [43] showed the variation of investigated bioactive compounds
where, for example, the mentioned Quercetin (in Table 1) can, in freeze-dried grape pomace
extracts, range from 218 µg per g (Cabernet Franc 2016, from the northern location of Altamira)
to 1695 (Cabernet Sauvignon 2016, location of Agrelo). In two examined extracts, Quercetin was
not detected (Cabernet Sauvignon 2016 and Cabernet Franc 2016, both from the Altamira loca-
tion) [55]. In addition, this study presented also a large number of non-anthocyanin components,
such as: (i) Hydroxybenzoic acids (Gallic acid, Syringic acid); (ii) Hydroxycinnamic acids (Caffeic
acid, p-Coumaric acid, Ferulic acid); (iii) Stilbenes (trans-Resveratrol); (iv) Flavanols (Procyani-
din B1, (+)-Catechin, Procyanidin B2, (-)-Epicatechin, (-)-Gallocatechin, (-)-Gallocatechin gallate,
(-)-Epicatechin gallate); (v) Flavonols (Kaempferol-3-glucoside, Quercetin); and (vi) Other com-
pounds (OH-tyrosol, Tyrosol). The important outcome is the range of total non-anthocyanins
ranging from 2.813 mg/g to six times more, 16.853 mg/g of grape pomace extracts, which were
determined in the same grape variety (Cabernet Sauvignon, harvested 2015 from Gualtallary vs.
2016 from the Agrelo location, respectively). The importance of the location is confirmed in Croa-
tian vineyards, where the composition of grapes and pomace is different for the autochthonous
variety Maraština, and it is a consequence of the dominant autochthonous microbiota in different
vineyards (grapes from 11 vineyards were analyzed) [56].

Grains are considered to be under plant-based food, as well [57], therefore Table 2 is
given as an overview of concentrations of bioactive compounds of different grain byproducts.

Table 2. Bioactive compounds from byproducts of grain production.

Source Bioactive Compounds Concentration Reference

Wheat Bran

Thiamin 0.65 mg/100 g

[58]

Riboflavin 0.51 mg/100 g
Niacin 28 mg/100 g

Pantothenic acid 3.15 mg/100 g
Pyridoxine 1 mg/100 g

Folate 0.23 mg/100 g
Total Carotenoids 4.2 ug/g [59]

Lignan 4.75 mg/100 g

[58]Phytosterol 158 mg/100 g
Betaine 868 mg/100 g
Choline 172 mg/100 g

Total Flavonoids 3000–4300 ug/g [60]
Alkyresorcinol 489–1429 ug/g [61]

Phytosterols 4.73–2020 ug/g [58]
Ferulic acid 1376–1918 ug/g [62]

Total Phenolic content 4206.16 ug/g [63]

Rice Husk

p-coumaric acid 265.4 mg/100 g

[64]

Ferulic acid 33.64 mg/100 g
Total Flavonoids 3.08 mg CE/g
Total Phenolics 14.90 mg GAE/g

Caffeic acid 3.68 mg/100 g
p-hydroxybenzoic acid 12.55 mg/100 g

Corn Bran
Total Phenolic content 1925 mg GAE/100 g

[59]Total Carotenoids 32.0 µg/g
Corn Germ meal Total Carotenoids 57.9 µg/g

CE: Catechin equivalent; GAE: Gallic acid equivalent.
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Table 1 states that phlorizin, which is present in numerous plants (present also in apple
pomace), has been used in human medicine since ancient times [65]. Considering the obesity
pandemic and the increased incidence of diabetes [66], it is precisely the antidiabetic effect
of phlorizin that has shown improved hyperglycemia, and studies [67,68] have reported
its anti-inflammatory and antioxidant effects [69]. Taking into account the exceptional
contribution of bioactive compounds from plants and their medicinal properties, as well
as consumer expectations to eat what will be good for health [70], all the listed bioactive
components in Tables 1 and 2 have their own benefits, arising from their antioxidant and
anti-inflammatory properties. Cereals and grains also have their health effects based on
bioactive compounds, such as antioxidant and antiproliferative activities [71] and functional
ingredients [72]. However, the additional focus is on the sustainability of the environment
and the production of cosmetics and food, and science is turning to the additional study of
alternative analyses and extractions.

Therefore, for the extraction of bioactive compounds and proteins from plant-based
food production waste, it is certainly necessary to weigh the pros and cons, keeping
primarily profitability in mind [71,72].

