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Abstract: Biostimulant application can be considered an effective, practical, and sustainable nu-
tritional crop supplementation and may lessen the environmental problems related to excessive
fertilization. Biostimulants provide beneficial properties to plants by increasing plant metabolism,
which promotes crop yield and improves the quality of crops; protecting plants against environmental
stresses such as water shortage, soil salinization, and exposure to sub-optimal growth temperatures;
and promoting plant growth via higher nutrient uptake. Other important benefits include promoting
soil enzymatic and microbial activities, changing the architecture of roots, increasing the solubility
and mobility of micronutrients, and enhancing the fertility of the soil, predominantly by nurturing
the development of complementary soil microbes. Biostimulants are classified as microbial, such as
arbuscular mycorrhizae fungi (AMF), plant-growth-promoting rhizobacteria (PGPR), non-pathogenic
fungi, protozoa, and nematodes, or non-microbial, such as seaweed extract, phosphite, humic acid,
other inorganic salts, chitin and chitosan derivatives, protein hydrolysates and free amino acids, and
complex organic materials. Arbuscular mycorrhizal fungi are among the most prominent microbial
biostimulants and have an important role in cultivating better, healthier, and more functional foods
in sustainable agriculture. AMF assist plant nutrient and water acquisition; enhance plant stress
tolerance against salinity, drought, and heavy metals; and reduce soil erosion. AMF are proven to
be a sustainable and environmentally friendly source of crop supplements. The current manuscript
gives many examples of the potential of biostimulants for the production of different crops. However,
further studies are needed to better understand the effectiveness of different biostimulants in sus-
tainable agriculture. The review focuses on how AMF application can overcome nutrient limitations
typical of organic systems by improving nutrient availability, uptake, and assimilation, consequently
reducing the gap between organic and conventional yields. The aim of this literature review is to
survey the impacts of AMF by presenting case studies and successful paradigms in different crops as
well as introducing the main mechanisms of action of the different biostimulant products.

Keywords: arbuscular mycorrhizal fungi; biostimulant; microbial biostimulants; mycorrhizal fungi;
sustainable agriculture

1. Introduction

Biostimulant application is known as an eco-friendly and novel farming practice and
is relevant to two otherwise contrasting concepts, namely crop sustainability and intensi-
fication [1]. Biostimulant products already form a significant part of the global farming
industry, indicating increasing trends over the years and in the future [2]. There are various
reports regarding their positive impacts on crops, especially under biotic and abiotic stress
conditions, and significant research is continuously conducted to find and/or produce
new biostimulatory products, as well as to show the mechanisms of action behind the
observed impacts. However, the variance in the composition of biostimulant products,
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as well as the lack of ordinary application protocols for the different products, may cre-
ate inconsistencies between the observed results and complicate attempts to reveal the
actual mechanisms behind the biostimulatory impacts, which may include physiological
procedures, hormonal regulation, and morphological alterations. Biostimulants’ beneficial
activities include the improvement of nutrient uptake, the induction of root growth, and
the production of phytohormones; osmotic adjustment through the synthesis of organic
osmolytes has also been confirmed. Biostimulants can also be applied to decrease the
application of mineral inorganic fertilizer and are considered environmentally friendly
tools with no significant negative impacts on fruit quality or total yield. Humic acids,
fulvic acid, protein seaweed extracts, hydrolysates, N-containing compounds, botanicals,
seaweed extracts, chitosan and other related biopolymers, beneficial bacteria and fungi,
and inorganic compounds are the major categories of plant biostimulants. Modern crop
production has to cope with abiotic and biotic stressors such as soil and irrigation water
salinity, extreme and untimely weather phenomena, water limitations, infections from
pathogens, and pests, which severely influence crop performance and the quality of the
final products [3–5]. The most important advantages of biostimulants include improved
profits, stimulated plant reactions, decreased operating costs, reduced application of fer-
tilizers, improved root protection from soil pathogens, and enhanced drought tolerance;
moreover, they repel pests, accelerate root establishment, boost fertilization, enhance stress
tolerance, ameliorate fertilization, alleviate leaching, detoxify heavy metals and chemicals,
and improve stomata opening and plant transpiration [3–6]. Biostimulatory compounds
may also have positive effects on soil biology and are recognized as a good technique
for recovering semi-arid areas and degraded ecosystems [6–8]. However, the variable
composition of raw materials applied for the production of biostimulant products makes
the task of revealing the mechanisms of action more difficult, and long-term research and
standardization processes are needed [9]. Different sources of chitin and chitosan in nature
are crustaceans (lobster, shrimp, king crab), fungi (Mucor rouxii, Penicillium chrysogenum,
Aspergillus niger, Lactarius vellereus), insects (ladybug, wax worm, silk worm, butterfly), and
mollusks (shell oysters, squid pen). Crustacean shells are the most notable chitin source,
and chitin recovery involves three steps consisting of demineralization, deproteination, and
the elimination of pigments and lipids [10–12]. Microbial proteases such as Lactobacillus sp.,
Bacillus sp., Pseudomonas sp., Serrati marcescens, etc., are the most significant strains applied
in chitin and chitosan production [10].

Biostimulants containing organic substances, humic acids, amino acids, algae extracts,
and carbon and boron increased plant growth, yield, and shelf life of onion bulbs [13],
and the application of diluted honey extract (DHE) improved photosynthetic parameters,
antioxidant activity, biomass production, and yield [14]. The use of seaweed extracts,
vermicompost, and a mixture of animal waste increased yield and bulb traits [15]. Foliar
application of vermicompost leachate, smoke-water, Ecklonia maxima extracts, and indole-
3-butyric acid on seedlings of mustard greens grown in soils from goldmines boosted
phytoremediation activities through the accumulation of heavy metals [16]. Foliar applica-
tion of Kelpak SL and Asahi SL increased the nutritional value and improved the storage
life of carrots [17], while root and foliar application of protein hydrolysates in lettuce plants
grown under salinity conditions mitigated oxidative stress and increased glucosinolate and
osmolyte content [18,19]. In intensive cropping sectors such as horticulture and floriculture,
biostimulants can also boost nutrient use efficiency, partly substitute chemical fertilizer
inputs, and ameliorate the quality and yield of crops [20,21]. Biostimulants based on mi-
croorganisms are a subgroup of the heterogeneous family of biostimulants, related to a
microorganism (or mix of microorganisms) that can stimulate biochemical and physiologi-
cal processes that benefit the nutrient efficiency, nutrient uptake, abiotic stress tolerance,
crop quality, and/or yield of plants [22], which can moderately mitigate the damaging
effects of intensive agriculture [23–25]. The most common microorganisms included in this
group of biostimulatory products are the non-pathogenic and non-toxigenic bacteria of
Azotobacter spp., Rhizobium spp., and Azospirillum spp., as well as different mycorrhizal
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fungi [24]. Mycorrhizas are a symbiotic association between fungi and plant roots and
are present in several forms according to the fungal taxonomy and the host plant. Two
important parameters that influence the distribution of these forms are the climatic and
soil conditions and the host plant distribution [26,27] (Hart and Reader, 2002; Yang et al.,
2012), and mycorrhiza can significantly boost the efficiency of mineral absorption, falling
into two major categories: endotrophic and ectotrophic [28]. The main types of arbus-
cular mycorrhizal fungi (AMF) are related to the sub-phylum Glomeromycotina of the
phylum Mucoromycota [29], and four orders of AMF, namely Glomerales, Paraglomerales,
Archaeosporales, and Diversisporales, have been recognized in this sub-phylum, which con-
tains 25 genera [30,31]. The protective mechanisms are credited to arbuscular mycorrhizal
fungi-assisted alleviation of oxidative stress, rapid water uptake and nutrient absorption,
and changes in the transcript levels of genes involved in signaling pathways or stress
response [32–34], and the effectiveness of AMF is usually influenced by environmental
variables and soil conditions [35]. Considering the numerous literature reports in the past
decade related to microbial biostimulants and their impacts on different crops, this review
aims to present the most up-to-date key results of microbial biostimulant practical applica-
tions on crops and the new tools available to unravel the mechanisms behind the observed
impacts. In the present review, all relevant reports in the English language were collected.
The literature search was performed by using the keywords of plant biostimulants, mi-
crobial biostimulants, arbuscular mycorrhizal fungi, mycorrhizal fungi, and sustainable
agriculture in the main indexing systems, including PubMed/MEDLINE, Scopus, the
Google Scholar search engine, as well as the Institute for Scientific Information Web of
Science, from July 2000 to July 2023.

