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Abstract: Chung-Sang-Bo-Ha-Hwan (CSBHH) is an herbal prescription widely used to treat various
chronic respiratory diseases. To investigate the system-level treatment mechanisms of CSBHH in
respiratory tract diseases, we identified 56 active ingredients of CSBHH and evaluated the degree
of overlap between their targets and respiratory tract disease-associated proteins. We then inves-
tigated the respiratory tract disease-related signaling pathways associated with CSBHH targets.
Enrichment analysis showed that the CSBHH targets were significantly associated with various
signaling pathways related to inflammation, alveolar structure, and tissue fibrosis. Experimental
validation was conducted using phorbol-12-myristate-13-acetate (PMA)-stimulated NCI-H292 cells
by analyzing the mRNA expression levels of biomarkers (IL-1β and TNF-α for inflammation; GSTP1,
GSTM1, and PTEN for apoptosis) derived from network pharmacological analysis, in addition to
the mucin genes MUC5AC and MUC2, to investigate the phlegm-expelling effect of CSBHH. The
mRNA expression levels of these genes were consistent with network pharmacological predictions
in a concentration-dependent manner. These results suggest that the therapeutic mechanisms of
CSBHH in respiratory tract diseases could be attributed to the simultaneous action of multiple active
ingredients in the herbal prescription.

Keywords: Chung-Sang-Bo-Ha-Hwan; network pharmacological analysis; respiratory tract disease

1. Introduction

Respiratory tract diseases represent a broad spectrum of illnesses and afflictions that
compromise the body’s primary gas exchange system. These diseases impact the upper or
lower respiratory tract and encompass conditions ranging from common ailments, such
as influenza and rhinitis, to severe diseases, such as pneumonia and chronic obstructive
pulmonary disease (COPD). The global burden of respiratory tract diseases is substantial
and escalating, contributing to an array of socioeconomic and public health challenges
due to emergent threats, such as novel viruses such as severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease (COVID-19)
pandemic, and escalating environmental pollutants, such as fine particulate matter [1].
These escalating threats pose a looming potential for more incidences of respiratory tract
diseases in the future and have already begun to transform the socioeconomic and public
health landscape worldwide.

Herbal medicines are widely used in Asian countries and are well received by patients.
Chung-Sang-Bo-Ha-Hwan (CSBHH) or Chung-Sang-Bo-Ha-Tang (CSBHT) has been used
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for centuries to treat chronic lung diseases, such as asthma, in Korea [2,3]. Both CSBHH
and CSBHT consist of 18 identical medicinal herbs, with the only distinction lying in their
respective formulations. Previous clinical findings indicated that CSBHT improved Quality-
of-Life Questionnaire for Adult Korean Asthmatics scores, increased forced expiratory
volumes 1.0 and peak expiratory flow rates, and reduced the need for steroids and h2
agonists [4]. In a previous study, a modified herbal formula derived from CSBHT, PM014,
was effective in a murine COPD model [5], cockroach allergen-induced allergic airway
inflammation [6], and bleomycin-induced pulmonary fibrosis [7]. Despite its historical
use and observed benefits, however, the therapeutic mechanisms of CSBHH have been
largely unknown.

Network pharmacology, which is derived from systems biology, is a powerful tool
for identifying rational drug targets and repurposing drugs [8]. This approach is benefi-
cial for elucidating the mechanisms of disease treatment within interconnected biological
networks, thereby overcoming the limitations of the single-target paradigm [9]. Network
pharmacology is particularly useful for investigating the complex mechanisms of herbal
medicines that frequently possess multi-compound and targeting properties. Network
based approaches can also be used to investigate novel drug indications and their under-
lying action mechanisms. Specifically, disease treatment mechanisms can be accurately
identified by considering the biological functions through which target proteins modulate
the functions of disease-related proteins [10]. Therefore, this study demonstrated that
drug–disease associations and their pivotal mechanisms can be precisely identified by
considering the effects of drugs and diseases at the multiscale network level. These find-
ings suggest that network pharmacology can provide novel opportunities for discovering
the key mechanisms and active compounds in herbal medicines for treating respiratory
tract diseases.

In the realm of traditional medicine, CSBHH has been employed for centuries to
treat various respiratory diseases. Despite its historical use and observed benefits, the
therapeutic mechanisms of CSBHH remain largely unclear. This study pioneered the
application of a multiscale network-level approach with experimental validation to unravel
the therapeutic effects and mechanisms of action of CSBHH in respiratory tract diseases.
We collected information on the detectable components of CSBHH and their experimentally
validated targets. By analyzing the collected dataset, we identified vital targets directly
related to respiratory tract diseases that were significantly associated with disease-related
signaling pathways. Furthermore, we investigated the effects of CSBHH on the targets
related to respiratory diseases using phorbol-12-myristate-13-acetate (PMA)-stimulated
human respiratory epithelial cells and comprehensively validated the protective effects of
CSBHH in vitro. By doing so, we aimed to bridge the gap between traditional knowledge
and modern scientific understanding, thereby providing a comprehensive strategy for
elucidating the effects of CSBHH on various respiratory tract diseases and their system-
level mechanisms.