Due to the obvious environmental benefits of limiting the use of food sourced from
animals, plant-based diets are growing in popularity, especially in advanced nations [73].
There are numerous environmental costs associated with the processing and consumption
of animals, including greenhouse gas emissions (GHGEs), land use and degradation, water
consumption, nutrient contamination (such as an increase in acidity and eutrophication),
the use of fertilizers and chemicals, and consumer-level food waste at every stage of
the supply chain [74,75]. Among them, GHGEs, land destruction, and water use have
significant upstream impacts on the environment. They amplify the effect of climate change
and ultimately determine subsequent environmental degradation ((such as the likelihood
of catastrophes, loss of biodiversity and habitat, shortage of clean water, etc.) in ecological
systems [76].

2.1. Sustainable Isolation of Bioactive Compounds from Plant-Based Food Byproducts

In recent years, there has been an interest in “green” extraction techniques, which are
primarily characterized by the minimization of volatile organic solvents and toxic substances
and are united under the name green analytics or green analytical chemistry [77,78]. Conven-
tional methods of extraction (e.g., Soxhlet extraction, digestion, maceration, etc.) are some
of the techniques used to isolate bioactive compounds not only from food waste, but also
from production byproducts, which represent high added value. However, the mentioned
methods of extraction, due to their low efficiency, consumption of energy, time, and organic
solvents, have a negative effect on the environment [79]. These are the reasons why they are
not considered economical, and thus do not belong among sustainable techniques. On the
other hand, the just-mentioned limitations influenced the development of new extraction
procedures that are sustainable since they use green solvents and at the same time enable
more efficient extractions with minimal proportions of ballast substances [80].

Thus, ref. [81] highlighted extraction (i) assisted by ultrasound, (ii) assisted by mi-
crowaves, (iii) supercritical fluid, (iv) liquid under pressure, and (v) assisted by enzymes
and combinations as green methods of extraction of bioactive components. The advantage
of the mentioned techniques is in the minimization or elimination of the use of toxic organic
solvents while increasing the quality of the extract, as well as the utilization of the extrac-
tion [82]. With these techniques, the temperatures are much lower (they are often called
“cold” extractions), and this consequently stabilizes the extracted bioactive compounds
and certainly contributes to the high added value of food waste or byproducts that are
reused [83].

2.2. Sustainable Isolation of Plant Proteins

Proteins play a crucial structural and nutritional role in food. They not only supply
a variety of amino acids required for human health, but they also operate as thickening,
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stabilizing, emulsifying, foaming, gelling, and binding agents. The potential of a protein to
possess and display such unique functional qualities is largely determined by its inherent
structure, configuration, and the manner in which it interacts with other dietary ingredients
such as polysaccharides, lipids, and polyphenolic compounds. Animal proteins are more
functional, more easily digestible, and contain fewer antinutrients than plant proteins [84].

However, consumer preferences are changing towards clean, cruelty-free, vegan, or
vegetarian plant-based foods that are obtained ethically and responsibly. In contrast to
proteins derived from animals, plant proteins are more adaptable, accepted by consumers
who are vegetarians and vegan on a religious and cultural level, and they require less water,
soil, and waste during food processing [85]. Consequently, processing and using plant
proteins has attracted global attention. A large number of scientific studies are concentrating
on improving the use of plant proteins in food and pharmaceutical products through a
variety of processing and modification techniques to enhance their functional properties,
bioactivity, bioavailability, and digestibility [86]. From an agricultural and environmental
sustainability perspective, plant-based products have a significant advantage. Employing
plant-derived materials preserves the wellbeing of animals and also has an enhanced holistic
social reputation. As a result, consumer demand and environmental concerns are driving
a shift away from animal-based products and towards those made of plants. While some
investigations have been done to characterize novel plant-based proteins, more work has to be
carried out to determine effective protein extraction techniques that will result in high outputs
while maintaining the functionality and quality of the extracted proteins (Table 3).

Table 3. Proximate protein composition of different plants.