2. Biostimulant Categories

Biostimulants are classified into two distinct groups based on their origin; one cate-
gory includes products that have biological origins in pathogens or plants, and the second
group consists of products that do not have biological origins [36–38]. Another classifi-
cation approach divides biostimulant products into microbial biostimulants, which are
obtained from arbuscular mycorrhizal fungi and plant-growth-promoting bacteria, and
non-microbial biostimulants, which include plant micro-algae extracts, humic substances,
and biopolymers such as chitosan [39–43]. Different compounds with bioactive properties
can be used as biostimulants to boost plant growth and development under normal and
stress conditions [44–52]. Salicylic acid is economical and quick in action, environmentally
sound, and it also links with other elicitors to boost the biosynthesis of secondary metabo-
lites [53–55]. Humic acid can increase plant growth, retain water, enrich nutrients, and
suppress disease [56,57]. Fulvic acids are used in sustainable horticulture and can change
plant primary and secondary metabolism and increase nutrient uptake, root growth, and
crop tolerance to environmental stresses [58,59]. Protein hydrolysate biostimulants, mostly
produced by chemical and enzymatic hydrolysis of plant- and animal-derived proteins,
are based on a mixture of soluble amino acids and peptides and can increase the yield and
quality of products as well as improve the nutrient uptake and abiotic stress tolerance of
plants [60–63]. They are largely prepared from brown seaweeds, such as Ecklonia maxima,
Ascophyllum nodosum, and Macrocystis pyrifera, and they include promoting hormones or
trace elements such as Zn, Fe, Mn, and Cu [64,65]. Humic-like substances such as fulvic and
humic acids may also show biostimulatory activity, since several reports have suggested im-
proved crop performance attributed mainly to auxin- and cytokinin-like impacts; they are
obtained from organic matter decomposition and metabolic products of soil microbes, and
they have roles in plant growth via the improvement of soil physical–chemical properties
and the boosted availability of nutrients in the rhizosphere [66–68]. The actual mechanisms
of action seem to be the result of synergy between the several bioactive components in
raw materials, although the impacts may change depending on the crop, soil type, and soil
microbes present in the rhizosphere [69–72]. The most important impacts of chitin and its
derivatives’ applications are that they stimulate and protect seed germination, stimulate
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stress resistance, mitigate negative impacts of abiotic stress, induce plant growth and de-
velopment, improve soil properties and prevent nutrient leaching, improve the shelf-life
of crops, chelate heavy metals, increase crop yield and quality, and protect against pests
and pathogens, e.g., bacteria, viruses, fungi, insects, and nematodes [73–75]. Amino acids
are the best candidates to boost stress tolerance through osmo-protection, ROS scavenging,
metal chelation, and nutrient availability [76], which can notably impact the synthesis and
stimulation of some enzymes and gene expression [77–79]. They can also be applied as sig-
nal molecules, like for inducing stomatal closure, as sensors of the nutrient contents of cells,
or as regulators for inducing their own catabolism. Amino acids can manage the procedure
of protein synthesis, strengthening plant growth, photosynthesis, and yield formation. They
can increase nutrient assimilation, use, and translocation, as well as increase the quality of
constituents [79]. Amino acids are well-known biostimulants due to their positive effects
on yield and plant growth, and can mitigate injuries from abiotic stresses [80,81]. Amino
acids also have a significant role in ammonium fixation and C4 metabolism and in the
biosynthesis of different components, including isoflavonoids, flavonoids, cutin, aurones,
sporopollenin, stilbenes, proanthocyanidins, suberin, lignins, catechins, phenylpropenes,
lignans, acylated polyamines, and other different alkaloid derivatives. The largest and most
diverse group of secondary metabolites in plants is phenols, which have good antioxidant
effects and are involved in the regulation of photosynthesis, physiological activities, oxida-
tion reduction procedures, and plant breathing [82]. Phenolic acids and their derivatives
are coumarins, stilbenes, quinones, lignans, flavonoids, curcuminoids, and tannins, which
have meaningful roles in plant development, especially in pigment and lignin biosynthesis,
and of course, they have a significant role in protecting plants from stress [83].

Protein hydrolysate biostimulants, mostly produced by enzymatic and chemical hy-
drolysis of plant-derived and animal proteins, are based on a mixture of peptides and
soluble amino acids, and can increase the quality and yield of products as well as the up-
take and abiotic stress tolerance of plants [84]. Glomus, the largest and most common genus
in the phylum Glomeromycota, forms symbiotic relationships with plant roots [85,86], which
can boost the drought tolerance of the host plant, mediated by proteins with chaperone-like
activity [87]. Trichoderma fungi have important functions in nature as plant growth promot-
ers and antagonists of phytopathogenic fungi [88], and as rhizosphere inhabitants, they
contribute to interactions with microorganisms, soil, arthropods, and plants at multiple
trophic levels [89], and can be used as biocontrol and biopesticide agents [90]. Members of
the genus Trichoderma are also used in different industry branches, like in the production
of biofuel, antibiotics, and enzymes [91]. The main Trichoderma–plant interactions include
their impacts on plant morphology, plant physiology, nutrient absorption and solubiliza-
tion, disease resistance, yield improvement, and abiotic stress tolerance [92]. Trichoderma
reesei is a genus of filamentous fungi and a superior cellulose source for industrial uses,
and it can produce proteins, including different enzymes, cellulases, hemicellulases, and
hydrophobins [93,94]. The endophytic fungus Heteroconium chaetospira can also penetrate
through the outer epidermal cells of its host, pass into the inner cortex, and grow all
over the cortical cells, consisting of those of the root tip region, without causing appar-
ent pathogenic symptoms [95], and it can provide even more nitrogen to the plant than
mineralizing plant-available organic nitrogen [96]. Arthrobacter species, which are Gram-
positive chemoorganotrophs and obligate aerobes, are commonly identified among soil
bacteria [97], being dominant aerobic bacteria under the class of families Micrococcaceae
and Actinobacteria [98], and nutritional versatility is the principal feature of arthrobac-
ters [99]. Acinetobacter spp. are Gram-negative coccobacilli that are aerobic, non-motile, and
oxidative negative, with no glucose fermentation ability; they can be found in different en-
vironments [100] and can fix nitrogen, solubilize minerals, produce siderophores, and act as
plant endophytes or epiphytes, which can help hosts in detaching pollutants and tolerating
environmental stresses [101]. Moreover, the plant-growth-promoting traits of Actinobacteria
entail phosphate solubilization, IAA, and siderophores [102]. They can also promote higher
phosphorus content and plant growth and increase radical scavenging, plant phenolic
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components, and antioxidant activity [103]. Other important bacteria are Enterobacter spp.,
Pseudomonas spp., Ochrobactrum spp., Bacilus spp., and Rhodococcus spp. [104–113]. Figure 1
shows different classifications of plant biostimulants.

Figure 1. Different classifications of plant biostimulants.

3. Microbial Biostimulants

There are two kinds of microbial inoculants: biopesticides and biofertilizers. Biofertil-
izers are categorized under biostimulants [114,115]. They are also known as bioinoculants,
which consist of living organisms and promote plant growth via a variety of procedures,
such as increasing biomass and root growth, supplying nutrients, and increasing the capac-
ity of nutrient uptake when applied to plants, seeds, or soil [116]. Microbial biostimulants
have numerous positive functions associated with the solubilization, uptake, primary
and secondary metabolism, and translocation of macro- and micro-nutrients, which in-
duce phytochemical accumulation, the development of robust root systems for foraging
surrounding soil, and the improvement of photosynthetic activity to promote growth,
increase nutrient use efficiency, and stimulate antioxidant defense systems to decrease
the oxidative stress burden [117]. Recently, biostimulants related to living microorgan-
isms have attracted the attention of both academics and industry professionals for the
simple reason that the growth and development of a plant can be increased more easily
in the field [118,119]. These microbes are effective enzyme producers and are potential
alternatives to formulating beneficial microbial consortia that can be used in tandem with
gelatin to increase biostimulant activity [120]. Microorganisms acting as biostimulants
mostly belong to beneficial fungi groups consisting of arbuscular mycorrhizal fungi and
free-living bacteria [116,121,122]. Many parameters are responsible for the development
of microbial inoculants as biofertilizers, such as the variety of plants [123,124] and the
compatibility with different types of soil, chemical fertilizers, and environmental condi-
tions [123,124]. The activity of microbial inoculants is mainly affected by root exudates
(extracellular secretions by plants) and they also act as a substrate for the formation of
biologically active substances [125]. AMF play a significant role in stimulating plant growth
via different mechanisms: (i) increasing the uptake of water, as AMF boost the surface area
of the root so that the plant can easily take up water; (ii) modifications of root architecture;
(iii) availability of nutrients, particularly phosphorus, under nutrient-deficient conditions;
(iv) alterations in enzymatic and physiological activities, especially for plants that are active
in antioxidative responses; and (v) induction of ABA plant hormones, which are mostly
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involved in stress conditions [126,127]. Polyhydroxyalkanoates (PHAs) are selected as a
carbon source for abundant microbial primary degraders [128].