2. Results
2.1. Identification of CSBHH Compounds and Targets

We identified the active ingredients of 18 herbs constituting CSBHH, which have been
recorded and detected experimentally [11]. We identified 56 active ingredients from the
12 herbs constituting CSBHH (Figure 1A); six herbs were excluded in the following analyses
according to the criteria described in Section 4. The herbs shared no common active ingre-
dients, indicating that each herb contained different active ingredients. To investigate the
chemical diversity, we identified CSBHH-active ingredient super-classes and classes using
Classyfire [12]. The results showed that the CSBHH-active ingredients were distributed
across 8 super-classes and 16 classes. Among the super-classes, ‘phenylpropanoids and
polyketides’, ‘lipids and lipid-like molecules’, and ‘alkaloids and derivatives’ were the
top three super-classes, with 32, 10, and 4 active ingredients, respectively. Among the 16
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classes, flavonoids, prenol lipids, and isoflavonoids were the top three classes, with 21, 9,
and 6 active ingredients, respectively (Figure 1B).
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Figure 1. The selection process for Chung-Sang-Bo-Ha-Hwan (CSBHH)-active ingredients and
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obtained from ClassyFire. The inner and outer circles represent the proportions of superclass and
classes, respectively.

We identified experimentally validated protein targets of CSBHH-active ingredients
from the therapeutic target database (TTD), STITCH, DrugBank, and a dataset assembled
by Huang et al. [13]. We assembled 3414 compound–protein interactions (CPIs) between
the 56 active ingredients and 1081 protein targets. Among the target proteins, caspase 3
(CASP3), bcl-2-associated X (BAX), tumor necrosis factor (TNF), mitogen-activated protein
kinase (MAPK)14, and V-rel avian reticuloendotheliosis viral oncogene homolog A (RELA)
showed the strongest interaction with the CSBHH-active ingredients (45, 35, 34, 33, and
30 CPIs, respectively).

2.2. Degree of Overlap between CSBHH Targets and Respiratory Tract Disease-Related Proteins

To investigate the association between CSBHH and respiratory tract diseases, we
evaluated the degree of overlap between the CSBHH targets and respiratory tract disease-
related proteins. The result showed that approximately one-third of proteins (34/107) were
associated with CSBHH targets. We conducted a hypergeometric test to check whether the
observed number of overlapping targets was higher than the random expectations. The
values of random expectation were obtained by randomly selecting targets equal to the
number of targets from the assembled CPI dataset and repeatedly calculating the number
of overlapping targets between respiratory tract disease-related proteins and selected
targets. We found that the observed value between CSBHH targets and respiratory tract
disease-related proteins was significantly higher (2.80-fold) than the random expectations
(p < 10−10).

The same analysis was performed for the targets of each herb and ingredient constitut-
ing the CSBHH. At the targets for each herb, the targets of most herbs were significantly
associated with respiratory tract disease-related proteins (Table 1). Particularly, we found
that the odds ratios for Platycodonis Radix, Dioscoreae Rhizoma, and Poria Sclerotium were
20.73, 13.82, and 8.98, respectively. Moreover, the targets of Glycyrrhizae Radix et Rhizoma-,
Scutellariae Radix-, Coptidis Rhizoma-, Moutan Radicis Cortex-, Dioscoreae Rhizoma-, and Platy-
codonis Radix-active ingredients were closely related to the respiratory tract disease-related
proteins (Table 2). These results revealed that the herbs or active ingredients could play a
key role in treating respiratory tract diseases with CSBHH.
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Table 1. Protein overlaps between Chung-Sang-Bo-Ha-Hwan (CSBHH) herb targets and respiratory
tract disease-related proteins.

Herb Name Number of Targets Number of
Overlapped Proteins Odds Ratio # p-Value

Glycyrrhizae Radix et Rhizoma 235 14 5.35 4.4 × 10−8

Platycodonis Radix 13 3 20.73 9.6 × 10−6

Moutan Radicis Cortex 162 10 5.55 1.7 × 10−6

Pinelliae Tuber 264 3 1.02 0.34
Poria Sclerotium 20 2 8.98 1.3 × 10−3

Corni Fructus 65 5 6.91 8.0 × 10−5

Dioscoreae Rhizoma 26 4 13.82 8.5 × 10−6

Rehmanniae Radix Preparata 22 0 0.00 0.22
Fritillariae Thunbergii Bulbus 251 2 0.72 0.53
Ponciri Fructus Immaturus 90 4 3.99 3.2 × 10−3

Scutellariae Radix 302 16 4.76 3.3 × 10−8

Coptidis Rhizoma 186 12 5.80 1.3 × 10−7

Total (CSBHH) 1088 34 2.80 2.6 × 10−9

# A ratio of the number of observed overlapping proteins compared with random selection.

Table 2. Protein overlaps between Chung-Sang-Bo-Ha-Hwan (CSBHH)-active ingredient targets and
respiratory tract disease-related proteins.

