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Abstract: A great deal of effort has been made to clear invasive alien plants in South Africa, yet it
remains unclear if the clearing efforts are yielding positive soil and vegetation recovery trajectories.
A few short-term studies have been conducted to monitor soil and vegetation recovery after alien
plant removal in South Africa, but convincing, long-term monitoring studies are scarce yet needed.
We investigated topsoil and vegetation recovery following Eucalyptus grandis removal 14 years ago
by Working for Water in Makhanda, Eastern Cape province of South Africa. The detailed topsoil
and vegetation surveys were conducted on forty 10 m × 10 m plots that were in paired cleared
and natural sites. The results show no significant differences for the measured soil pH, total N,
total C, K, Ca, and Na between the cleared and natural sites, an indication that the two sites are
becoming similar. Similarly, the gravimetric soil moisture content shows no significant differences
between the two sites, although monthly variations are observed. The topsoils in the cleared sites
are hydrophobic as compared to those in the natural sites, which are wettable. We observed no
significant vegetation diversity differences between the two sites, with native woody species, such
as Crassula pellucida and Helichrysum petiolare, frequently occurring in the cleared sites. We recorded
low reinvasion by E. grandis and other secondary invaders like Acacia mearnsii and Rubus cuneifolius
in the cleared sites. Based on these results, we conclude that 14 years after E. grandis clearing, both
topsoil and vegetation recovery are following a positive trajectory towards the natural sites. However,
both reinvasion and secondary invasion have the potential to slow down soil and native vegetation
recovery. Recommendations such as timeous follow-up clearing and incorporating restoration
monitoring in the WfW clearing programme are discussed.

Keywords: biological invasion; invasive alien plants; ecological restoration; plant–soil recovery;
follow-up clearing

1. Introduction

Invasion by invasive alien plants is a major threat to South Africa’s socio-economic
and ecological environment [1]. For example, O’Connor and van Wilgen [2] reported that
an invasion of South Africa’s rangelands by invasive alien plants, such as Acacia, Eucalyptus,
Opuntia, and Prosopis species, can negatively affect livestock grazing and subsequently
reduce livestock production by an estimated ZAR 340 million per year. In the Western and
Eastern Cape provinces of South Africa, invasion by some of the above-mentioned alien
plant species has been shown to negatively affect water resources and the country’s natural
vegetation [3]. From a social standpoint, invasion by invasive alien plants, such as A. deal-
bata, increases local people’s vulnerability through a reduction in crop yields and grazing
lands [4]. In urban areas, invasive alien plants contribute towards the homogenisation
of city habitats, clogging water canals resulting in flooding, soil erosion, and disrupting

Plants 2023, 12, 3047. https://doi.org/10.3390/plants12173047 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants12173047
https://doi.org/10.3390/plants12173047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0002-9414-4034
https://orcid.org/0000-0002-4731-0394
https://doi.org/10.3390/plants12173047
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants12173047?type=check_update&version=1


Plants 2023, 12, 3047 2 of 13

ecosystem services, such as water infiltration [5,6]. These negative socio-economic and
ecological effects caused by invasive alien plants need to be reversed, thus the need for
restoration after alien plant control and management [7].

In South Africa, the control and management of invasive alien plants have been
performed by the Working for Water (WfW) programme since its inception in 1995 [8].
The WfW programme is a poverty alleviation initiative that champions the control of
invasive alien plants to protect and maximise water resources in the country [9]. The
programme assumes that clearing invasive alien plants will result in the passive restoration
of ecosystems to their original condition [9]. To date, an estimated ZAR 15 billion has
been used to control invasive alien plants at a rate of approximately 200,000 condensed
ha per year [10]. Generally, the programme is regarded as a success, although several
challenges have been reported, e.g., having dual objectives, which negatively affect budget
prioritisation, inefficiencies associated with having multiple country-wide projects, lack
of restoration goals post alien plant clearing, and funding limitations [9,10]. Besides
the above-mentioned challenges, little is known regarding how cleared areas recover
post alien plant clearing by WfW [11]. Although few studies have been conducted in
South Africa to assess ecosystem recovery after invasive alien plant removal by WfW,
some studies have shown little vegetation recovery due to secondary invasion and a
lack of native species soil seed banks [11,12], whereas others have reported a positive
vegetation recovery trajectory [11,13,14]. Most of the above-mentioned studies were short-
term monitoring studies that were conducted less than five years after the initial alien
plant clearing, thus failing to give a clear picture of the restoration trajectory. Therefore,
there is an urgent need to conduct long-term restoration studies after invasive alien plant
clearing to understand recovery trajectories and develop effective restoration guidelines
across varied contexts [11,15–17].