Plant Ref Protein % Glutelin % Albumin % Prolamin % Globulin %

Cereals

Maize [87] 10.3 40 5 50 5
Rice [88] 6–8 75–81 5–10 3–6 7–17

Wheat [89] 8–13 42–62.5 15–20 28–42 15–20
Barley [90] 10–12 25 2–3 30 2–3
Oats [91] 16.9 35–40 20–25 10–15 20–25

Oil seeds

Rapeseed [92] 38 10 <1 20 70
Sunflower [93] 20–40 17 38 5.5 39

Microalgae

Cyanophyceae [94] 43–77 * / / / /
Chlorophyceae [94] 11–55 * / / / /

Millet, legumes and nuts proteins

Millet [95] 9–13 30 15 30 8
Peas [96] 25.6 19.1 13.8 3.08 57.2

Lupins [97] 44 5.7–11.9 8.9–23.9 0.6–1.8 46.5
Soy [98] 40 30.4 22.9 0.3 46.5

Lentils [99] 26 2.1–3.5 56.3–64.0 1.4–2.0 26.5–29.5
Cashew [100] 20–25 11.7 45.6 0.4 42.4

Pistachios [101] 20 7.3 25 2 66
Almonds [102] 22.7–29.9 <5 21 <5 74
Walnuts [103] 18–24 72 7.5 4.7 15.7

* Protein content (% dry weight basis).

2.2.1. Source of Plant-Based Proteins—Cereals

On average, maize contains 72% carbohydrates, 10% proteins, and 4% fats [104]. The
two primary products made from maize are meal and flour. A total of 70% of the world’s
ethanol output comes from the wet and dry milling of maize [105]. Different byproducts,
such as corn syrup, germ meal, corn oil, and corn gluten meal, are produced during the wet-
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milling process, whereas dried grains are produced during the dry-milling process [106].
Due to their high fiber and protein content, dried grains are currently used as animal
feed [107,108].

While corn gluten feed provides up to 25% protein, corn gluten meal generated by wet
milling has around 70% protein content. Protein content in corn syrup from dry-grinding
plants can reach 40% of the dry mass [108]. Wheat bran contains from 13% to 18% protein
and is startlingly high in arginine and lysine content, and it is considered as a reliable and
good source for protein extraction. Additionally, the bran contains significant amounts of
cysteine, tyrosine, and tryptophan [109].

2.2.2. Source of Plant-Based Proteins—Oilseeds

Seeds continue to be the principal source of vegetable oil used by both humans
and animals, in addition to providing crucial components for modern, commercial, and
combustion uses. This has led to an ever-increasing demand for vegetable oils on a global
basis [110].

About 364 million tons of byproducts, which include meals or cakes with high-value
components including cellulose, polysaccharides, proteins, phenolic compounds, etc., are
produced during the processing of vegetable oils [110]. Remaining cakes have about 50%
protein depending on the kind of plant residues used [111]. After processing rapeseed
for oil, the resulting cake is highly rich in proteins (28–31% in the case of cold pressing
and 38–45% in the case of hot pressing). Similarly, sunflower meal, produced after oil
extraction, contains 20–30% of protein and various techniques can be applied to extract
these proteins [112].

2.2.3. Source of Plant-Based Proteins—Microalgae

In societies with a shortage of animal-based proteins or where maintaining an appro-
priate ratio of essential amino acids is difficult, proteins from microalgae can be utilized
to restore a person’s protein intake. The enhancement of human wellness may stem from
microalgal proteins, especially in vegans and vegetarians [113]. Using microalgal proteins
will also relieve the pressure on resource-intensive land crops for food [114].

Humans have been using them as nourishment for many years. There are thought to be
over 200,000 different species of microalgae, making them a remarkably diverse collection
of microbes [115]. The Cyanophyceae, Bacillari-ophyceae, Chrysophyceae, and Chlorophyceae are
among the most well-known and potentially more ecologically significant [116]. Differed
microalgal species might have quite varied protein concentrations and are significantly
impacted by the surroundings where they are cultivated. High quantities of protein,
generally 40–60% of dry matter, can occur in numerous species [117]. Based on dry mass,
the variety of crude protein concentrations in the biomass of microalgae is 6–63%, with over
40% in many species [118]. The protein content of 17 different microalgal species ranging
from 6 to 58% has also been reported [119]. Hence, microalgae can act as a sustainable
source of protein if used correctly.