4. Mechanisms of Microbial Biostimulant Action

Various notable protective mechanisms in the utilization of microbial biostimulants un-
der different stresses are osmolite production, phytohormone level modulation, increased
antioxidant activity, and secretion of extracellular polymeric substances (EPS) under water
stress such as flooding and drought [129–131]; phytohormone level modulation, emission
of volatile organic components, ice nucleation activity antagonism, delay of senescence,
and osmo and thermal protection under thermal stress such as freezing and extreme
heat [132–135]; increased soil exploration and mineral nutrient solubilization under nutri-
ent stress [136,137]; and induced system resistance, direct antagonism with pathogens, and
phytohormone level modulation under biotic stress [138–142]. Bozhinova [143] reported
that the application of the microbial inoculant Europlus® and the protein hydrolysate (PH)
Trainer® increased the yield of tobacco by 5.5% and 6.7%, respectively, in comparison
with untreated plants. Bozhinova [143] also noted that the application of the microbial
inoculant Europlus boosted N, P, and K concentrations in leaves, and the concentrations of
Ca, Mn, Zn, and Cu were slightly higher than the control treatment when the microbial
inoculant Europlus was applied, and concluded that the use of microbial biostimulants
in sustainable tobacco farming was effective in boosting the yield of oriental tobacco and
the quality of cured leaves. AMF can increase dry weight, photosynthesis, and seed fresh
yield of Glycine max under drought stress [144]. Under drought stress, Gigaspora decipiens
and Glomus mosseae can boost the chlorophyll content and growth of Triticum aestivum,
and Rhizophagus intraradices can improve levels of Mg, Zn, Cu, and F in grains of Triticum
durum [145,146]. Under drought stress, Rhizophagus intraradices can increase N, P, and K
uptake in Zea mays [147]; Funneliformis geosporus BEG11 can increase water use efficiency in
Fragaria ananassa [148]; Glomus deserticola can improve the level of proline and the number
of leaves in Antirrhinum majus [149]; and Gigaspora gregaria can increase mineral levels and
decrease the level of proline in Vigna subterranea [150]. Amid water shortage, Paraglomus
occultum can increase the rate of water absorption and the length of the hypha in Poncirus
trifoliata [151]; Rhizophagus irregularis can increase the conductivity of stomata and dry mat-
ter of shoot in Digitaria eriantha [152]; and Glomus species can improve the osmotic potential
adjustment in Ipomoea batatas [153] and increase water uptake and phenolic, metabolite, and
glutathione levels in Saccharum arundinaceum [154]. Under salinity stress, Rhizophagus irreg-
ularis can increase the fresh weight of shoots and roots and the number of leaves of Solanum
lycopersicum [155], Claroideoglomus etunicatum can increase the conductivity of stomata and
the level of soluble sugars in Aleurites moluccanus [156], and Claroideoglomus etunicatum can
boost the dry mass of shoots and roots as well as the conductivity of stomata in Aeluropus
littoralis [156]. Under cold stress, Rhizophagus irregularis and Funneliformis mosseae can
increase photochemical reactions, decrease the damage in the membrane, and activate the
antioxidant defense system in Solanum melongena [157]. Rhizophagus irregularis can improve
the plant photosynthetic efficiency of Solanum lycopersicum under heat stress [158]. AMF
containing Rhizoglomus irregulare and Funnerliformis mosseae can significantly influence the
growth, productivity, and nutraceutical and nutritional quality of tomato cultivars, as AMF
increase the biosynthesis and nutrient uptake of notable molecules involved in cellular
pH and oxidative stress [159]. Six single strains (Acaulospora laevis, Acaulospora scrobiculata,
Gigaspora gigantea, Entrophospora colombiana, Glomus manihotis, and Scutellospora heterogama)
and a mixture of AMF (Glomuss mosseae, Glomus manihotis, and Glomus gigantea) recultured
with Chloris gayana increased survival, improved tolerance against stress, and boosted the
nutritional status, relative water content, photosynthetic rate, and the contents of P, N,
Mg, and Fe in Vitis vinifera cv. Pusa Navrang [160]. Rhizophagus irregularis, Pseudomonas
fluorescens, and Funneliformis mosseae application lead to an increase in APX and GPX
enzyme activities, an enhancement of plant growth parameters, the alleviation of water
deficit damage, a decrease in H2O2 and lipid peroxidation, and an improvement of drought
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tolerance in Cupressus arizonica Green [161]. The utilization of Glomus mosseae, Rhizobium
leguminosarum, and Arthrobacter protophormiae induced a decrease in proline content and
lipid peroxidation, an improvement of plant weight, an enhancement of nutrient uptake,
an increase in pigment content, and the alleviation of salt stress of Pisum sativum under salt
stress [162]. The application of Acaulospora sp., Claroideoglomus etunicatum, Rhizobium sp.,
and Burkholderia sp. led to an improvement in the absorption of chemical fertilizers and an
increase in the wood yield of Schizolobium parahyba var. amazonicum under salt stress [163].
Bacillus megaterium, Rhizophagus irregularis, and Frateuria aurantia induced an enhancement
of nutrient uptake responses, an improvement of low-mobility nutrient uptake such as
Zn and Ca, an enhancement of total microbial biomass and microbial metabolism, an
increase in plant growth, and an increase in gluten quality of Triticum aestivum L. under
salt stress [164]. Miceli et al. [165] reported that the application of microbial biostimulants
altered seedling growth and responses to different stresses and had a growth-promoting
impact on the unstressed seedlings, increasing dry and fresh biomass accumulation, leaf
area, and leaf number, being an appropriate option for improving the salinity tolerance of
seedlings, particularly under salinity stress.

5. Case Studies and Practical Application of Microbial Biostimulants

There are two types of mechanisms of action of microbial biostimulants. For direct
mechanisms, it has been reported that microbes are active in the synthesis of components
that can boost the adsorption of nutrients, while indirect mechanisms refer to siderophore
production, zinc solubilization, phosphorus solubilization, indole acetic acid biosynthesis,
antioxidant enzyme production, ammonia and hydrogen cyanide production, biological
nitrogen fixation, and phytohormone production [166,167]. Microbial biostimulants can al-
leviate the adverse effects of environmental stresses by producing hormone-like stimulants
with positive impacts on plant growth and final yield [168]. Molecular processes that have
roles in the interactions of plants and microorganisms which may lead to the biosynthesis
of secondary metabolites are the protective impacts of microbial biostimulants on plants
against different stressors [169]. The production of protective molecules is obtained via
the shikimate pathway which may consist of the enzyme phenylalanine ammonia lyase
(PAL) for the production of phenylpropanoids after microbial eliciting [170], which may
have significant effects to adjust the pressure from external factors, called induced systemic
resistance (ISR) [171]. The main mechanisms targeted by microorganisms according to vari-
ous biostimulants can target shoot targets such as stomatal regulation and xylem hydraulic
conductance, and root targets such as root zone water availability, root ethylene and auxin
levels via ROS scavenging, membrane stability, and osmoprotection [172]. Biostimulants
can influence plant phenotype, cellular level, and molecular level. The impact on plant
phenotype consists of improved shoot and root growth, improved flowering, higher yield
parameters, higher leaf number and vigor, better abiotic stress tolerance, better fruit nutri-
tional quality, increased relative water content, increased stomatal conductance, and higher
nutrient acquisition uptake and transportation. The effects at the cellular level include
increased antioxidant activity, improved primary and secondary metabolisms, increased
chlorophyll content, and higher photosynthetic rates, and those at the molecular level entail
increased gene expression of SOD, CAT, APX, nutrient transporters, and stress-related
genes [173]. Microbial biostimulants can alleviate abiotic stress, balance plant hormone lev-
els, regulate indole-3-acetic acid (IAA), regulate cytokinins, regulate gibberellins, regulate
abscisic acid, produce ACC deaminase, facilitate nutrient availability, modify root biomass
and morphology, induce antioxidant enzyme syntheses in crops, accumulate osmolytes in
crops, induce gene resistance to drought and salt stress, improve crop organic and inorganic
pollutant toxicity tolerance, mediate increased nutrient availability (N, P, K, Fe, and Zn),
improve crop cold tolerance, increase crop heat tolerance, and boost crop waterlogging
tolerance [174–179]. It has been reported that microbial-based biostimulants boosted plant
yield, Cu and Ca, and isochlorogenic acid components, and the influence of biostimu-
lants on the functional and nutritional quality of lettuce was mainly independent of water
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availability [180]. Microbial biostimulants can significantly improve carbohydrate, protein,
sugar, K, Ca, Mn, Zn, and Fe content in chickpea seeds and plants, and the microbiome
analysis indicated a positive correlation with soil health and yield [181]. Mrid et al. [182]
reported that microbial-based biostimulants can positively influence cropping systems via
numerous mechanisms and can increase nutrient uptake and use efficiencies, suppress
phytopathogens infection, boost root system development, reduce heavy metal toxicity,
and improve crop growth and yield. Natural biostimulants can increase tolerance against
abiotic stresses in agricultural and horticultural crops [183,184] and increase crop produc-
tivity under environmental stress [185,186]. Alfonzetti et al. [187] showed the potency of
microbial biostimulants to positively influence native plant emergence and growth, but the
exact impacts are linked to the plant species, type of amendment, and the characteristics of
the planting site soil. Microbial biostimulants can increase ornamental plant growth during
production and increase crop performance under abiotic stress, and appropriate microbes
can also produce secondary metabolites like volatile organic components to improve plant
growth. Aside from the direct impacts on molecular procedures, the effects of microbial
biostimulants are related to morphological alterations such as changes in root morphol-
ogy after inoculation with AMF and the increase in root surface, which can both increase
the uptake of nutrients and water, thus helping plants cope with the negative impacts of
stressors [188]. It has also been reported that the inoculation of water-stressed plants with
Penicillium sp., Phoma glomerata, Glomus intraradices, Exophiala sp., and Paecilomyces formosus
may lead to greater soil exploration by roots or fungal hyphae with meaningful improved
root conductivity [189,190].