Long-term restoration monitoring after alien plant clearing is needed if the WfW
clearing initiative is to yield positive ecosystem recovery outcomes. Although short-
term restoration studies after alien plant clearing are important, they fail to investigate
the recovery trajectories over time and justify the restoration funding since some goals
might not have been achieved [18]. Therefore, this means that monitoring interventions
cannot be implemented or tracked over time [18]. In contrast, long-term monitoring of
invasive alien plant-cleared sites has the potential to assess the recovery trajectory over a
long period as well as assess changes over varied environmental and climatic events. In
addition, long-term monitoring can improve restoration effectiveness by implementing
interventions that will also be monitored. In addition, it allows for restoration decisions
to be made based on generated long-term data [19]. Therefore, long-term ecological
restoration monitoring following alien plant removal is essential for investigating ecosystem
recovery trajectories, thus providing important information that can be used to inform
future restoration initiatives [20].

Most ecological restoration studies following alien plant removal have monitored the
recovery of vegetation by measuring species abundance, composition, and diversity [11]
but neglected soil monitoring. For example, Ruwanza et al. [11,13] conducted both short-
and medium-term vegetation recovery monitoring following E. camaldulensis removal in
the Western Cape province of South Africa and reported that the vegetation composition is
dominated by grasses and herbs during the early stages of restoration but changes over
time as shrubs and trees start to recruit in the cleared sites. Fill et al. [15] reported the
dominance of native riparian shrubs following the removal of invasive alien plants along
the riparian zones of the Rondegat River in South Africa; however, a high diversity of
alien grasses was also reported. Very few restoration studies have monitored changes
in the soil properties after alien plant removal [14,21], yet soil recovery has the potential
to influence plant composition through soil–plant interactions [22,23]. Both Ndou and
Ruwanza [14] and Kerr and Ruwanza [24] reported mixed results (both increases and
decreases in soil nutrients depending on the measured property) in soil recovery following
Acacia and Eucalyptus (respectively) removal in the Eastern Cape province of South Africa.
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Nsikani et al. [25] reported that the soil nitrogen levels remain high in soils after A. saligna
removal, an indication that soil legacy persistence has the potential to negatively affect
vegetation recovery through promoting the growth of weedy secondary invaders. Method-
ologically, the bulk of the above-mentioned studies [14,24,25] on soil recovery after alien
plant removal have assessed topsoil because it is the main source of soil nutrients and
organic matter that is used by recruiting vegetation. Also, topsoil is assessed in restoration
studies because it is a major repository of soil microbes that are known to influence the
decomposition of plant debris, thus shaping both the above and below-ground vegetation
recruitment trajectory. Although assessment of both the top and below-ground soil proper-
ties can yield more accurate results, the assessment of topsoil (which was performed in this
study) can provide valuable information that can be used to assess the ecosystem recovery
after alien plant removal. Our emphasis on topsoil measurements is centred on their role
in influencing vegetation recovery after alien plant clearing, i.e., topsoil supply recruiting
plants with valuable nutrients.

This study is motivated by the need for long-term monitoring of soil and vegetation
recovery to gauge the effectiveness of alien plant clearing by WfW. To our knowledge,
few long-term ecological restoration monitoring studies have been conducted in South
Africa [14], yet billions of Rands have been invested in alien plant clearing. This paper
presents the results of topsoil and vegetation monitoring 14 years after E. grandis removal
by WfW. We used a comparative approach to assess physico-chemical properties in topsoil
and native vegetation recovery following the initial E. grandis removal in 2008. Our results
can provide important information that can be used for the adaptive management of alien
plant-cleared areas.