2.2.4. Source of Plant-Based Proteins—Millet Proteins

Millets are tiny seeds that grow in semi-arid and dry land regions around the world.
They may thrive in dry, hot, and humid areas where growing wheat and rice is highly
un-likely [120]. Contrary to traditional basic cereals, these are more reasonably priced and
contain a higher amount of nutrients, such as carbohydrates, protein, dietary fiber, and
minerals like calcium, iron, magnesium, and phosphorus, as well as a number of trace
minerals [121]. Proteins make up roughly 10% of the weight of millet [120]. Compared
to wheat and rice, the overall protein level of different millet grain varieties varies from
7.52% to 12.1% [122]. Leucine, phenylalanine, proline, serine, tyrosine, aspartic acid, and
glutamic acid are among the amino acids that are present in greater concentrations in millet
protein [123]. It has great potential for producing low-cost protein extracts that may be
used in the food business.
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Plant-based foods are becoming more popular as they serve an important part in
sustainable, low-meat, and nutritious diets. A growing segment of the population is con-
verting to a plant-based diet due to the positive effects on their health and the environment.
Research has shown that eating a diet high in fruits, vegetables, legumes, nuts, and whole
grains may help prevent lifestyle-related illnesses like heart disorders, type II diabetes,
and breast, colon, and other digestive-related cancers, as well as enhance psychological
well-being. Long-term research examining the spectrum of plant-based foods and their
effects on human well-being is required. The findings would make it possible to formulate
dietary recommendations for plant-based meals, particularly for those at risk, including
small children, pregnant women, and elderly people, and are more likely to experience
nutritional deficiencies.

3. Challenges of Plant Proteins Use

Animal proteins are regarded as high-quality or complete proteins because they have
all of the essential amino acids, but plant proteins are seen as incomplete since some of
the important amino acids required by humans for healthy growth are missing. Certain
remarkable plant proteins, such as soybean and the pseudo cereals quinoa and amaranth,
contain all nine essential amino acids [124]. Plant-based proteins with low protein content
and absence of critical amino acids are only scarcely used in food items, but several
modification techniques, including chemical, physical, and enzymatic procedures, improve
their usability.

Plant proteins can be altered using a variety of methods, which alter their physico-
chemical and functional characteristics as well as fix some of their drawbacks. This opens
the door for the development of plant proteins as multifunctional food system elements.
Furthermore, mixed protein systems have been researched to improve protein charac-
teristics, primarily employing legumes and dairy proteins [124]. Further issues for the
food business in producing final products include high-quality protein with good flavor,
texture, color, and mouth feel, as well as reasonable cost of plant protein. Byproducts from
many different crops have recently been used to extract the protein in order to solve the
availability issue; one example is the protein extraction from sesame bran waste using a
microwave and enzymes [125] and protein extraction from tea leftovers and other dietary
waste or byproducts [126]. Another obstacle to the use of plant proteins is their potential
toxicity, such as the toxicity of gossypol in cottonseed protein [127].

4. Protein Isolation

Protein isolation is a series of steps, with each step increasing the purity of the isolate.
These steps may include identification of the source, extraction, separation from non-protein
components, and concentration.

The type of source influences the different extraction methods used. By using cutting-
edge protein extraction procedures, protein isolates abundant in crucial amino acids, in-
creased physicochemical, as well as functional qualities can be produced.

The conventional techniques for protein isolation can be used with a larger range
of plants, such as oilseeds, agro-residues, cereals, and pulses, but they have significant
drawbacks (expensive, unsustainable) [128]. It has been discovered that pulsed electric
field extraction is a method for isolating recombinant enzymes from microorganisms in
their natural conformation while maintaining a high level of the specific activity.

Due to their numerous advantages (better yield, quicker, more environmentally
friendly, and using less solvent) over traditional procedures, modern protein extraction
techniques are the method of choice. Due to improved extraction recoveries, it is becoming
increasingly common nowadays to successively utilize these innovative methods for the
isolation of proteins. These techniques are broadly divided into two categories, conven-
tional and novel green extraction procedures. Conventional extraction is further classified
into dry extraction and wet extraction [129–131].
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4.1. Dry Extraction

Air classification is one of the most commonly used dry extraction techniques. Con-
ducted studies demonstrated that air classification may group cereal and pulse flours into
subsets with various nutrient content and sizes of particles. Using this method, a classifier
chamber receives air currents. The feed flour is separated into tiny and coarse bits with
distinct dimensions and densities within the chamber by the gravitational and centrifugal
forces of air. In order to increase the effectiveness of separation, reduction of the size of the
feed material usually occurs before air classification [132].