6. Arbuscular Mycorrhizal Fungi (AMF)

AMF, favorable microorganisms extensively distributed in nature, can establish a
symbiotic relationship with most terrestrial herbs. AMF belong to 11 families, 25 genera,
and nearly 250 species [191]. Arbuscular mycorrhizal (AM) symbiosis is the widespread
mutualistic relationship between fungi and plants and plays an important role in nutrient
exchange, ecosystem sustainability, the enhancement of plant stress resistance, and the
development of host plants [192–196]. AMF increase the C allocation of the host plant below
ground, which can form a microbial community composition [197]. AMF belong to the
phylum Mucoromycota and subphylum Glomeromycotina. AMF are available in our natural
environment and are helpful in several ways; they play an important role in increasing plant
nutrition acquisition, improving plant tolerance and resistance to stresses, and increasing
soil fertility and structure, and have several beneficial applications in agriculture [198–200].
Symbiosis can increase host plant nutrition because plants can absorb nutrients not only
through mycorrhizal pathways but also through their own pathways. Besides that, AMF
can also influence nutrient availability by altering soil physicochemical characteristics,
microbial communities, and nutrient cycling [201–203]. AMF have notable effects on
herbaceous plant element stoichiometry, such as plant C:N:P stoichiometry, which depends
on plant and fungal functional group identities and soil nutrient availability [204].

AMF promoted the utilization and accumulation of Ca in apple rootstock (Malus
robusta) by adjusting the expression levels of genes associated with these pathways. GO
and KEGG pathway analysis showed that gene expression changes in different critical
gene families, such as auxin response (MdGH3, MdAux/IAAs, and MdSAUR), TCA cycles
(MdCS, MdMDH, and MdACO), phosphate transporters (MdPHT1;1, MdPHT1;10, and
MdPHT1;3), and Ca2+ signal transduction pathways (MdCa2+/ATPase, MdTPC1, MdCML,
and MdCDPK), showing that apple stimulates the expression of genes related to auxin
synthesis, organic acid secretion, and calcium transporters and channels, thus promoting
the growth of apple root and improving the secretion of organic acids, which may lead to
an increase in calcium effectiveness in soil [205]. Uptake of ZnO nanoparticles in barley
was increased by AMF, possibly related to the mutualistic connection between the root and
the fungi, which promotes water absorption because of the more efficient property of the
rhizosphere [206]. The combination of humic substance and AMF remarkably increased
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plant biomass [207]. The impacts of Rhizobium and AMF inoculation were investigated
on the growth and yield of Lablab purpureus, Vigna unguiculata, and Mucuna pruriens, and
in comparison to single inoculation and uninoculated forages, the dual inoculation with
AMF and Rhizobia improved the growth and biomass yield of forage legumes, and dual
inoculation could be an optimal alternative in attempts to decrease the overreliance of
chemical fertilizers on forage production [208]. The effects of mycorrhizal association on
plant and root ecosystems are presented in Figure 2.

Figure 2. The influences of mycorrhizal association on root and plant ecosystem.

When AMF are inoculated in a plant, they increase the plant’s tolerance against
different stresses such as heavy metals, drought, and high temperatures. AMF form
spores and hyphae in the rhizosphere, while inside the root tissues, they shape arbuscular,
vesicles, and hyphae to improve the accessibility of plant roots to large soil surface areas
by hyphal network knowledge with roots of plants, therefore increasing growth in the
plant [209]. AMF synergistically improve plant P nutrition, and feedstock origin determines
P accessibility and, as a consequence, mycorrhizal performance [210]. AMF inoculation may
lead to the promotion of leaf chlorophyll content, shoot height, leaf photochemical efficiency,
RWC, turf quality, and root and shoot biomass, as well as enhanced melatonin (MT) content
through the upregulation of the MT biosynthesis genes and the reduction in the levels of
malondialdehyde (MDA), electrolyte leakage (EL), chlorophyll catabolic genes (CCGs),
hydrogen peroxide (H2O2), and senescence-associated genes (SAGs) to decrease heat stress
in perennial ryegrass [211]. AMF inoculation increased gibberellin (GA), internal MT, and
cytokinin (CTK) levels while reducing ABA levels in heat-stressed plants; moreover, the MT
biosynthesis genes (LpASMT1, LpTDC1, LpCOMT1, LpTDC2, and LpASMT3), the abscisic
acid (ABA) catabolic gene, the CTK biosynthesis genes, the GA biosynthesis genes, and the
associated signal transduction response transcription factors (TFs) (type-B ARRs) showed
increased levels, whereas the expression of the GA to ABA exerted decreased levels after
MT application and AMF inoculation in heat-stressed plants [211]. AMF can increase earlier
flowering of plants, promote fruit and flower production, prolong the total duration of
flowering, and increase seed yield, showing potential in promoting seedling growth and
seed germination [212].

AMF increased the plant height, root weight, root length, and stem weight of lettuce,
and the functional composition profiles showed that several functions were increased,
including cell motility and environmental adaptation, and AMF had a significant influence
on the lettuce endophytic bacterial network community and structure function [213]. AMF
with high Cu components provided adaptive mechanisms for the plant growth and survival
of grapevine rootstock; in greenhouse conditions, stomatal conductance and transpiration
improved with Cu additions, influencing plant growth [214]. AMF could inhibit the
uptake of Hg, particularly methyl-Hg in grains of rice, as it may lead to Hg transfer in
the non-edible parts of rice, such as the leaf and stem, and promote the growth indexes
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and micro-indexes of rice, and it can be a practical remediation technology for soil heavy
metal pollution [215]. AMF also responds to Cd stress in kenaf; inoculation with AMF
could be applied to kenaf to enhance the removal of Cd from soil in mining areas by
phytoremediation, as AMF can adjust the expression levels of key kenaf genes, such as
Hc.AKR, Hc.GH3.1, and Hc.PHR1, thus playing an important role in enhancing kenaf’s Cd
tolerance [216].

Micro-proton-induced X-ray emission was utilized to determine element localization
and indicated that AMF improved the nutrient uptake by wetland plants (Iris pseudacorus)
and suppressed Cr translocation from roots to shoots, which showed that the interaction
between plants and AMF could significantly improve the immobilization of high Cr con-
centrations in semi-aquatic habitats [217]. AMF inoculation and/or legume intercropping
uphold the stability of microbial networks by weakening taxonomic interactions and im-
proving modularity under drought events; overall, AMF inoculation causes Medicago sativa
to need water during a drought event, which worsens soil water deficit and thus may
increase interspecific water competition between Medicago sativa and Broussonetia papyrifera.
The results of one experiment revealed that in the roots of tomato plants colonized by AMF,
there was a meaningful mutual relationship between the insects feeding on the plant and
the fungal species (Rhizophagus intraradices, Funneliformis mosseae, R. irregularis, and Glomus
iranicus) [218].

AM fungi (Glomus spp.) play a role in upregulating plant growth and nutrition status
in Fe-ore tailings in technosols of host plants like sorghum, providing the basis for the
involvement of AM fungi in the eco-engineered pedogenesis of iron ore tailings [219]. In
the ethanolic extracts of leaves of Anadenanthera colubrina (Vell.) Brenan, seedlings had
more saponins and flavanols and showed significant antioxidant activity when inoculated
with AMF (Gigaspora albida and Acaulospora longula) [220,221]. AMF significantly improved
the biomass and nutrient levels of Iris tectorum and reduced the constituents of Cr in soils;
furthermore, it can boost the abundance of functional genes related to nutrient cycling (N,
P) in rhizosphere microbial communities, increase the abundance of functional genes associ-
ated with heavy metal resistance and transporters in the rhizosphere microbial community,
and increase the complexity and stability of the rhizosphere microbial community [222].
AMF reduce the plant uptake and bioavailability of Cd and As, and the reduction in As
and Cd accumulations induced by AMF depends on the plant family [223]. It has also been
reported that AMF–Glomus versiforme (Gv) symbiosis significantly increased P uptake, plant
growth, and photosynthesis in upland rice, and Gv inoculation decreased the expression
of Nramp5, thus reducing Cd absorption, transfer, and accumulation in upland rice and
enhancing the activities of catalase (CAT) and peroxide (POD) in Gv-inoculated upland
rice [224]. Glomeraceae and Paraglomeraceae are the dominant fungi affecting the available
P content. Expanding Glomeraceae and Paraglomeraceae and applying them to Eucalyptus
plantations may increase soil P availability, and the structure of the AMF community may
be a sensitive indicator of the quality of soil-available P in Eucalyptus plantations [225].
AMF reduced the toxicity risk of Pb by accumulating Pb in fungal structures, and both
flooding and Pb stress reduced the AMF diversity but not the abundance [226].