2. Results
2.1. Effects of Alien Plant Clearing on Soil Properties

The topsoil (hereafter soil) from both the cleared and natural sites were sand (70% and
60%, respectively) and loam (30% and 40%, respectively) soils. Only soil P and Mg were
significantly (p < 0.01) higher in the natural as compared to the cleared sites (Table 1). Soil P
was almost twice higher in the natural as compared to the cleared sites. All other measured
soil properties, namely, pH, total C, total N, K, Na, and Ca showed no significant (p > 0.05)
differences between the cleared and natural sites (Table 1).

Table 1. Comparison of soil physical and chemical attributes between cleared and natural sites. Data
are means ± SE and t-test results are shown.

Cleared Natural t-Values p-Values

Soil pH 4.43 ± 0.19 4.11 ± 0.04 1.66 0.115

Total nutrient concentrations
P Bray II (mg/kg) 3.66 ± 0.47 7.87 ± 1.27 3.11 0.006

C (%) 2.90 ± 0.25 3.51 ± 0.32 1.50 0.151
N (%) 0.23 ± 0.02 0.30 ± 0.04 1.50 0.150

Exchangeable cations (%)
K 6.22 ± 1.63 8.77 ± 2.50 0.85 0.404

Na 2.49 ± 0.19 2.80 ± 0.23 1.02 0.323
Ca 38.43 ± 1.20 30.28 ± 4.31 1.82 0.085
Mg 14.46 ±1.65 20.19 ± 0.40 3.38 0.003

Gravimetric soil moisture content varied significantly between the cleared and natural
sites (p < 0.05) but not across months (p > 0.05; Figure 1A). Significant differences in
gravimetric soil moisture content were only visible in June (mean = 11.20 in cleared and
18.45 in natural) but not in May (mean = 19.22 in cleared and 18.20 in natural) and July
(mean = 14.81 in cleared and 18.68 in natural) (Figure 1A). The month of June had the lowest
gravimetric soil moisture content in the cleared sites (Figure 1A). There were no significant
interactions (p < 0.05) between the sites and months for gravimetric soil moisture content
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(Figure 1A). Soil penetration resistance levels showed no significant (p > 0.05) differences
between cleared and natural sites (Figure 1B). In contrast, monthly comparisons for soil
penetration resistance levels showed significant (p < 0.05) differences, with July recording
the lowest soil penetration resistance levels compared to May and June (Figure 1B). The
average soil penetration resistance level across all months was 3.08 in May, 3.48 in June,
and 3.04 in July. There were no significant interactions (p > 0.05) between the sites and
months for soil penetration resistance levels (Figure 1B).
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For soil water repellency, most of the soil in the cleared sites were slightly repellent
in May (55%) and June (45%); however, in July the bulk of the soils were wettable (60%)
(Figure 2). In the cleared sites, strongly repellent soils were observed across all months,
with higher percentages in June (15%) and July (25%) as compared to May (5%). Some of
the soil in the cleared sites were severely repellent for all three months (10% in May and 5%
in June and July, respectively) as compared to the natural sites, which reported no strongly
repellent soils (Figure 2). The bulk of the soils in the natural sites were wettable across all
months (May = 90%, June = 85%, and July = 95%) (Figure 2). The remainder of the soils
in the natural site were slightly repellent (Figure 2). A chi-squared analysis of the WDPT
categories showed significant differences between the cleared and natural sites for all three
months (May: χ2 = 15.23, p = 0.002; June: χ2 = 11.17, p = 0.011; July: χ2 = 7.91, p = 0.050).