Hammer milling, attrition milling, pin milling, and jet milling are a few examples of
milling and size reduction processes. In more recent studies, electrostatic fractionation of
solids has been examined in addition to air classification. Instead of variances in size and
density, this approach depends on variations in the dielectric characteristics of the feed
particles [133]. It is discovered that electrostatic separation can increase protein extraction
by up to 15% compared to air classification [134].

4.2. Wet Extraction
4.2.1. Enzyme-Based Extraction

The growing demand for premium protein-rich products has prompted the develop-
ment of non-traditional sources of proteins, such as algae, plant waste, fungi, and food
industry waste, that are not harmful to the environment [135]. Protein is recovered from
grain and oilseed residues. Following the dehulling process, or defatting, these are reported
to contain 15–20% protein content [136]. Substituting plant proteins derived from food man-
ufacturing wastes for animal proteins has ensured food production sustainability, and the
type of protein extraction used is dictated by the final product’s intended implementation.
Enzymatic protein extraction is suitable for use in emulsion-based products [137].

Enzyme-assisted extraction (EAE) is a viable method for extracting high-quality pro-
tein from plants sustainably. The recovery of protein from cells is made difficult by a
stiff cell wall. EAE mainly deals with undermining cell wall stability through the enzy-
matic breakdown of cell wall components. Cell wall dissolution performed by pectinases
and carbohydrates contributes to the regulated extrusion of protein from cells in oilseed,
legumes, and cereal seeds [138]. Proteases increase protein output by releasing proteins
from the polysaccharide structure. Cell wall breakdown promotes cellular protein outflow.
Following protein release, proteases fractionate higher molecular mass proteins into smaller
but more soluble segments, resulting in favorable extraction parameters. Furthermore,
proteases function at optimal pH levels, minimizing the denaturation of proteins.

A common protease concentration of 1–5% g/g substrate is regarded as optimum for
different extraction methods. Under certain circumstances, such enzymes may additionally
hinder the buildup of complexes between discharged proteins and different parts of cells,
such as carbohydrates and phytates [139]. Along with EAE, physical treatments such
as ultrasound, sonication, and microwave boost both the quantity and quality of the
extract [104]. Press cakes prepared using dehulled rapeseeds are treated with pectinolytic,
cellulolytic, and xylanolytic enzyme mixtures to extract proteins. Proteolytic enzymes
dissolved the cellular barriers through hydrolysis of pectic and glucans polysaccharides,
significantly boosting the overall protein extract rate by 1.7-fold. A 74% protein extraction
yield was obtained from intact seeds and 56% from dehulled rapeseed press cakes [138].
Defatted barley flour was enzymatically treated with (1) amyloglucosidase and α-amylase,
and (2) amyloglucosidase, β-1,3,4-glucanase, and α-amylase. The first method produced a
protein concentrate of 49.0%, while the second method produced 78.3% protein prior to the
precipitation process [140,141].

The product outputs may be improved even more if this approach is implemented in
a sequence using mechanical protein extraction methods. Despite the fact that EAE has
multiple limitations, such as time, being functionally expensive, being tricky in expanding
up the extraction process, having incoherent yields, and being a costly technique to operate,
it is still regarded as effective because it has a low environmental impact while producing a
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substantial protein output. This extraction technology produces high-quality food items
appropriate for human consumption. Furthermore, reusing (immobilized catalysts) could
significantly lower the cost of protein extraction with this technology.

4.2.2. Aqueous Two-Phase System

Aqueous two-phase systems (ATPS) are now employed for effective protein isolation
due to the qualities they have, including phase system hydrophobicity, between phases
electrical potential, size of molecules, and protein bio-affinity [142]. Protein separation,
concentration, and purification are all possible using the multipurpose ATPS approach
that relies on the blending of two elements with differing compositions, where a proper
selection of these two elements ensures the end result of two specified and balanced layers.

Scientific researchers are very interested in the advantages of ATPS technology, which,
in comparison with traditional mechanisms, ensures a higher level of purity, selectivity, and
extraction yield thanks to its flexibility, biocompatibility, and economic ease. Furthermore,
phase components can stabilize protein frameworks while maintaining the biological
function of the proteins [142]. Recent studies have shown that two-phase systems made
of polyethylene glycol and sodium citrate or ethanol and sodium citrate are effective at
recovering proteins from waste microalgae and prawns [142–145].