Active Ingredient Pubchem ID Related Herb Overlap # p-Value

Oroxylin 5320315 Scutellariae Radix 8/70 6.90 × 10−8

Berberine 2353 Coptidis Rhizoma 10/141 4.26 × 10−7

Paeonol 11092 Moutan Radicis Cortex 5/31 9.70 × 10−7

Chrysin 5281607 Scutellariae Radix 7/82 3.26 × 10−6

Diosgenin 99474 Dioscoreae Rhizoma 4/25 6.92 × 10−6

Platycodin D 162859 Platycodonis Radix 3/13 9.60 × 10−6

Rutin 5280805 Glycyrrhizae Radix et Rhizoma 5/46 1.08 × 10−5

Formononetin 5280378 Glycyrrhizae Radix et Rhizoma 4/29 1.49 × 10−5

Wogonin 5281703 Scutellariae Radix 7/108 2.53 × 10−5

Licochalcone A 5318998 Glycyrrhizae Radix et Rhizoma 4/39 6.62 × 10−5

# Number of overlapping proteins/targets.

2.3. Enriched Pathways and Biological Processes of CSBHH

We investigated whether and which respiratory tract disease-related signaling path-
ways were associated with CSBHH targets. The results of the enrichment analysis showed
that CSBHH targets were significantly associated with various respiratory tract disease-
related signaling pathways involved in inflammation, the alveolar structure, and tissue
fibrosis (Figure 2A). To identify the herbs primarily involved in these mechanisms, we iter-
atively conducted the same analysis for all herb targets and related pathways (Figure 2B).
The results showed that the targets of all herbs were significantly related to apoptosis and
the phosphoinositide 3-kinase (PI3K)-Akt, MAPK, and nuclear factor (NF)-κB signaling
pathways. Specifically, we found a pair of herb–target signaling pathways where the
targets overlapped more than 50 times compared to the chance level, such as the Poria Scle-
rotium–apoptosis (odds ratio: 361.89), Poria Sclerotium–NF-κB signaling pathway (138,03),
Rehmanniae Radix Preparata–apoptosis (84.62), and Platycodonis Radix–JAK-STAT signaling
pathway (78.94) pairs. These results suggest that CSBHH herbs are beneficial against
respiratory tract diseases by comprehensively regulating the related signaling pathways.
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adjusted by Bonferroni corrections.

2.4. Network Analysis of the Mechanisms of CSBHH against Respiratory Tract Diseases

A biological molecular network targeted by CSBHH was constructed to uncover the
relationships among herbs, active ingredients, protein targets, and respiratory tract diseases.
To elucidate the potential key mechanisms, we constructed the herb–active ingredient–
target subnetwork focusing on targets that have a degree of overlap with CSBHH-active
ingredients of at least seven (top 10% of the target degrees of overlap) (Figure 3). The
network consisted of 11 herbs, 43 active ingredients, and 46 target proteins, with 486 interac-
tions between them (43 herb–active ingredient associations and 443 active ingredient–target
associations). We found that most CSBHH-active ingredients interacted with targets such
as CASP3, TNF, MAPK14, RELA, Akt1, MAPK1, MAPK8, BCL2-associated agonist of cell
death (BAD), NFKB1, interleukin 6 (IL6), prostaglandin-endoperoxide synthase 2 (PTGS2),
NFKB Inhibitor Alpha (NFKBIA), CASP9, and (IL-1β). Among the CSBHH targets, Akt1,
transforming growth factor beta (TGFB1), TNF, IL2, tumor protein p53 (TP53), and poly
(ADP-ribose) polymerase 1 (PARP1) were respiratory tract disease-related targets (direct
relationship) and were involved in enriched signaling pathways (indirect relationship).
These results suggest that the therapeutic mechanisms of CSBHH in respiratory tract dis-
eases could be attributed to the simultaneous action of multiple active ingredients in the
herbal formula.
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2.5. Effects of CSBHH on NCI-H292 Cell Viability

We investigated the cytotoxicity on NCI-H292 cells to determine the appropriate
CSBHH concentration range for additional experiments. Since CSBHH was not toxic at
concentrations below 800 µg/mL, 200, 400, and 800 µg/mL CSBHH were used (Figure 4).
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Figure 4. Effect of Chung-Sang-Bo-Ha-Hwan (CSBHH) on NCI-H292 cell viability. The cells
(2 × 104 cells/well) were cultured in a 96-well plate for 24 h. Thereafter, the cells were treated
with CSBHH at a specific concentration for 24 h. Cell viability was determined using an Ez-Cytox kit.
Data are presented as the mean ± SEM (n = 3).

2.6. Effect of CSBHH on PMA-Induced mRNA Expression in NCI-H292 Cells

To investigate the inhibitory effect of CSBHH on PMA-induced mRNA expression,
the cells were pre-treated with 200, 400, or 800 µg/mL CSBHH and then treated with
100 nM PMA for 3 or 24 h. After 3 h of PMA treatment, IL-1β, TNF-α, mucin (MUC)5AC,
and MUC2 mRNA expression levels were measured, and 24 h after treatment, glutathione
S-transferase pi (GSTP1), glutathione S-transferase mu 1 (GSTM1), and phosphatase and
tensin homolog (PTEN) mRNA expression levels were measured.

IL-1β and TNF-α mRNA expression in the PMA-stimulated cells increased by
34.75-fold and 14.60-fold (p < 0.001), respectively, compared to that in the untreated cells.
However, they were reduced by 0.27-fold and 0.50-fold (p < 0.001), respectively, in the
800 µg/mL CSBHH-treated cells compared to those in the PMA-stimulated cells (Figure 5).
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Figure 5. Effect of Chung-Sang-Bo-Ha-Hwan (CSBHH) on phorbol 12-myristate 13-acetate (PMA)-
induced IL-1β and TNF-α mRNA expression in NCI-H292 cells. The mRNA expression was assessed
by qRT-PCR analysis. Data are presented as the mean ± SEM (n = 2). ### p < 0.001 compared to the
untreated cells; * p < 0.05 and *** p < 0.001 compared to the PMA-treated cells.