2.2. Effects of Alien Plant Clearing in Vegetation

Although all measured indices of diversity (species richness, Shannon–Wiener, Simp-
son’s index of diversity, and evenness index) were high in the natural compared to the
cleared sites, statistical comparisons showed no significant (p > 0.05) differences between the
two sites (Table 2). Of all the 50 positively identified plant species, 27 were trees and shrubs,
12 were forbs, and 11 were graminoids and sedges (Table A1). Five plant species, namely,
Asparagus suaveolens, Crassula pellucida, Helichrysum petiolare, Centella asiatica, and Conyza
bonariensis, had a frequency occupancy of more than 50% in the cleared sites, while eight
species, namely, A. suaveolens, C. pellucida, H. cymosum, C. asiatica, Senecio macrocephalus,
Agrostis lachnantha, Digitaria sanguinalis, and Pennisetum clandestinum, had a frequency
occupancy of more than 50% in the natural sites (Table A1). Of all the 27 identified trees
and shrubs, 11 were present in both the cleared and natural sites. Half of the identified
forbs were in both the cleared and natural sites, and only five graminoids were present
in both sites. Two woody invasive alien plants, namely, A. mearnsii and Rubus cuneifolius,
occurred in the cleared sites with a frequency occupancy of less than 25% (Table A1).
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Figure 2. Distribution of the water repellency classes based on the water droplet penetration time
method in the soil samples from cleared and natural sites. Chi-squared results are shown.

Table 2. Comparison of indices of diversity between the cleared and natural sites. Data are means ± SE
and t-test results are shown.

Cleared Natural t-Values p-Values

Species richness 8.65 ± 0.51 10.25 ± 0.63 1.96 0.057
Shannon–Wiener 1.25 ± 0.06 1.40 ± 0.08 1.51 0.139

Simpsons index of diversity 0.72 ± 0.04 0.74 ± 0.02 0.69 0.495
Evenness index 0.59 ± 0.03 0.61 ± 0.02 0.68 0.679

3. Discussion

Fourteen years after the initial removal of E. grandis by WfW, our results show that
both the soil physico-chemical properties and the vegetation diversity are recovering in
the cleared sites. We observed no significant differences between the cleared and natural
sites for most of the measured soil and vegetation variables, an indication that ecosystem
recovery is taking place. These results were originally observed by Kerr and Ruwanza [24],
who reported a positive vegetation recovery trajectory in one of the cleared sites. However,
the same study noted varied clearing effects on the soil properties, both increased and
decreased changes. Our results concur with the previous studies that have shown that soil
and vegetation recovery tend to follow a positive restoration trajectory several years after
the initial clearing [11,14]. Ndou and Ruwanza [14] reported that both soil and vegetation
recovery was taking place on old Acacia-cleared sites (15 years) than on recently cleared
sites (6 years). Similarly, Ruwanza et al. [11] assessed vegetation recovery seven years
after E. camaldulensis removal along the Berg River and reported a positive vegetation
recovery trajectory.

Our results on topsoil showed no significant differences between the cleared and
natural sites for all measured soil properties except for P and Mg, an indication that soils
in the cleared site resemble those in the natural sites. This contradicts the soil results
by Kerr and Ruwanza [24], who observed varied soil nutrient changes. Several factors,
including diminishing soil legacy effects after invasive alien plant removal, can explain
our soil results [21,23,26]. It is well-documented that soil legacy effects caused by the
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invader can persist for several years after alien plant removal [21,23,26]; this depends on
several factors, such as previous invasion extent, invasion by secondary invaders that
add more soil nutrients, and external factors, e.g., grazing and fires, which influence
soils [25]. Our results show a possibility that the soil legacy effect reported by Kerr and
Ruwanza [24] could be diminishing and is no longer persistent in these cleared sites since
the soils are now having similar properties to the ones in natural sites. It is known that the
soil legacy effect can limit successful restoration post-alien plant removal [27]; however,
in our case, the diminishing soil legacy effect could explain our soil results. Ndou and
Ruwanza [14] reported that soil nutrients improve with increased clearing time, with the
old cleared sites having similar soil nutrient levels to the natural sites, as compared to
the recently cleared sites. In addition to diminishing soil legacy effects, the recovering
native vegetation could also explain the observed topsoil nutrient results. It is possible
that recruiting native species are using the excessive soil nutrients that were released by
E. grandis before clearing. The above-mentioned speculation that recovering vegetation
is playing a role in soil nutrient changes is plausible, given that similar trends have been
observed in abandoned agricultural fields [28]. Studies in abandoned agricultural fields
have reported that as woody species colonise grass-dominated abandoned fields, soil
nutrients tend to decrease due to increased utilisation by recruiting plants [29]. It is not
clear why the soil P and Mg were higher in the natural than in the cleared sites; however,
organic matter content from native plant litter could explain this result. Some native species,
such as Maytenus acuminata and Pellaea mucronate, were only present in the natural sites,
hence the litter deposition from these species can influence the soil P through soluble P
leaching from litter.