4.2.3. Reverse Micelles Extraction (RM)

Traditional protein extraction techniques have a number of limitations, including rapid
acceleration of protein denaturation, production of enormous volumes of wastewater, and
restricted ability to handle raw materials. The technology used by RM to extract dietary
proteins is becoming more and more popular. When extracting proteins using the RM
method, there are often two processes involved: a forward extraction and a backward
extraction. Proteins dissolve in the aqueous cores containing RMs during the process
of forward extraction, and dissolved proteins are recovered from the RMs during the
backward extraction.

The extraction yield for the forward extraction of defatted wheat germ protein by
RMs under ideal circumstances reached up to 37% [146,147]. By utilizing both RM and
ultrasonic procedures, forward extraction can be enhanced by up to 57% [148]. When
extracting proteins from grape seeds, recent research obtained a forward extraction rate
of 82% [149]. In the traditional backward extraction procedure, the forward extraction
solution is diluted by an equivalent amount of aqueous solution [150]. This approach
comes with a number of drawbacks, including increased water and energy use, ineffective
backward extraction, and surfactant and protein loss. Therefore, new backward extraction
approaches are being thoroughly investigated by researchers [151].

4.2.4. Subcritical Water Extraction

The technique of subcritical water (SW) extraction (SWE) involves using hot water
between the level of the water’s boiling point (100 ◦C) and its critical point (374 ◦C) while
applying considerable amounts of pressure in order to keep the water in liquid condition
within the range of those temperatures. The characteristics of water are considerably altered
by a rise in temperature. For instance, although its viscosity is low and its compressibility
is decreasing, the most significant change is the temperature-dependent reduction in
water’s dielectric constant. As a result, the water structure made of hydrogen bonds is
compromised, allowing for the dissolution of both mildly non-polar and polar molecules.
Additionally, SW creates a high-ion product, which has the ability to facilitate hydrolysis
processes. As a result, in contrast to water that is at low temperatures and atmospheric
pressures, SW parameters promote the breakdown of polysaccharides and the production
of smaller solubilized protein fragments [152].

While highlighting production as the main obstacle to its commercial usage, it is a
strategic option for the food business with considerable possibilities in the selective extrac-
tion of bioactive components and in green hydrolysis processes. SWE is a technique that is
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effective, affordable, quick, and ecologically friendly [153]. SW offers equivalent or greater
yields in less time than traditional alkali or enzymatic hydrolysis. Researchers emphasize
the need for creating ideal processing conditions as a workaround for using proteins pro-
duced from agro-food byproducts and biomass from algae, indicating that this might be
advantageous in a stage-by-stage procedure for generating valuable components [154].

4.3. Novel Green Techniques of Extraction

The development of new extraction techniques has been prompted by the rising
demand for plant proteins [133–135]. The selection of the extraction technique is a crucial
element that affects the extraction quality and yield. Proteins can be extracted from plant
matrices using both conventional and novel extraction techniques. Conventional methods
are less common among researchers due to their lengthy duration and extensive use of toxic
solvents. Additionally, concern for the environment has led to the development of novel
green extraction techniques that produce a superior yield in a short amount of time with
little solvent consumption. Some common novel green extraction techniques are discussed
below [155–157].

4.3.1. Microwave-Assisted Extraction

Microwaves, which typically process food, fall into the category of non-ionizing
radiations and have a frequency that ranges from 300 MHz to 300 GHz [119]. In recent
years, microwave-assisted extraction has grown in popularity as a method to extract active
ingredients from food, especially when it comes to recycling waste products from agro-
industrial processes [156].

Based on the electrophoretic transport of ions and electrons, microwave begins ionic
conduction, creating an electric field [157]. Polar molecules are moved by dielectric heating
in a time-dependent electric field, which forces the molecules to rotate into alignment with
the electric field already present. These systems generate energy, which is then released
as heat. Pressure from the loss of moisture inside the plant cell promotes expansion and
eventual rupturing, which reveals the cell to the outside solvent and makes it easier for the
solvent to penetrate [155]. This process produced 1.54 times as much protein as a chemical
technique that used alkaline liquids. Due to the substantial amount of thermal energy
produced by the microwave treatment, which degrades susceptible bioactive substances,
several proteins are not extracted by this method. To effectively extract the plant proteins,
another option is to use brief pulses of microwave energy or to optimize the microwave’s
input settings.