The GSTP1 mRNA expression in the PMA-stimulated cells increased by 34.75-fold
(p < 0.001) compared to that in the untreated cells. However, it was reduced by 0.43-fold
(p < 0.001) in the 800 µg/mL CSBHH-treated cells compared to that in the PMA-stimulated
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cells. Interestingly, the mRNA expression of GSTM1 and PTEN in the PMA-stimulated
cells decreased by 0.29-fold (p < 0.05) and 0.92-fold (p < 0.05), respectively, compared to that
in the untreated cells. Additionally, the GSTM1 mRNA expression increased by 1.48-fold in
the cells treated with 800 µg/mL CSBHH compared to that in the PMA-stimulated cells,
and PTEN mRNA expression decreased by 0.61-fold (p < 0.001) (Figure 6).
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induced GSTP1, GSTM1, and PTEN mRNA expression in NCI-H292 cells. The mRNA expression
was assessed by qRT-PCR analysis. Data are presented as the mean ± SEM (n = 2). # p < 0.05 and
### p < 0.001 compared with the untreated cells; ** p < 0.01 and *** p < 0.001 compared with the
PMA-treated cells.

MUC5AC and MUC2 mRNA expression increased by 3.97-fold (p < 0.001) and
4.36-fold (p < 0.05), respectively, in PMA-stimulated cells compared to that in untreated
cells. However, they decreased by 0.47-fold (p < 0.001) and 0.44-fold, respectively, in the
800 µg/mL CSBHH-treated cells compared to those in the PMA-stimulated cells (Figure 7).
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3. Discussion

In this study, we successfully demonstrated the therapeutic effects of CSBHH against
respiratory tract diseases by combining network pharmacological analyses and experimen-
tal validation. We identified the herbs and active ingredients that play key roles in treating
respiratory tract diseases by considering the degree of overlap between CSBHH targets and
respiratory tract disease-related proteins. We revealed the underlying mechanisms of CS-
BHH in respiratory tract diseases by identifying enriched respiratory tract disease-related
signaling pathways. Particularly, by focusing on targets that have a degree of overlap with
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CSBHH-active ingredients equal to or greater than seven in the herb–active ingredient–
target network, we identified key protein targets both directly and indirectly related to
diseases. These findings were systematically validated in vitro. Our study provides a solid
foundation for accelerating the potential use of CSBHH as a predictor of various respiratory
tract diseases.

Network pharmacological analysis revealed complex relationships among the com-
pounds, targets, and biological effects of CSBHH on respiratory tract diseases. This com-
prehensive analysis provides insights into the potential interactions between CSBHH-
active ingredients and their protein targets in respiratory tract diseases. By constructing
a compound–target network for CSBHH using various databases, we initially identified
3414 CPIs involving 56 CSBHH-active ingredients and 1081 protein targets. Among the
107 respiratory tract disease-associated proteins, approximately one-third (34/107) were
associated with CSBHH targets, indicating the statistical significance of CSBHH, its individ-
ual herbs, and key active ingredients in respiratory tract diseases. Our subsequent analysis
revealed that individual herb targets showed significant overlap with respiratory tract
disease-related targets, such as Platycodonis Radix, Dioscoreae Rhizoma, and Poria Sclerotium
(20.73-, 13.82-, and 8.98-fold overlap, respectively).

Platycodonis Radix possesses anti-inflammatory, anti-cancer, anti-diabetic, and anti-
obesity properties [14]. Platycodin D, a physiologically active Platycodonis Radix component,
attenuates airway inflammation through the NF-κB signaling pathway in an ovalbumin
(OVA)-induced asthmatic mouse model. Platycodin D inhibits eosinophilic inflammation,
mucus production, and the production of T helper 2 (Th2) cytokines, such as IL-4, IL-5, and
IL-13, in the bronchial mucosa of an OVA-induced asthmatic mouse model [15–17].

Dioscoreae Rhizoma has anti-diabetic, antioxidant, and anti-inflammatory effects [18–20].
It also reduces IL-1β, TNF-α, cyclooxygenase 2 (COX-2), and inducible nitric oxide synthase
(iNOS) expression in human fibroblast-like synovial cells [19]. Diosgenin, a physiologically
active Dioscoreae Rhizoma component, reduces the expression of inflammatory factors, such
as IL-1β, TNF-α, and IL-6, in the OVA-induced asthmatic mouse model and primary
tracheal epithelial cells and downregulates the NF-κB signaling pathway by activating
glucocorticoid receptors [21,22].

Poria Sclerotium, used as an herbal medicine, has various activities such as anti-
inflammatory, anti-bacterial, anti-tumor, and immune-enhancing properties [23–25].
Polysaccharides isolated from Poria Sclerotium induced nitric oxide (NO) production and
iNOS transcription through NF-κB/Rel activation in RAW264.7 cells. Moreover, regulating
the type 1 T-helper (Th1)/type 2 T-helper (Th2) response in OVA-induced mice has been
observed to aid in improving immunodeficiency and preventing allergic diseases, including
allergic asthma [26–28].