We did not observe variations between the cleared and natural sites on soil penetration
resistance levels and gravimetric soil moisture content, except for monthly moisture differ-
ences, with June recording the lowest soil moisture content. The lack of soil compaction and
moisture differences between the two sites could be because of the recruiting vegetation in
the cleared sites. Recruiting plant phenological development and increased canopy cover
in the cleared sites could have resulted in both soil compaction and moisture being the
same as in the vegetated natural sites; however, the seasonal differences in moisture could
be because of winter temperature and rainfall patterns. The soil moisture measurements
were conducted in the austral winter when rainfall is low; thus, the soils are mostly dry and
compact during that time. Several studies have shown that reductions in precipitation tend
to lower soil moisture content to as much as 40% during dry months [30], and this reduc-
tion in soil moisture also results in increased soil compaction. It was anticipated that the
above-mentioned observations in soil nutrients, moisture, and compaction in the cleared
sites should have resulted in an improved soil water repellence, but that was not the case,
as we recorded a greater percentage of repellent soils in the cleared rather than the natural
sites. A palpable explanation is that external factors, such as livestock trampling, which is
happening at a low-to-moderate scale in the cleared sites, could explain the reported soil
repellence results. The impact of livestock trampling on soil is two-fold, (i) it can trigger
soil compaction through decreased soil physical quality and hydraulic conductivity, and
(ii) it can result in the detachment and shearing of topsoil layers [31]. However, the effects
of livestock trampling on soil repellence remains unknown, with some studies suggesting a
reduction in soil water repellence [31], whilst other studies claim an increase in soil water
repellency due to increased soil compaction [32].

Our results on vegetation show that native species are recruiting in the cleared sites,
an indication that passive native vegetation recovery is taking place. The few long-term
studies that have been conducted in South Africa have shown successful native vegetation
recovery several years after alien plant removal [11,14]. The above-mentioned studies
reported that native species diversity, composition, and cover increase as years since
clearing increase [11,14]. Several factors can explain the recruitment of native species in
our cleared sites. Firstly, the cleared and natural sites are close to each other; therefore, the
natural sites could act as seed suppliers to the cleared sites. The proximity of the cleared
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sites to the natural sites can assist with native species seed dispersal by animals, such as
birds, or through the wind from natural patches to the cleared sites [33]. Secondly, the
native recruiting species that were recorded by Kerr and Ruwanza [24] at the same cleared
sites could have been established by now, thus acting as nurse plants that facilitate the
recruitment of other plants [34,35]. Previous studies have reported that the availability
of nurse plants in restoration sites facilitates germination, establishment, and growth of
other plant species through (i) attracting birds and insects to disperse seeds underneath
them, (ii) providing nutrient-rich microhabitats underneath their canopy that facilitate
the germination and growth of other plants, and (iii) buffer recruiting native plants from
the harsh environmental conditions [34,35]. Thirdly, it is possible that a native soil seed
bank still exists at the cleared sites. Several studies have reported that a soil seed bank of
native species can remain in the soil for several years and recruit after the invader has been
cleared [36,37]. Fourthly, plant–soil positive interactions could favour the recruitment of
native species in the cleared sites. The reported soil nutrient recovery in the cleared sites
could benefit recruiting native species through nutrient availability. In turn, recruiting
plant species could influence soil properties through litter deposition [38]. Lastly, although
livestock grazing can trigger both positive and negative effects on native species recruitment
on the cleared sites, it is possible that grazing is assisting with seed dispersal in the cleared
sites. Grazing was observed to be more dominant in the cleared sites due to the accessibility
by animals since the vegetation is still low and recruiting. Indeed, grazing livestock can
disperse native seeds through endozoochory (seed dispersal via ingestion) or epizoochory
(seed dispersal accidentally via attachment to animal body) [39,40]. This dispersal has the
potential to influence the native species diversity and composition in the cleared sites.