4.3.2. High Pressure-Assisted Extraction

High pressure-assisted extraction uses solvent extraction while operating at a high
pressure of 100–1000 MPa [158]. As a result of being kept close to their supercritical regions
under tremendous pressure, organic solvents stay in a liquid state [159]. These circum-
stances lead to a decrease in the solvent’s surface tension and density, which improves
its absorption into the solid structure and increases the rate of mass transfer and mobility
while shortening extraction times and solvent expenditure.

The occurrence of high pressure causes air to leak in plant cell vacuoles, promoting the
breakdown of proteins found in cell membranes and cell membrane breakdown, thereby
enhancing the extraction permeability of the target compounds [160]. It was discovered
that rice bran protein extraction was higher between 600 and 800 MPa and lower around
200 MPa.

Despite the fact that high pressure cannot extract more protein on its own when
combined with other effective methods like EAE, a protein-rich extraction rate of 66.3%
could be achieved successfully [161]. It is becoming more and more popular as an alter-
native to traditional solvent-based extraction procedures because it is an environmentally
friendly extraction technique. Applying HPAE in conjunction with enzymatic, ultrasonic,
or microwave treatment can help recover plant proteins even better.
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4.3.3. Pulsed Electric Field-Assisted Extraction

The components of a pulsed electric field system include a high voltage origin, which
is occasionally in the form of a switch, a capacitor bank, and an area with at least two
electrodes [162]. A pulsed electric field is one that is created by applying quick electric
pulses with high power (kV) at brief intervals (micro-milliseconds). An electric field
potential is created when the dipolar cell membrane is exposed to an electric field, and
this results in the separation of the electrical charge [163]. The creation of pores that allow
for the transport of intracellular substances is known as electroporation, which occurs
when the electric field strength exceeds the threshold range (0.8–1 V). Increased electric
field strength and exposure time lead to more total-specific energy, which improves mass
transfer and electroporation [164].

When rapeseed stalk debris was valorized for protein and polyphenol recovery em-
ploying a hydraulic press after having been pretreated with a pulsed electric field, the
number of protein concentrations in the extracted juice was increased by double relative
to the untreated biomass [129,165]. For the purpose of retrieving proteins in their original
condition, it is necessary to optimize the input components of the pulsed electric field. As
the protein grade is barely impacted during treatment and throughout the storage duration,
it is an intriguing method in comparison with traditional heat procedures.

4.3.4. Ultrasound-Assisted Extraction

Like all sound waves, ultrasounds propagate through the molecules of the material
they are exposed to in a succession of compression and rarefaction waves. At high inten-
sities, rarefaction cycles outweigh the molecule attraction forces of the medium, creating
cavitation bubbles. When cavitation bubbles collapse, they create high-velocity jets that
break cellular structures and make it easier for the solvent to penetrate [165].

Additionally, cavitation bubbles that burst produce heat energy, which improves mass
transmission [166]. The cavitation, thermal, and mechanical effects of ultrasound during
ultrasonic-assisted extraction lead to the breakage of cell walls, a decrease in particle size,
and degradation of the plant matrix, as well as an increase in mass transfer [167]. Heat labile
chemicals may be damaged by the heat produced during ultrasound-assisted extraction.
Although the procedure uses less solvent, it is still problematic to employ harmful solvents
like hexane, especially when extracting certain non-polar chemicals. Deep eutectic solvents,
for example, are recognized as ‘green’ substitutes for harsh chemicals. Deep eutectic
solvents have a high solvent capacity and are made from affordable, recyclable, and
biodegradable materials.

Systematization of all previously mentioned extraction techniques can be summarized
in the form presented in Table 4.

Table 4. Systematization of bioactive compounds and protein extraction techniques.

Extraction Method Technique Protein Yield/% Ref

Dry Extraction Air classification techniques 18 [165]
Sieving 17 [166]

Wet Extraction

Aqueous two-phase system extraction 90 [167]
Subcritical water extraction 80 [140]
Reverse micelles extraction 37 [143]
Enzyme-assisted extraction 74 [137]

Novel Green methods
of Extraction

High pressure-assisted extraction 66.3 [134]
Microwave-assisted extraction 24 [168]
Ultrasound-assisted extraction 63 [169]