Inoculation with indigenous AMF such as Glomus sp. and Paraglomus sp. boosted the
biomass of plants and promoted root growth under replanting conditions, and it can also
induce the activity of chitinase and β-1,3-glucanase and increase the resistance of apple
rootstock by upregulating root reactive oxygen species levels and the antioxidant system
under replanting conditions [227]. It is suggested that mycorrhizal fungi can reduce the
detrimental impacts of salt stress on Ligustrum vicaryi plants, and the mediation of Ca2+,
Zn2+, N, Mg2+, and soluble protein components could be the basic mechanism underlying
salt tolerance in mycorrhizal plants [228]. AMF and root hairs are functionally redundant
in maize, and AMF had a greater effect on microbial structure than root hairs, as well as
a greater role in microbial P mineralization than root hairs of maize [229]. Activities of
4-coumaroyl-CoA ligase (4CL), chalcone isomerase (CHI), and phenylalanine ammonia
lyase (PAL) and expression levels of PtPAL1 and Pt4CL were induced by Funneliformis
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mosseae inoculation under water stress, and AMF plants showed higher scavenging activity
of hydroxyl radical and superoxide (O2

−) by root flavonoid extracts under water stress,
together with lower levels of O2

− and hydrogen peroxide and the degree of membrane
lipid peroxidation in comparison with non-AMF plants, as well as increased flavonoid
synthesis of trifoliate orange for reducing oxidative damage under water stress [230].
The single inoculation of Claroideoglomus etunicatum and Rhizophagus clarus promoted the
accumulation of nitrogen in the aerial part of cowpea cultivars, and plants inoculated with
C. etunicatum had similar or superior responses to plants fertilized with NPK or P [231].
Wheat inoculated with Glomus intraradices had maximum wheat yield and growth, which
mechanically resulted from a higher rhizosphere colonization level, photosynthetic rate,
and water use efficiency under drought stress [232].

Fungal inoculations partly improved fruit quality and mineral element components,
depending on the fungi species, while the cultured mycorrhiza-like fungus Piriformospora
indica relatively replaced AMF in citrus plants [233]. Inoculation with AMF provided
good dry weight gain in lemon balm (Melissa officinalis L.), and notably contributed to
high essential oil yield [234]. The mixed AMF inoculation in chamomile cultivation pro-
moted both plant productivity and the quality of flower heads, especially regarding the
component of phenolic compounds [235]. AMF inoculation had a positive effect on the
yield of raspberry (Rubus idaeus L.) [236], while the combined implementation of biochar
with AMF improved the colonization potential of AMF and significantly increased the
photosynthetic potential of Tamarindus indica by increasing the contents of chlorophyll and
carotenoids [237]. Different species of filamentous endophytic fungi, such as Trichoderma,
are capable of controlling the pathogens Xylella fastidiosa and Pseudomonas savastanoi via the
production and release of secondary metabolites; they are also effective against Oomycetes
sp. and Colletotrichum sp. [238]. The combined application of GA3 (Gibberellic acid) and
AMF (Rhizophagus irregularis) decreased growth impairment under salinity conditions by
upregulating the hormonal balance of plants. The utilization of AMF was able to increase
the productivity of sweet basil (Ocimum basilicum) plants under salinity conditions, and
mycorrhizal inoculation significantly promoted water use efficiency and chlorophyll con-
tent under salinity stress [239]. AMF formation significantly boosted the high temperature
tolerance of lettuce, a finding that could be related to the PSII system’s protection from dam-
age under high temperatures [240]. Furthermore, it has been suggested that mycorrhizal
symbiosis decreased the Na+ and Cl− content and improved the relative water content
(RWC), the total fresh and dry weight, and the photosynthetic activity of olive plants [241].
Mango (Mangifera indica L.) root stocks reacted to AMF inoculation in the nursery and also
in the field with improved nutrient uptake, plant growth, and yield [242].

Rouphael et al. [243] concluded that the improvement in the biomass of crops after
the application of two beneficial fungi, namely arbuscular mycorrhizal fungi and Tricho-
derma koningii TK7, could be connected to the modulation of the multilayer phytohormone
interaction network, as well as a potential improvement in nitrogen use effectiveness via
the glutamine oxoglutarate aminotransferase (GS-GOCAT) system. Hashem et al. [244]
reported that the negative effects of salt stress in cucumber were ameliorated by AMF
inoculation, which improved the activity of antioxidant enzymes that scavenged ROS and
protected plant tissues from dehydration stress, including ascorbate peroxidase, catalase,
and superoxide dismutase, and enhanced plant biomass and the synthesis of proline, pig-
ments, and glycine betaine. Shekoofeh et al. [245] reported that AMF inoculation protected
Ocimum basilicum plants from salinity stress by promoting water use efficiency, and in-
creased chlorophyll synthesis and mineral uptake. Other examples of modes of action of
AMF include the increased antioxidant activity and the accumulation of osmolytes [246],
the adjusting of proline biosynthesis [246,247], and the accumulation of K, Ca, and Mg,
which increased chlorophyll production and promoted the activity of enzymes [248,249].
Regarding the mitigating impacts of AMF against salinity stress, Estrada et al. [250] con-
cluded that AMF inoculation restricted both uptake and accumulation of Na by adjusting
the expression levels of SOS1, AKT2, and SKOR genes in roots, which allowed them to
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retain the homeostasis of Na+ and K+. The recent findings in omics science have also helped
show that microbial biostimulants’ application involves great alterations in secondary and
primary metabolites such as amino acids, phenolic acids, lipids, and tricarboxylic acid
(TCA) intermediates, as well as alterations in protective mechanisms against stress that
involve redox homeostasis, the stabilization of cell membranes, osmoregulation, the produc-
tion of energy via amino acid degradation, and the increased expression of stress-related
genes [150,251]. Qiu et al. [252] reported that the mitigation impacts of AMF increased with
increasing AMF root colonization rate, and the mitigation impacts of AMF reduced with
increasing soil P and N availability. Hu et al. [253] found that the symbiotic relationship
between plant roots and AMF could affect the translocation and accumulation of pharma-
ceuticals and personal care products (PPCPs) in plants, and that substrate type can affect
the function.

The application of humic substances and AMF treatment led to a reduction in carvone
content compared to treatment with humic substances alone, and it was suggested that
AMF inoculation combined with a high P rate promoted essential oil content, whereas
AMF inoculation combined with a high P rate and humic substance addition decreased
the carvone content in Lippia alba (Mill.) N.E.Br. [254]. AMF can shorten the litter nutrient
cycle, which is of great significance for the absorption, storage, and utilization of plant
nutrients in the Songnen grassland ecosystem [255]. It has been reported that mycorrhizal
colonization increased apple drought tolerance by improving gas exchange capacity, pro-
moting chlorophyll fluorescence parameters, increasing scavenging of reactive oxygen
species, creating a greater osmotic adjustment capacity, and using mitogen-activated pro-
tein kinase (MAPK) signals for interactions between AMF and their apple plant hosts [256].
Wang et al. [257] showed that AMF increased soil N2O emissions from legume systems
by increasing P acquisition for biological N2 fixation, suggesting that AMF benefit crop
production for higher yield and fewer N2O emissions in legume systems. The AMF
Gigaspora margarita KKU-BH-01 can effectively increase the growth and aid eucalyptus
seedlings to survive leaf blight disease (Cylindrocladium quinqueseptatum), as AMF induced
plant chitinase and β-1,3-glucanase enzymes, resulting in improved disease resistance in
plants [258]. Mycorrhizal oregano and mint plants had higher dry weight and essential oils,
and the Glomus etunicatum strains were more effective than the Glomus lamellosum strain,
and mycorrhizal oregano plants had higher dry weight than mycorrhizal mint plants [259].
Lam and Lai [260] reported that AMF treatment increased water spinach (Ipomoea aquatica
Forsk.) growth and reduced the accumulation of Ni but not Cd. Glomus mosseae and Glomus
deserticola increased shoot length, dry weight, chlorophyll quantity, and total N, P, and K
components in Eucalyptus globulus shoots [261]. Gheisari Zardak et al. [262] concluded that
the application of AMF could be important in the cultivation of medicinal plants under
semi-arid and arid conditions. The most important impacts of AMF on different plants are
shown in Table 1.

Table 1. The most important effects of AMF on plants.