Although Kerr and Ruwanza [24] noted the dominance of secondary invaders and
reinvasion by E. grandis on our cleared sites, we recorded low abundances of secondary
invaders. Even if the observed secondary invasion is diminishing, it still has the potential to
slow down native vegetation recovery through competition for resources such as nutrients
and water, which alternately hinder native vegetation recovery [11,23]. The observed
reinvasion and secondary invasion speak to the challenge of effective follow-up clearing
by WfW [11]. As per the South African WfW clearing guidelines, our cleared sites are
outside the initial three-year follow-up clearing plan, implying that the property owner is
responsible for managing follow-up clearing to remove recruiting E. grandis and secondary
invaders. However, this could be challenging for the property owner due to a lack of
funding, equipment, and human capital to effectively implement follow-up clearing.

4. Materials and Methods
4.1. Study Area

The study was conducted at a private farm (33◦20′24.72′′ S; 26◦27′11.81′′ E) that is
approximately 8 km from Makhanda (previously known as Grahamstown; Figure 3) in the
Eastern Cape province of South Africa. The farm is currently being used for small-scale
livestock grazing. Vegetation in the study areas is dominated by grassy fynbos and small
bushveld shrubs [41]. The soils in the area are sandy, acidic, and nutrient-poor, derived
from quartzite formation [41]. Rain falls throughout the year with a bimodal distribution,
peaking in October-November and February-March [41]. Mean annual rainfall is 545 mm
and temperature averages 26 ◦C in austral summer and 6 ◦C in austral winter [41].

Within the farm, we identified two cleared and adjacent natural sites. One of the paired
cleared and natural sites were surveyed by Kerr and Ruwanza [24], however, it was difficult
to identify the exact surveyed plots used in the above-mentioned study since there were
removed after the termination of their experiment in 2016. Kerr and Ruwanza [24] assessed
similar measurements that were assessed in this study. Our sites were approximately
500 m apart, and the paired cleared and natural areas within each site were separated by
farm roads. Clearing of E. grandis was performed in 2008 by WfW [24]. Clearing involved
the felling of E. grandis trees using chainsaws and the spraying of herbicides on cleared
stamps to avoid re-sprouting. Felled trees were stack burnt and follow-up treatments to
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remove re-sprouting alien plants and saplings were conducted on a 4–6 month interval
for three years after the initial clearing [24]. After follow-up completion around 2011, the
cleared sites were handed over to the property owner for maintenance. Two nearby natural
sites acted as reference sites, and these were dominated by native species with a canopy
cover of more than 80% [24].
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peaking in October-November and February-March [41]. Mean annual rainfall is 545 mm 
and temperature averages 26 °C in austral summer and 6 °C in austral winter [41]. 

Within the farm, we identified two cleared and adjacent natural sites. One of the 
paired cleared and natural sites were surveyed by Kerr and Ruwanza [24], however, it was 
difficult to identify the exact surveyed plots used in the above-mentioned study since 
there were removed after the termination of their experiment in 2016. Kerr and Ruwanza 
[24] assessed similar measurements that were assessed in this study. Our sites were ap-
proximately 500 m apart, and the paired cleared and natural areas within each site were 
separated by farm roads. Clearing of E. grandis was performed in 2008 by WfW [24]. Clear-
ing involved the felling of E. grandis trees using chainsaws and the spraying of herbicides 
on cleared stamps to avoid re-sprouting. Felled trees were stack burnt and follow-up treat-
ments to remove re-sprouting alien plants and saplings were conducted on a 4-6 month 
interval for three years after the initial clearing [24]. After follow-up completion around 
2011, the cleared sites were handed over to the property owner for maintenance. Two 
nearby natural sites acted as reference sites, and these were dominated by native species 
with a canopy cover of more than 80% [24]. 

 

Figure 3. Map showing (A) location of study area in South Africa, (B) location of study area in the
Eastern Cape province of South Africa, and (C) farm location (generated using Google Earth Pro
Version 7.3 software). National Road (N2) is shown in yellow with highway name in blue.