Glycyrrhizae Radix has anticancer, antiviral, and anti-inflammatory effects [29–31].
18β-Glycyrrhetinic acid (18β-GA), a physiologically active component of Glycyrrhizae
Radix, inhibits allergic airway inflammation through the NF-κB signaling pathway [32].
Rutin downregulated the NF-κB and iNOS signaling pathways involved in the inflamma-
tory response in cigarette smoke and ovalbumin (OVA)-induced asthmatic mouse mod-
els. It has been reported that formononetin reduces the expression of IL-1β, NF-κB, and
MUC5AC in IL-13-stimulated JME/CF15 cells, thereby reducing inflammation and mucus
formation [33,34]. It has also been reported that formononetin and licochalocone A at-
tenuated airway inflammation and oxidative stress in an OVA-induced asthmatic mouse
model [35–37].

Scutellariae Radix has antioxidant, anti-inflammatory, and anti-obesity effects [38].
Oroxylin, a physiologically active component of Scutellariae Radix, downregulates the NF-
κB signaling pathway in LPS-induced macrophages [39]. It has also been reported to reduce
the expression levels of IL-1b and TNF-α in the lung tissue of a COPD mouse model and
suppress airway inflammation and mucus production by inhibiting NF-κB activity in an
OVA-induced asthmatic murine model [40–42]. Chrysin has been reported to inhibit the
production of MUC5AC in NCI-H292 cells induced by PMA, EGF, and TNF-α [43–45].
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Wogonin reduces the production of MUC5AC and inhibits the NF-kB and MAPK signaling
pathways in TNF-α- and EGF-induced NCI-H292 cells. It has also been reported to alleviate
airway inflammation by inhibiting IL-4/STAT6 signaling in an OVA-induced asthmatic
mouse model [46–48].

Coptidis rhizoma has anticancer, anti-inflammatory, and expectorant effects [49,50].
Berberine, a physiologically active component of Coptidis rhizoma, downregulates the
MAPK signaling pathway in breast cancer cells, induces apoptosis, and inhibits cancer cell
proliferation. It suppresses the growth and invasion of breast cancer cells by downregulat-
ing the EGFR/MEK/ERK pathway [51–53]. It has also been reported to reduce TNF-α and
IL-1β in the bronchoalveolar lavage fluid (BALF) of mice induced by cigarette smoke and
to suppress the production of MUC5AC in human airway epithelial cells through MAPKs
ERK and p38 [54–56].

Moutan Radicis Cortex has anticancer, antioxidant, and anti-inflammatory effects [57,58].
Paeonol, a physiologically active component of Moutan Radicis Cortex, has been reported to
have anti-inflammatory and anticoagulant effects in an LPS-induced acute lung injury rat
model and to reduce IL-1β levels in the BALF of cigarette smoke-induced mice [59,60].

Through an over-representation analysis based on the disease-related signaling path-
ways, we discovered that inflammation and the alveolar structure were the main categories,
since all herbs have a significant relationship with PI3K–Akt, MAPK, NF-κB signaling,
and apoptosis pathways. Furthermore, by focusing on 46 targets that interacted with
seven or more active ingredients, we found that the key targets were both respiratory tract
disease-related targets (direct relationship) and involved in enriched signaling pathways
(indirect relationship), such as Akt1, TGFB1, TNF, IL2, TP53, and PARP1.

The potential targets of CSBHH related to the PI3K–Akt, MAPK, NF-κB signaling, and
apoptosis pathways were summarized using KEGG Mapper (Supplementary Figure S1).
In the context of the PI3K-Akt signaling pathway, CSBHH exhibits a multi-targeted ap-
proach that interacts with several key targets within this pathway. Notably, pink-colored
targets, which are activated by CSBHH, play crucial roles in various cellular processes.
For example, Akt1, a serine/threonine-specific protein kinase, is involved in processes
such as glucose metabolism, apoptosis, cell proliferation, transcription, and cell migration.
Furthermore, CSBHH interacted with PTEN, a major negative regulator of the PI3K-Akt
pathway. This interaction could potentially modulate PI3K-Akt signaling, thereby influ-
encing cell survival, growth, and proliferation. In the MAPK signaling pathway, CSBHH
appears to specifically interact with MAPK14 (p38-α), MAPK1 (ERK2), and MAPK8 (JNK1).
These interactions suggest a potential modulation of cellular processes, such as the stress
response, inflammation, cell proliferation, differentiation, and apoptosis, which could
contribute to the treatment of respiratory diseases. Additionally, CSBHH’s interaction with
TNF and CASP3 could influence the inflammatory response and apoptosis, respectively.
Within the NF-kappa B signaling pathway, CSBHH demonstrates interactions with key
targets—specifically, RELA and NFKB1. The modulation of cellular processes, such as
immunity, inflammation, and cell survival, by CSBHH underscores its therapeutic potential.
In the apoptosis pathway, CSBHH has been found to interact with several key targets,
including CASP3, TNF, MAPK14, RELA, Akt1, MAPK1, MAPK8, BAD, NFKB1, IL6, PTGS2,
NFKBIA, and CASP9. These interactions indicate that CSBHH may have the ability to
modulate the apoptosis process, which could potentially be beneficial in the treatment
of respiratory diseases. Altogether, these findings underscore the potential of CSBHH
in treating respiratory diseases through a multi-targeted approach, influencing various
signaling pathways and cellular processes.