Type Plant Plant Family Effects Reference

Arbuscular Mycorrhizal Fungi (AMF)

Alfalfa (Medicago sativa L.) Fabaceae AMF inoculation may increase photosynthetic rates and
the content of sugars in leaves. [263]

Asparagus (Asparagus officinalis L.) Asparagaceae AMF improved P efficiency via increased P uptake and
optimal growth by adding AMF to suitable P fertilization. [264]

Asparagus (Asparagus officinalis L.) Asparagaceae AMF inoculation can enhance adaptation to salinity stress. [265]

Barrel medic (Medicago truncatula Gaertn.) Fabaceae

AMF inoculation may alleviate Pb toxicity by improving
the transport of sucrose from shoot to root, increasing the

cleaving sucrose in roots, and increasing minor amino acid
accumulation.

[266]

Barrel medic (Medicago truncatula Gaertn.) Fabaceae
AMF in combination with K can play an important role in

reducing radiocesium uptake and its subsequent
translocation to plant shoots.

[267]

Basket willow (Salix viminalis L.) Salicaceae

Willow AMF promoted the dissipation of soil polycyclic
aromatic hydrocarbons (PAHs).

Willow AMF increased the content of organic acids
beneficial to metabolizing PAHs.

[268]

Bishop’s flower (Ammi majus) Apiaceae
Its application can induce the accumulation of

phyto-molecules, coumarin, which might increase its
medicinal and pharmacological applications.

[269]



Plants 2023, 12, 3101 13 of 38

Table 1. Cont.

Type Plant Plant Family Effects Reference

Arbuscular Mycorrhizal Fungi (AMF)

Black cumin (Nigella sativa Linn.) Ranunculaceae Colonization can increase relative water content (RWC),
Chl b content, and micronutrient uptake. [270]

Black locust (Robinia pseudoacacia L.) Fabaceae
AMF associated with black locusts may be useful to be
used for improving the phytoremediation of Cd under

elevated CO2 (ECO2).
[271]

Cacao (Theobroma cacao L.) Malvaceae It can improve the overall growth and can positively
increase the yield of cacao plants in acidic soils. [272]

Carob tree (Ceratonia siliqua L.) Fabaceae The used AMF inocula stimulated significantly the height
of carob tree as well as the aerial dry weight. [273]

Castor bean (Ricinus communis L.) Euphorbiaceae
AMF could protect castor bean against drought and salt
stress by improving leaf exchanges and photosynthetic

capacity and altering concentrations of metabolites.
[274]

Chickpea (Cicer arietinum L.) Fabaceae AMF inoculation increased the final yield of chickpea. [275]

Cocoa (Theobroma cacao L.) Malvaceae

AMF application improved the physical (cell wall turgor,
root growth) and biochemical (proline, polyamines,

enzymatic) characteristics of cocoa seedlings to reduce
water stress.

[276]

Durum wheat (Triticum turgidum subsp.
durum (Desf.)) Gramineae

AMF can decrease water deficiency in cultivars, resulting
in the up- and downregulation of many amino acids,
phenylpropanoids, lipids, alkaloids, and hormones.

[277]

Fenugreek (Trigonella foenum-graecum L.) Fabaceae AMF inoculation was effective in improving the tolerance
of fenugreek to salinity. [278]

Fig (Ficus carica L.) Moraceae
Fig was positively responsiveness to mycorrhizal
inoculation, and the AMF induced different root

architecture models.
[279]

Foxtail millet (Setaria italica) Poaceae AMF application can decrease heavy metal
phytoavailability and post-harvest transfer risks. [280]

Ginseng (Panax quinquefolius L.) Araliaceae AMF inoculation can promote plant uptake of N and P by
suppressing soil-borne pathogens. [281]

Italian senna (Cassia italica Mill.) Fabaceae AMF inoculation increased the chlorophyll, protein,
proline, and phenol content and lipid peroxidation. [282]

Lemongrass (Cymbopogon citratus) Gramineae
AMF inoculation modified lemongrass metabolism with

consequences on the essential oil component, composition,
and antioxidant properties during growth.

[283]

Maize (Zea mays L.) Gramineae

Inoculation with AMF affects plant P constituent with or
without P fertilizers addition.

Inoculation may improve P availability in P-unamended
and -amended soil.

[284]

Myrrh (Commiphora myrrha) Burseraceae

Mycorrhizal seedlings had higher biomass than
non-mycorrhizal seedlings.

Mycorrhizal seedlings had higher nutrient concentrations
than non-mycorrhizal seedlings.

[285]

Nemesia (Nemesia × hybridus) Scrophulariaceae

AMF inoculation can improve flower yield and growth
quality of nemesia.

AMF can increase the response of the plant to irrigation
with treated wastewater and reduce the cost associated

with using other water sources.

[286]

Nitre-bush (Nitraria tangutorum Bobr.) Zygophyllaceae

The combination of AMF and PGPR significantly
increased mycorrhizal colonization, promoted biomass

accumulation, boosted morphological development, and
improved photosynthetic performance, stomatal

adjustment ability, and the exchange of water and gas.

[287]

Oregano (Origanum vulgare) Lamiaceae

The synchronous application of AMF and atmospheric
CO2 (eCO2) promoted the accumulation of the majority

of the detected sugars, amino acids, organic acids,
phenolic acids, unsaturated fatty acids, and flavonoids.
Both AMF and eCO2 treatments significantly promoted

the growth and photosynthesis of oregano plants.
Both AMF and eCO2 acted synergistically in improving

the antioxidant capacity and anti-lipid peroxidation
activity of oregano.

[288]

Rice (Oryza sativa L.) Gramineae

AMF could inhibit the uptake of Hg, particularly
methyl-Hg in grains of rice.

AMF caused Hg transfer in the non-edible parts of rice,
such as leaf and stem.

AMF improved the growth index and micro-indexes of
rice.

[289]

Rice (Oryza sativa L.) Gramineae
The biochar combined with AMF improved soil nutrient
availability and root growth strategy, and then promoted

the nutrient absorption capacity of rice.
[290]

Rice (Oryza sativa L.) Gramineae AMF may have a significant function in wetlands. [291]

Ryegrass (Lolium multiflorum) Gramineae AMF had a positive influence on the plant shoot biomass
and the contents of P, N, Ca, K, and Mg in plants. [292]

Prickly pear (Opuntia ficus-indica) Cactaceae
AMF promoted physiological and biochemical factors,
and led to a decline in malondialdehyde (MDA) and

hydrogen peroxide (H2O2).
[293]

Seaberry (Hippophae rhamnoides) Elaeagnaceae AMF had a positive influence on the final yield. [294]

Sorghum (Sorghum bicolor L. Moench) Gramineae

The total phenolic, carotenoid, flavonoid, and tannin
concentrations were significantly higher in AMF–sorghum

grain for all cultivars.
The total phenolic, carotenoid, flavonoid, and tannin

concentrations were significantly higher in AMF–sorghum
grain for all cultivars.

[295]

Sunflower (Helianthus annuus L.) Asteraceae AMF community has greater efficiency in promoting
sunflower development and mycorrhizal colonization. [296]

Sunflower (Helianthus annuus L.) Asteraceae
The combination of AMF and biochar increased

antioxidant enzyme activity, nutrient content,
osmoprotectants, and relative water content.

[297]

Tomato (Solanum lycopersicum L.) Solanaceae
AMF application has a significant influence on

manganese, total nitrogen, and hydrophilic phenol
components in the fruit.

[298]

Wheat (Triticum aestivum L.) Geramineae AMF mitigated earthworm-induced N2O emissions from
upland soil in a rice-rotated wheat farming system. [299,300]

Zucchini squash (Cucurbita pepo L.) Cucurbitaceae Inoculation may lead to better nutritional status of P, N, K,
Mg, Ca, Zn, B, and Fe and low Al accumulation. [301]

Glomus mosseae, Glomus etunicatum Achnatherum (Achnatherum sibricium L.) Gramineae Simultaneous infections of both fungi significantly
increased total phenolic concentrations. [302]

Glomus mosseae Alfalfa (Medicago sativa L.) Fabaceae

It significantly enhanced Cd uptake by the roots of alfalfa
under ET.

It has no significant effect on iron-regulated transport 1
(IRT1) and natural resistance-associated macrophage

protein 1 (NRAMP1) gene expression.

[303]
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Table 1. Cont.

Type Plant Plant Family Effects Reference

Arbuscular Mycorrhizal Fungi (AMF)

Claroideoglomus etunicatum Alfalfa (Medicago sativa L.) Fabaceae The AMF alone or in combination with Si can alleviate
salinity stress in alfalfa. [304]

Funneliformis mosseae Apple (Malus domestica Borkh.) Rosaceae
The synergistic effect of dopamine and AMF improved
apple salt resistance, and overexpression of MdTYDC

promoted AMF symbiosis.
[305]

Rhizophagus irregularis Barley (Hordeum vulgare L.) Gramineae

The inoculation resulted in improved grain and straw Zn
concentrations, especially at low soil Zn concentrations.