4.2. Experimental Design and Data Collection

On each of the paired cleared and natural sites, soil and vegetation surveys were
conducted on 10 m × 10 m plots with a buffer zone of 5 m. Each plot was replicated
10 times per site. The plots were marked with metal droppers to allow revisitation during
repeated soil measurements. In total 40 plots were surveyed (10 plots per site × 4 sites
(2 cleared and 2 natural)). Within each plot, soil cores measuring 10 cm in diameter and
10 cm in depth were collected at the centre of each plot for three months (May to July 2022).
Soils were collected using a soil core after hand removal of stones and debris. Collected
soils were packed in brown bags and immediately transported to Rhodes University labo-
ratory for gravimetric soil moisture and water repellency measurements. Soil penetration
resistance levels were conducted under field conditions, 30 cm from the plot centre where
soils were collected. In June, an additional equal number of soils were collected for soil
chemical analysis, which was assessed once due to financial limitations and the assumption
that no soil chemical variations were expected within one winter season. Soil chemical
analyses were conducted at a commercial laboratory, namely, Bemlab (Pty) Limited.

All collected soils were sieved using a 2 mm sieve upon arrival at the laboratory. To
measure gravimetric soil moisture, sieved soils were weighed wet, oven-dried at 105 ◦C
for three days and re-weighed to determine moisture content, which was expressed as a
percentage [42]. The water droplet penetration time (WDPT) method was used to assess
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soil water repellency. Sieved soils were placed in Petri dishes, levelled, and air-dried for
seven days under laboratory conditions where temperatures averaged 6 ◦C (±2 ◦C), similar
to winter temperatures in Makhanda. After seven days, the WDPT test was conducted by
placing five drops of distilled water on the soil surface using a hypodermic syringe and
recording the time taken by each drop to penetrate the soil [24,43]. The average penetration
time for the five drops was taken as the WDPT for each sample. The WDPT categories used
were wettable (below 5 s), slightly repellent (5–60 s), strongly repellent (60–600 s), severely
repellent (600–3600 s), and extremely repellent (above 3600 s) as described by Bisdom
et al. [44] and Kerr and Ruwanza [24]. Soil penetration resistance levels (a measure of soil
compaction) were performed using a pocket penetrometer (SOILTEST, Inc., Evanston, IL,
USA). Measurements were taken in kg cm−2 as described by Leung and Meyer [45]. The
penetrometer was pushed into the soil following the removal of debris and a metal ring was
pushed to scale to record the penetration resistance measurement [45]. Soil pH, a measure
of acidity and alkalinity of the soil was analysed in 1:5 soil-KCl extract as described by
Rhoades [46]. Soil P was analysed using the Bray-II extract method as described by Bray
and Krutz [47]. Soil total C was analysed using the modified Walkley-Black method as
described by Chan et al. [48]. Soil total N was analysed by complete combustion using a
Eurovector Euro EA Elemental Analyser (Euro EA; Eurovector, Milan, Italy). Exchangeable
cations of K, Na, Ca, and Mg were extracted in a 1:10 ammonium acetate solution using the
centrifuge procedure described by Thomas [49]. The soils were filtered and analysed using
atomic absorption spectrometry (SP428, LECO Corporation, St. Joseph, MI, USA).

In June, detailed vegetation surveys were conducted in each plot. All identified trees
and shrubs were counted in each plot, whereas forbs and graminoids were enumerated
in a 1 × 1 m sub-plot positioned at the centre of the plot. Species were assigned to
four growth forms based on morphology, namely, trees, shrubs, forbs (non-graminoid
herbaceous plants), and graminoids [50]. All plant species were identified using local plant
books such as Manning [51] and Manning and Goldblatt [52] as well as the PlantzAfrica
online directory [53]. Species that could not be identified were taken to Selmar Schonland
Herbarium at the Albany Museum in Makhanda for identification.