These findings have guided the in vitro experimental trials while highlighting the
complex and multifaceted nature of the potential for treating respiratory tract diseases.
Considering the results of the in silico network pharmacological analysis, we investigated
several inflammation- and apoptosis-related genes for experimental validation. We investi-
gated the inhibitory effects of CSBHH on PMA-induced mRNA expression and found that
IL-1β, TNF-α, GSTP1, MUC5AC, and MUC2 gene expression increased in PMA-stimulated
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NCI-H292 cells. Our results showed that the PMA-induced increased IL-1β, TNF-α, GSTP1,
MUC5AC, and MUC2 mRNA expression tended to decrease with CSBHH treatment. How-
ever, GSTM1 expression was decreased and increased in the PMA- and CSBHH-treated
groups, respectively.

In this study, IL-1 and TNF-α levels were evaluated as indicators of inflammation.
The IL-1 family includes key cytokines involved in fever, inflammation, and the innate
immune response [61]. IL-1β is produced as a precursor protein and has pro-inflammatory
activity that induces the production of pro-inflammatory mediators [62,63]. TNF-α induces
various cellular responses including cell survival, differentiation, and proliferation, regu-
lates inflammatory responses, and is also involved in inflammatory and autoimmune dis-
eases [64,65]. In NCI-H292 cells, apoptosis and antioxidant properties are regulated through
the ROS/MAPK signaling pathway [66]. Therefore, CSBHH should also be effective in
inflammatory and immune responses by reducing the expression of the pro-inflammatory
cytokines IL-1β and TNF-α (Figure 5).

GSTP1, GSTM1, and PTEN play key roles in alveolar apoptosis [67–69]. GSTP1, a
glutathione S-transferase subtype, maintains the cellular oxidation balance and regulates
cell proliferation and apoptosis, particularly through JNK interaction [70–73]. Similarly,
GSTM1, another glutathione S-transferase subtype, protects cells from oxidative stress,
detoxifies harmful substances, and inhibits apoptosis by interacting with apoptosis signal-
regulating kinase 1 (ASK1) [74]. PTEN antagonizes the PI3K–protein kinase B (AKT)–
mammalian target of rapamycin (mTOR) pathway, thereby regulating cell survival and
proliferation [75,76]. GSTP1-mediated apoptosis regulation and the role of GSTM1 in
oxidative stress and detoxification have been confirmed by studies showing that GSTP1
inhibition causes JNK activation and cisplatin-induced apoptosis [67,70]. Additionally,
GSTM1 binds to ASK1 and inhibits ASK1-dependent apoptosis [77,78]. In NCI-H292 cells,
apoptosis is regulated through the ERK 1/2 signaling pathway [79]. With decreased GSTP1
and increased GSTM1 expression in CSBHH-treated groups, apoptosis induction was
anticipated (Figure 6).

PTEN antagonizes the PI3K–AKT–mTOR pathway and regulates numerous cellular
processes including cell survival and proliferation. Therefore, PTEN regulation is an im-
portant factor in cancer development because the impairment of PTEN function triggers
mechanisms such as cell survival and proliferation [75,76]. Similarly, PTEN expression
decreased and increased in NCI-H292 cells stimulated with cigarette smoke and treated
with rosiglitazone, a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, respec-
tively [80]. PTEN expression in PMA-induced NCI-H292 cells was similar to that in the
untreated cells and increased in the 15-hydroxyeicosatetraenoic acid-treated cells, which is
effective in chronic airway inflammation and pharmacological treatment [81]. In MCF-7, an-
other cancer cell line, PTEN expression was decreased by bisphenol A or 17β-estradiol and
increased by curcumin [82]. Moreover, the combined treatment with quercetin or luteolin
along with 5-fluorouracil, which is used as an anti-cancer drug, increased PTEN expression
in the colon cancer cell line HT-29 and improved its anti-cancer effect [83]. However, unlike
previous experimental results, the PTEN levels in our study showed a decreasing trend.
Although these previous studies investigated the effect of a single compound, the sample
we used, CSBHH, is an herbal medicine prescription composed of various herbs; therefore,
it is thought that a complex reaction of each component occurred, and thus, the result was
obtained (Figure 6).

In addition, we experimentally evaluated the mucin genes MUC5AC and MUC2 as well
as five genes derived through network pharmacological analysis. Clinically, CSBHH has
been widely used to treat various chronic respiratory diseases, particularly those related to
phlegm, with the effect of dispelling phlegm and relieving panting [84]. The hypersecretion
of airway mucus is an important physiological and clinical symptom of various respiratory
tract diseases, such as chronic bronchitis and asthma, and airway stimuli, such as antigens,
bacteria, and particles, upregulate the MUC5AC and MUC2 genes [85]. Therefore, reducing
MUC5AC and MUC2 expression may effectively alleviate excessive mucus production in
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respiratory diseases. Mucus is composed of mucin proteins, and MUC5AC is the major
mucin protein secreted from airway epithelial cells, such as NCI-H292 cells. Therefore, we
included the mucin genes, MUC5AC and MUC2, among the 21 mucin genes discovered to
date [86,87].

Numerous studies have reported the efficacy of CSBHT in expelling phlegm; CSBHT
differs from CSBHH only in its formulation. In an OVA-induced allergic asthma model, CS-
BHT increased mucin sequestration from the bronchi and improved eosinophil infiltration
into the tracheal mucosa [88,89]. In addition, the increased goblet cells in OVA-induced
mice decreased, similar to dexamethasone treatment, which prevents mucus production in
the airway [2]. Similar to anti-inflammation and apoptosis, MUC5AC and MUC2 expres-
sion is regulated through the MAPK and NF-κB signaling pathways [90–92]. Our results
showed that CSBHH decreased MUC5AC and MUC2 expression in PMA-induced NCI-
H292 cells, which agreed with the results of previous studies (Figure 7). Therefore, reducing
MUC5AC and MUC2 expression may effectively alleviate excessive mucus production in
respiratory tract diseases.