AMF may be more appropriate for improving the quality
of barley grain in terms of Zn concentrations, rather than

improving yield.

[306]

Rhizophagus intraradices Barrel medic (Medicago truncatula Gaertn.) Fabaceae Mycorrhizal colonization had little effect on root or shoot
cesium (Cs) concentrations. [307]

Glomus caledonium, Glomus versiforme Bashfulgrass (Mimosa pudica L.) Fabaceae AMF inoculation significantly increased root mycorrhizal
colonization rates and soil acid phosphate activities. [308]

Glomus mosseae, Gigaspora gigantea Carrot (Daucus carota L.) Apiaceae AMF inoculation can lead to successful carrot production
under salinity stress. [309]

Glomus sinuosum, Paraglomus occultum Cassava (Manihot esculenta Crantz) Euphorbiaceae It can improve the final yield of cassava. [310]
Gloms rubiforme, Acaulospora scrobiculata, Glomus

etunicatum, Glomus rubiforme, Acaulospora tuberculata Cassava (Manihot esculenta Crantz) Euphorbiaceae The inoculation had positive effects on cassava. [311]

Rhizophagus irregularis, Paraglomus sp. Castor bean (Ricinus communis L.) Euphorbiaceae

Shoot Cr concentration doubled in non-AMF versus AMF
plants; the content was similar.

AMF vesicle percentage negatively correlated with Cr root
concentration.

[312,313]

Glomus tortuosum Chicory (Cichorium intybus L.) Asteraceae AMF, biochar, and N fertilizer application enhanced
biomass. [314]

Glomus tortuosum Chicory (Cichorium intybus L.) Asteraceae AMF and biochar application increased nutrient
absorption and reduced Cd absorption. [314]

Glomus clarum Chili (Capsicum frutescens) Solanaceae The inoculation increased the growth, flowering, and fruit
production, and also increased the P uptake significantly. [315]

Glomus etunicatum, Funneliformis mosseae Cinnamomum (Cinnamomum migao) Lauraceae It markedly upregulated antioxidant enzyme activities
and osmotic adjustment substances. [316]

Rhizophagus clarus Coarse Mint (Mentha arvensis) Lamiaceae
Inoculation of coarse mint with AMF Rhizophagus clarus

and a high dose of P boosted plant growth and the
essential oil yield, and it increased carvacrol content.

[317]

Acaulospora sp., Glomus sp. Common bean (Phaseolus vulgaris L.) Fabaceae

The positive impact of co-infection by AMF and rhizobia
on plant growth and the total N content of the plants was
reported, along with a synergistic influence on the total P
content, the number of nodules, and the mycorrhizal rate

of the plants.

[318]

Funneliformis mosseae, Rhizophagus irregularis Common myrtle (Myrtus communis) Myrtaceae
AMF boosted myrtle drought resistance through

enhanced water and nutrient supply and stimulation of
antioxidant defense.

[319]

Dominikia disticha, Claroideoglomus etunicatum,
Rhizophagus irregularis Cowpea (Vigna unguiculata (L.) Walp.) Fabaceae

Inoculation with all AMF led to high aboveground
biomass production and accumulation of N as well as

increased P content in plants.
[320]

Glomus Spp. Cowpea (Vigna unguiculata (L.) Walp.) Fabaceae The activity of AMF in alleviating Cd stress in
pre-flowering cowpea has been proven. [321]

Funneliformis mosseae Cucumber (Cucumis sativus L.) Cucurbitaceae
The enhanced secondary metabolism and integrated
transcriptional regulation might play a crucial role in
AMF-mediated alleviation of chilling stress in plants.

[322]

Glomus etunicatum, Glomus mosseae, Glomus
versiforme, Glomus margarita Cucumber (Cucumis sativus L.) Cucurbitaceae AMF communities increased plant growth, soluble sugar

content, chlorophyll content, and root activity. [323]

Glomus spp., Acaulospora spp. Cucumber (Cucumis sativus L.) Cucurbitaceae
The AMF consortium could inhibit Fusarium wilt of

cucumber, and, consequently, showed promising results as
a biological control factor in greenhouse agro-ecosystems.

[324]

Pervetustus simplex, Claroideoglomus etunicatum,
Albahypha drummondii, Septoglomus xanthium,

Funneliformis mosseae, and Rhizoglomus irregulare

Date palm
(Phoenix dactylifera L.) Arecaceae Shoot length and stem diameter were significantly higher

in treatments augmented with compost and AMF. [325]

Glomus monosporus, Glomus deserticola, Glomus
clarum

Date palm
(Phoenix dactylifera L.) Arecaceae All fungi significantly stimulated shoot height and

biomass and increased the number of leaves per plant. [326]

Glomus iranicum Date palm
(Phoenix dactylifera L.) Arecaceae It showed increased biomass production, chlorophyll, and

mineral nutrient content. [327]

Claroideoglomus etunicatum, Rhizoglomus irregulare,
Diversispora versiformis

Eggplant
(Solanum melongena L.) Solanaceae The inoculation is an effective strategy for alleviating cold

stress. [328]

Rhizoglomus irregulare Eggplant
(Solanum melongena L.) Solanaceae AMF improved fruit quality by reducing glycoalkaloid

concentration and fruit browning potential. [329]

Gigaspora gigantean, Glomus mosseae Eggplant
(Solanum melongena L.) Solanaceae

Two mycorrhiza fungi affected plant growth indirectly,
and in some situations, they reduced the inputs of

chemical pesticides in eggplant.
[330]

Glomus mosseae Fennel (Foeniculum vulgare) Apiaceae

The mycorrhiza and growth-promoting bacteria
(Azospirillum) resulted in the highest yields, total

carotenoids, and chlorophyll in fennel plants subjected to
water deficit stress.

[331]

Funneliformis mosseae Grapevines (Vitis vinifera) Vitaceae
The introduction of F. mosseae through donor plants is a

suitable field inoculation method for grapevines and can
help them to better withstand heat waves.

[332]

Rhizophagus irregularis Hemp (Cannabis sativa L.) Cannabaceae

AMF increased the heavy metal tolerance of hemp, and
they changed Cd chemical forms by changing the

composition of low molecular weight organic acids, which
in turn affected soil Cd bioavailability.

[333]

Rhizophagus intraradices Holy Basil (Ocimum tenuiflorum L.) Lamiaceae The inoculation increased the productivity of holy basil
and boosted the quality of the final products. [334]

Rhizophagus clarus, Claroideoglomus etunicatum,
Azospirillum brasilense

Lemon grass (Cymbopogon citratus (DC.)
Stapf) Graminaeae

It is concluded that inoculating lemongrass with AMF
enhances plant growth and development and modifies the

content and essential oil composition.
[335]

Rhizophagus clarus Maize (Zea mays L.) Graminaeae
A combination of AMF (Rhizophagus clarus) and PGPR

(Bacillus sp.) could enhance 33P uptake in maize plants
under soil water stress.

[336]

Funneliformis mosseae Maize (Zea mays L.) Graminaeae AMF massively improved biomass. [337]

Glomus intraradices Maize (Zea mays L.) Graminaeae After inoculation, there was an increase in leaf and stem
ratios but a decrease in ear ratios. [338]

Funneliformis mosseae, Claroideoglomus etunicatum Maize (Zea mays L.) Graminaeae

The inoculation increased bacterial diversity, decreased
the relative abundances of selenobacteria related to plant

Se absorption, and improved bacterial network
complexity in selenium (Se)(VI)-stressed soils.

[339]

Glomus clarum, Glomus deserticola Maize (Zea mays L.) Graminaeae 30 g of G. clarum and G. deserticola had biocontrol potential
against Fusarium verticillioides. [340]

Glomus intraradices, Glomus constrictum, Glomus
mosseae Marigold (Tagetes erecta L.) Asteraceae

It can improve the capability of reactive oxygen species
(ROS) scavenging and reduce Cd concentration in plants

to alleviate Cd stress in marigolds.
[341]

Glomus constrictum Trappe Marigold (Tagetes erecta L.) Asteraceae
AMF affected the host plant positively in growth,

pigments, phosphorous content, and flower quality, and
thus alleviated the stress imposed by water deficiency.

[342]

Funneliformis mosseae, Claroideoglomus etunicatum Moldavian balm (Moldavian dragonhead)
(Dracocephalum moldavica L.) Lamiaceae Inoculation may increase growth parameters and salinity

tolerance under all salinity levels. [343]
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Table 1. Cont.

Type Plant Plant Family Effects Reference

Arbuscular Mycorrhizal Fungi (AMF)

Glomus mosseae, Glomus intraradices Mulberry (Morus alba L.) Moraceae AMF species colonization increased P and N contents of
seedlings. [344]

Glomus deserticola, Gigaspora margarita Olive
(Olea europaea L.) Oleaceae

Mycorrhizal symbiosis decreased Na+ and Cl− content
and improved RWC, dry and fresh weight, and

photosynthetic activity.
[345]

Rhizophagus irregularis Olive
(Olea europaea L.) Oleaceae

The inoculation exhibited better performance under
drought, especially under partial root-zone drying (PRD)

treatment.
[345]

Rhizophagus irregularis DAOM 197,198 Olive
(Olea europaea L.) Oleaceae

Its colonization with olive roots significantly reduced the
deleterious effect of water deficit stress by upregulating

the primary and secondary metabolism and preserving a
high stem water potential level in olive plants.