4.3. Data Analysis

All statistical analyses were performed using TIBCO STATISTICA version 14.0 soft-
ware (TIBCO Software Inc., Palo Alto, California, USA) [54]. Normality tests were per-
formed using the Kolmogorov–Smirnov test and data were normally distributed. The effect
of clearing on gravimetric soil moisture and penetration resistance levels was analysed
using repeated measures ANOVA since data were collected over three months. Where
repeated ANOVAs were significantly different, Tukey’s HSD test was used to determine
differences between sites and across months at p < 0.05. Comparisons between cleared and
natural sites for WDPT categories were performed using the Chi-squared test. Measured
soil properties of pH, P, total N, total C, K, Ca, Mg, and Na were compared between cleared
and natural sites using a t-test since data were collected once. Species richness, Shannon–
Wiener diversity index, Simpson’s index of diversity, and Evenness index were calculated
per plot and compared between cleared and natural sites using a t-test since data were
collected once.

5. Conclusions and Recommendations

In conclusion, we observed improved soil properties, vegetation diversity, and com-
position since the last monitoring assessment by Kerr and Ruwanza [24], evidence that
ecosystem recovery on these cleared sites is following a positive restoration trajectory
towards the natural sites. However, we observed evidence of reinvasion and secondary
invasion in low abundance, and this is likely to slow down ecosystem recovery if not
attended to. From a management standpoint, some interventions are needed if the current
positive recovery trajectory is to be maintained. Although these interventions are yet to be
tested and are not prescriptive as they aim to steer restoration conversations, we believe
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that these interventions need to be considered if clearing by WfW is to yield successful
native vegetation recovery. Firstly, long-term restoration monitoring should be included
in alien plant clearing and management plans, and such monitoring should be performed
until restoration is completely achieved. Secondly, clearing managers should develop
an effective and timeous follow-up clearing programme that monitors reinvasion and
secondary invasion on cleared sites. Thirdly, there is a need to support landowners with
resources to manage the cleared sites post the initial WfW follow-up period. Support to
landowners could be in the form of financial resources to buy follow-up clearing chemicals,
pay human capital, and information on how to manage the cleared sites. Lastly, future
research on cleared sites should assess both topsoil and below-ground soil properties to
provide accurate and detailed information on recovery after alien plant removal.
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Appendix A

Table A1. Fifty frequently occurring species in cleared and natural sites.

Species Name Cleared Natural

Acacia mearnsii 25 0
Anthospermum aethiopicum 5 0
Anthospermum spathulatum 30 15

Aspalathus subtingens 0 35
Asparagus suaveolens 50 80

Athanasia dentata 5 15
Chasmanthe aethiopica 0 5

Clutia daphnoides 0 5
Conyza scabrida 0 5

Crassula pellucida 50 60
Dovyalis rhamnoides 5 5
Eucalyptus grandis 30 0

Halleria lucida 5 15
Helichrysum cymosum 20 70
Helichrysum petiolare 65 45

Indigofera sp. 5 10
Maytenus acuminata 0 5
Metalasia muricata 5 20
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Table A1. Cont.

Species Name Cleared Natural

Passerina rigida 0 15
Podocarpus latifolius 0 5

Protea neriifolia 0 10
Psychotria capensis 0 5

Pteronia incana 0 25
Searsia crenata 25 15

Rubus cuneifolius 5 0
Solanum linnaeanum 10 0
Zanthoxylum capense 0 5
Asplenium rutifolium 5 20
Centaurea benedicta 15 0

Centella asiatica 70 65
Conyza bonariensis 95 20
Erigeron canadensis 5 0

Erigeron sp. 10 10
Euphorbia epicyparissias 0 15

Pellaea mucronate 0 25
Pteridium aquilinum 0 10

Senecio macrocephalus 40 60
Thesium gnidiodes 45 40

Wahlenbergia procumbens 5 0
Agrostis lachnantha 30 55

Alloteropsis semialata 25 0
Aristida transvaalensis 5 0

Carex sp. 20 20
Cynodon dactylon 5 0

Cyperus albostriatus 20 0
Digitaria sanguinalis 25 65

Ehrharta erecta 35 0
Isolepis cernua 5 0

Pennisetum clandestinum 20 50
Sporobolus africanus 20 5
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