Medications used to treat respiratory diseases such as asthma and COPD include
controllers and relievers. Controller medications are used for routine maintenance and
treatment to control the symptoms and reduce airway inflammation. Reliever medica-
tions are used as needed to relieve breakthrough symptoms or the exacerbation of symp-
toms [93]. Combinations of inhaled corticosteroids (ICS) and long-acting β-agonists (LABA),
leukotriene receptor antagonists, and short-acting β-agonists (SABA), etc. are used, mainly
bronchodilators and glucocorticoids, including β2 receptor agonists and anticholinergic
drugs. β2 receptor agonists have side effects such as a rapid heart rate, metabolic distur-
bances, and muscle tremors, while anticholinergic drugs have side effects such as cognitive
problems and an impaired heart rhythm [94,95]. In addition, long-term systemic corticos-
teroid (SCS) therapy or high-dose inhaled corticosteroid use induces osteoporosis, adrenal
suppression, and psychiatric disorders [11,96,97].

In herbal medicine prescriptions, the active ingredients contained in each medicinal
material are extracted through a decocting method for various medicinal materials. These
active ingredients interact with each other to create a synergistic effect that is suitable
for treating complex diseases through various activities and has few side effects. These
active ingredients interact with each other to create a synergistic effect, which is suitable
for treating complex diseases through various activities and has few side effects [98,99].
Kang et al. conducted in vitro, animal, and human studies of CSBHT in Korea and reported
that CSBHT and its variants are being used effectively in clinical practice for allergic
asthma and non-allergic asthma [11]. Thus, CSBHH has the advantage of being effective in
improving symptoms such as cough and sputum as well as anti-inflammatory effects and
lung function.

In light of our findings, we believe that CSBHH has significant potential as a novel
treatment option for respiratory diseases. Our study sheds light on the therapeutic effects
and mechanisms of action of CSBHH and contributes to a deeper understanding of its
role in the treatment of respiratory diseases. Looking ahead, we envision a future in
which traditional medicines such as CSBHH are integrated into mainstream healthcare,
providing patients with more diverse and effective treatment options. We anticipate that
our findings will spur further research into the therapeutic mechanisms of traditional
medicines, potentially leading to the discovery of new treatment strategies for respiratory
diseases. However, we acknowledge that our study was at the beginning. The full potential
of CSBHH and other traditional medicines can only be realized through continued research
and rigorous clinical trials. We hope that our work will serve as a stepping stone for future
studies aimed at exploring the untapped potential of traditional medicines in the treatment
of respiratory diseases.
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4. Materials and Methods
4.1. Compound–Target Network Construction

A compound–target network is a bipartite network where nodes are defined as com-
pounds or targets, and the edges between the compounds and targets are defined as
interactions between them. A network was constructed by identifying active ingredients
and their target proteins. We considered only the active ingredients of CSBHH herbs
commonly recorded in TCM-mesh and TM-MC [100,101]. The TCM-mesh provides com-
prehensive herb–active ingredient information obtained from the TCM Database@Taiwan
and TCMID with PubChem CID. TM-MC provides information on medicinal ingredi-
ents selected by Korean medicine doctors and biologists by reading chromatographic
articles on medicinal plant materials. For our analysis, we considered ingredients that
could be mapped to PubChem IDs and contained protein target information with
experimental evidence.

The experimental targets of active CSBHH ingredients were obtained from data assem-
bled by STITCH [102], DrugBank [103], TTD [104], and Huang et al. [13]. STITCH integrates
the target information for 430,000 chemicals from disparate data sources. DrugBank is a
comprehensive online database that contains information on drugs and drug targets. The
TTD provides comprehensive information about known and explored targets, the targeted
disease, pathway information, and the corresponding drugs directed at each target. Huang
et al. assembled the direct and indirect compound–protein interactions of natural products
from several databases.

4.2. Enrichment Analysis

The CSBHH target-associated pathways and biological processes were identified
by enrichment analysis using Enrichr [105]. Enrichr computes enrichment by assessing
multiple gene-set libraries (such as gene ontology (GO), KEGG, and Online Mendelian
Inheritance in Man (OMIM)) and calculates adjusted p-values and combined scores for the
target genes. The combined score was calculated using the logarithm of the product of the
p-value and the z-score. Bonferroni correction was applied to rectify the family-wise errors
generated in multiple tests.

4.3. Disease-Related Proteins and Pathways

The respiratory tract disease-related proteins and signaling pathways were retrieved
to understand the mechanisms of action of CSBHH. The details of disease-related proteins
were obtained from a comparative toxicogenomics database (CTD) [106]. We considered
only manually curated associations by experts labeled as therapeutic, which refers to target
proteins considered as treatment targets for the disease.