Pulsed electric field-assisted extraction 25.4 [170]
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All of the previously mentioned needs to be in focus when the economic efficiency
of the reprocessing of valuable byproducts of the plant-based food industry is evaluated.
Green technologies will be in accordance with the strategies of “zero waste” in the food
industry, with added value in the form of (i) environmentally friendlier products (ensuring
a lower CO2 footprint and less pollution of water, air, and soil) as well as (ii) being more
acceptable to the end user (consumers). By summarizing all that has been previously
mentioned, the expected result that will be the output is shown in Figure 2.
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5. Conclusions

Food production, regardless of the origin (plant-based or not), is and will be a source
of waste. But isolation of proteins and bioactive compounds from natural sources, such as
plant-based food, is related to the ever-increasing demand for them in the pharmaceutical,
chemical, and food sectors. When the above is extracted from a byproduct or waste, this
factor gives added value to the new product for which it is planned to be used. Interest in
natural products and products containing bioactive components from natural byproducts is
growing proportionally to studies that confirm their effectiveness in the treatment and/or
prevention of oxidative stress, inflammatory processes, and/or chronic diseases (e.g.,
metabolic syndrome, obesity), which has been proven in vitro or in animal models [55].
However, further studies are necessary, which would investigate the interaction of one or
more bioactive components with medicinal ones through clinical trials.

The usefulness of conventional extraction methods, which we did not consider in this
paper, should not be ignored. However, they are often time-consuming and sometimes
environmentally unacceptable [171], and the aforementioned limitations led to the develop-
ment of the unconventional extraction methods that we mentioned in the paper. However,
like any measurement procedure, non-conventional methods also have disadvantages,
of which high maintenance costs [172] and losses when extraction is carried out outside
controlled laboratory conditions should be highlighted.

Unconventional methods have not yet sufficiently substantiated their justification
through tests of usability, bioavailability, and bioavailability of such production practices.

Climate change and the pandemic of non-communicable diseases (diabetes, cancer,
obesity) have affected the perception of sustainable products, considering that everything
“green” and natural is also healthier [17,40,41,55,70,73], but at the same time there is
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an awareness that a number of scientific confirmations are needed. This points to the
fact that the demand for food and food supplements derived from plants and algae will
increase [173]. It is the projections of exceptional demand that will be the impetus for further
research into sustainable and effective methods of screening, extraction, characterization,
and processing of bioactive compounds and proteins, from plant sources, of good quality.
Emphasis will be on research to improve extraction yield and selectivity with simulation
modeling and optimization of interaction parameters and affinity of compounds and
solvents, as well as work with biosensors, fluidic chips, etc. [174]. However, cost reduction
and simpler scalability are expected through the optimization of physical parameters of
non-conventional methods [171].

Nevertheless, this waste is a source of significant amounts of bioactive components
and proteins that should be viewed through the lens of a circular bioeconomy, in which
this is a potential that should be effectively monitored. However, for the future perspective,
it is important to weigh the advantages and disadvantages, because the awareness of
potential limitations (economic, ecological, ethical, etc.) will greatly affect the further
development of the methods and the overall sustainability [175]. Using the example
of bioactive components that have been found in grape pomace (and which are briefly
discussed under Table 1), has clarified the importance of examination of the available and
published data on the desired bioactive component. It is also important to carefully study
the data on the diversity of the byproduct that remains in production, which comes from
different sources, from different locations, etc. [43,56]. The study on the valorization of
waste of plant origin [176] gained importance in the targeted sustainable development and
minimization of the carbon footprint and greenhouse gas emissions, which is largely the
result of the accumulation of waste. The content of bioactive compounds with functional
properties, such as antioxidant and antibacterial properties, stimulated the development of
the process of their “green” isolation. However, time-consuming and laboratory-intensive
extraction protocols encourage the use of environmentally friendly solvents in response
to consumer demand. Despite all of the above, this approach requires interdisciplinary
research that includes food chemistry, food technology, biotechnology, molecular biology
or toxicity, and nutrition. Namely, for the successful isolation of bioactive components and
proteins from foods of plant origin, it will be imperative to improve in the following aspects:
(i) “greener” extraction, (ii) open science that will provide information and data about the
performed extractions and their efficiency and CO2 footprint; and (iii) economic aspects
of the implementation of extractions. Hereby is also given an overview of the methods
used in the sustainable “extraction” of bioactive components and proteins, originating from
plant sources, where energy and ecological efficiency are not on opposite sides of the scale,
but the known cons and pros should always be weighed in the final assessment.
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