The disease-related signaling pathway and its type were identified in the Safety and
Effectiveness Evaluation Guide of Health Functional Foods for enhancing the health of the
respiratory tract published by the Ministry of Food and Drug Safety (Republic of Korea)
as follows: the NF-kappa B signaling pathway (hsa04064), MAPK signaling pathway
(hsa04010), PI3K–Akt signaling pathway (hsa04151), and Jak–STAT signaling pathway
(hsa04630) for inflammation; the apoptosis pathway (hsa04210) for the alveolar structure;
and the TGF-beta signaling pathway (hsa04350) for tissue fibrosis.

4.4. Cell Culture

Human mucoepidermoid pulmonary carcinoma cells, NCI-H292 (Korean Cell Line
Bank, Seoul, Republic of Korea), were cultured in RPMI-1640 (Corning, Manassas, VA,
USA) containing 10% fetal bovine serum (FBS; Atlas, Fort Collins, CO, USA) and 100 U/mL
penicillin–streptomycin (Gibco, Grand Island, NY, USA) in 5% CO2 at 37 ◦C.

4.5. Sample Preparation

PMA (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in 5 mM dimethyl sulfoxide
stock solution (DMSO; Sigma-Aldrich), and the cells were stimulated for 3 or 24 h at a final
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concentration of 100 nM. CSBHH was dissolved in DMSO to a concentration of 200 mg/mL
and diluted accordingly. For the cell experiments, 24 h-old NCI-H292 cells were starved
overnight in serum-free RPMI-1640 medium and treated with PMA and CSBHH.

4.6. Cell Viability

NCI-H292 cells (2 × 104 cells/well) were seeded in 96-well plates and allowed to
adhere for 24 h. The cells were then treated with different concentrations of CSBHH for
24 h. Next, 100 µL of 10% EZ-Cytox solution (DoGenBio, Seoul, Republic of Korea) in
serum-free RPMI-1640 was added to each well and incubated for 1 h. The OD450 nm was
measured using a microplate reader (SPARK 10M; Tecan, Männedorf, Switzerland).

4.7. Total RNA Isolation and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

NCI-H292 cells (5 × 105 cells/well) were seeded in six-well plates. The cells were
then treated with a specific CSBHH concentration for 1 h after overnight starvation in
a serum-free RPMI-1640 medium. The cells were then exposed to 100 nm PMA for 3 or
24 h. An RNeasy Mini Kit (Qiagen, Germantown, MD, USA) was used to isolate the total
cellular RNA. The RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific,
Eugene, OR 97402, USA) was used to reverse-transcribe the RNA. PCR was performed
using AccuPower® 2X GreenStar™ qPCR Master Mix (Bioneer, Daejeon, Republic of Korea)
on a Quant Studio 3 real-time PCR system (Applied Biosystems, Foster City, CA, USA)
with forward and reverse primers (Table 3). β-Actin was used as the housekeeping gene.
The amplification conditions were as follows: 50 ◦C for 2 min, 95 ◦C for 10 min, and
40 cycles of 95 ◦C for 15 s, 60 ◦C for 1 min, 95 ◦C for 15 s, 60 ◦C for 1 min, and 95 ◦C for 15 s.

Table 3. Primer Sequences.

Gene Forward Primer Sequence (5′–3′) Reverse Primer Sequence (5′–3′)

IL-1β CTGTCCTGCGTGTTGAAAGA TTCTGCTTGAGAGGTGCTGA
TNF-α TTCCCCAGGGACCTCTCTCTAATC GAGGGTTTGCTACAACATGGGCTAC
GSTP1 GGCAACTGAAGCCTTTTGAG GGCTAGGACCTCATGGATCA
GSTM1 CTGGGCATGATCTGCTACAATC CAAAAGTGATCTTGTTTCCTGCAA
PTEN TGGCTAAGTGAAGATGACAATCATG TGCACATATCATTAC ACCAGTTCGT

MUC5AC TCCACCATATACCGCCACAGA TGGACGGACAGTCACTGTCAAC
MUC2 TGCCTGGCCCTGTCTTTG CAGCTCCAGCATGAGTGC
β-actin AGGAGAAGCTGTGCTACGTC GGATGTCCACGTCACACTTC

Abbreviations: IL-1β, Interleukin 1 beta; TNF-α, Tumor necrosis factor alpha; GSTP1, Glutathione S-transferase
pi 1; GSTM1, Glutathione S-transferase mu 1; PTEN, Phosphatase; tensin homolog MUC5AC, Mucin 5AC; and
MUC2, Mucin 2.

5. Conclusions

Our study provides a system-level understanding of the therapeutic mechanisms of
CSBHH, which is a widely used herbal prescription for chronic respiratory diseases. We
identified 56 active compounds in CSBHH and found a substantial overlap between their
targets and proteins associated with respiratory tract diseases. Notably, CSBHH targets
were significantly linked to various signaling pathways associated with inflammation, the
alveolar structure, and tissue fibrosis. Experimental validation using PMA-stimulated
NCI-H292 cells showed that the mRNA expression levels of biomarkers (IL-1β, TNF-α,
GSTP1, GSTM1, and PTEN) and mucin genes (MUC5AC and MUC2) were consistent with
network pharmacological predictions, substantiating the effect of CSBHH on inflammation
and apoptosis, as well as its phlegm-expelling effects. These results highlight a multi-target,
multi-ingredient strategy underlying the therapeutic efficacy of CSBHH in respiratory tract
diseases. Future studies should focus on elucidating the specific molecular interactions be-
tween the active components and their targets to further optimize the therapeutic potential
of CSBHH.
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