[346]

Glomus intraradices Olive
(Olea europaea L.) Oleaceae

The mycorrhizal inoculation played an important part in
the attenuation of the impacts of sulfates contained in

gypsum substrate on olive trees.
[347]

Funneliformis mosseae, Funneliformis constrictum,
Gigaspora margarita, and Rhizophagus irregularis

Onion
(Allium cepa L.) Amryllidaceae

Application of AMF and Trichoderma viride to onion plants
assisted their growth in nutrient-deficient soils amended

with fish waste.
[348]

Rhizophagus intraradices Palmarosa (Cymbopogon maritinii (Roxb.)
Wats. Var. Motia Burk Gramineae

It may influence palmarosa seedling emergence and
growth under salinity conditions, and it is useful for

health and significant seedling emergence.
[349]

Glomus intraradices, Glomus mosseae, Glomus
etunicatum Papaya (Carica papaya L.) Caricaceae

Rhizobacteria and AMF acting together formed a
mutualistic relationship that enhanced disease control
against Fusarium oxysporum and stimulated growth in

papaya.

[350]

Gigaspora margarita Peanut (Arachis hypogaea) Anacardiaceae
The inoculation significantly enhanced leaf K

accumulation, drought resistance, and pod yield under
drought stress.

[351]

Glomus intraradices, Gigaspora margarita Pepper (Capsicum annuum L.) Solanaceae
Inoculated plants had greater dry weight compared to

non-inoculated plants.
The inoculation can increase P absorbance and P uptake.

[352,353]

Glomus mosseae, Acaulospora laevis, Glomus manihotis,
and a mixed AMF strain Pomegranate (Punica granatum L.) Punicaceae Growth, physiological, and biochemical activities were

effectively improved by bio-hardening. [354]

Funneliformis mossae, Rhizophagus intraradices Quince (Cydonia oblonga Mill.) Rosaceae Inoculation with AMF led to significant enhancements in
shoot and root dry weight and leaf chlorophyll content. [355]

Genera Scutellospora, Acaulospora, and Glomus Red clover (Trifolium pratense L.) Fabaceae

After inoculation, significant increases in monoterpenes
such as myrcene, (-)-β-pinene, and linalool were

observed. [356]

Glomus aggregatum, Funneliformis mosseae,
Rhizophagus intraradices Red tangerine (Citrus reticulata Blanco) Rutaceae AMF had a positive effect on red tangerine. [357]

Claroideoglomus etunicatum Redtip (Photinia fraseri Dress) Rosaceae AMF had an impact on plant height and hyphal length
density. [358]

Rhizophagus intraradices Rice (Oryza sativa L.) Gramineae It significantly reduced total As and inorganic As
components in rice grains. [359,360]

Acaulospora mellea; Glomus formosanum; Rhizoglomus
clarum; Glomus spp. Rice (Oryza sativa L.) Gramineae

It stimulated plant growth, improved root morphological
characteristics, and increased P accumulation in rice

plants under salt stress conditions.
[361,362]

Glomus sp1 Rose (Rosa rubiginosa L.) Rosaceae
The highest percentage of rose root stock establishment
increment was achieved with the application of Glomus

sp1.
[363]

Glomus etunicatum, Glomus mosseae Ryegrass (Lolium perenne) Gramineae AMF-inoculated plants showed lower Cd toxicity, despite
the increase in Cd uptake. [364]

Funneliformis mosseae, Claroideoglomus etunicatum Salt grass (Puccinellia tenuiflora) Gramineae

It is able to alleviate boron (B) toxicity by improving
biomass and reducing tissue B concentrations.

It can help plants tolerate the combined stresses of salt
and drought.

[365]

Rhizophagus intraradices, Funneliformis mosseae Saffron (Crocus sativus L.) Iridaceae
The mixture of both species increased the spice yield,
quality, antioxidant activity, and bioactive compound

contents.
[366]

Glomus mosseae Snap bean (Phaseolus vulgaris L.) Fabaceae

AMF increased the concentrations of P, N, Mg, and Ca in
roots and shoots.

It can be concluded that it may reduce the detrimental
impacts of increasing O3 on host plants by improving

plant nutrition and growth.

[367]

Glomus mosseae, Glomus intraradices, Glomus hoi Sour orange (Citrus aurantium L.) Rutaceae

Under salt stress, mycorrhizal-inoculated plants had
higher chlorophyll content, higher growth, lower

electrolyte leakage, better water status, greater gas
exchange capacity, higher malondialdehyde and hydrogen

peroxide content, higher osmolyte accumulation, and
better antioxidant defense systems.

[368]

Glomus mosseae, Glomus intraradices Sorghum (Sorghum bicolor L. Moench) Gramineae

AMF can change the profile of VOCs emitted by roots as
well as root morphology.

AMF can positively affect the morphological traits of the
host roots, total root length, and specific root length of

mycorrhizal plants.

[369]

Glomus sp. 1, Glomus sp. 2, Glomus sp. 3, Glomus
aggregatum, Glomus fasciculatum, Acaulospora longula,

Glomus occultum, Acaulospora scrobiculata,
Acaulospora spinosa, Scutellospora sp.

Sorghum (Sorghum bicolor L. Moench) Gramineae AMF application improved P and K uptake in shoots. [370]

Funneliformis mosseae; Funneliformis geosporum Sorghum Gramineae
Plant height and fresh and dry biomass of

AMF-inoculated plants were greater in normal soil,
followed by sodic and saline soils.

[371]

Acaulospora saccata, Acaulospora fragilissima,
Scutellospora ovalis, Rhizophagus neocaledonicus,

Claroideoglomus etunicatum nc, Pervetustus simplex nc
Sorghum (Sorghum bicolor L. Moench) Gramineae

Inoculum of combined AMF isolates is appropriate to
obtain higher yields and less contaminated biomass of

forage sorghum in ultramafic environments.
[372]

Glomus mosseae, Rhizophagus irregularis Soybean (Glycine max L.) Fabaceae The inoculation can enhance P uptake and soybean
productivity. [373]

Rhizophagus clarus Soybean (Glycine max L.) Fabaceae AMF inoculation positively influenced grain yield, shoot
dry weight, and P and N content in leaves. [374]

Cetraspora pellucida, Claroideoglomus etunicatum Strawberry
(Fragaria × ananassa Duch.) Rosaceae Plants grown with 9% biochar and inoculated with C.

etunicatum showed a more profuse root system. [375]

Rhizophagus clarus Strawberry
(Fragaria × ananassa Duch.) Rosaceae

AMF significantly enhanced plant biomass production by
boosting photosynthesis rate, antioxidant enzyme defense,
water content and use efficiency, and the nutritional status

of Zn, in particular.

[376]

Rhizophagus intraradices Sweet flag (Acorus calamus) Acoraceae

Under Cr stress, AMF promoted nutrient uptake by A.
calamus and increased soil carbon input.

AMF significantly increased the synergy between the
dominant strains.

[377]

Rhizophagus fasciculatus, Rhizophagus aggregatus,
Rhizophagus irregularis Tangerine orchard (Citrus reticulata L.) Rutaceae Inoculation had a positive effect on the final yield. [378]

Glomus versiforme Tobacco (Nicotiana tabacum L.) Solanaceae AMF can protect tobacco against As uptake, and it can
play an important role in food quality and safety. [379]
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Table 1. Cont.

Type Plant Plant Family Effects Reference

Arbuscular Mycorrhizal Fungi (AMF)

Claroideoglomus etunicatum, Claroideoglomus
claroideum, Glomus microaggregatum, Rhizophagus
intraradices, Funneliformis mosseae, Funneliformis

geosporum

Tomato (Solanum lycopersicum L.) Solanaceae
Mycorrhizal inoculation significantly boosted root

colonization levels, height, root dry biomass, total yield,
shoot dry biomass, and number of fruits.

[380]

Funneliformis Mosseae and Rhizophagus intraradices Thyme (Thymus vulgaris L.) Lamiaceae
Their inoculation increased essential oil production in

both Thymus vulgaris L. and Thymus daenensis under water
stress conditions.

[381]

Glomus versiforme Trifoliate orange (Poncirus trifoliata) Rutaceae Mycorrhization significantly increased gallic acid, ferulic
acid, salicylic acid, and phlorizin acid. [382]

Rhizophagus intraradices, Funneliformis mosseae Valerian (Valeriana officinalis L.) Caprifoliaceae
They considerably improved root proline and total soluble

sugars and total phenolics in roots and shoots versus
untreated valerian plants.

[383]

Funneliformis mosseae, Glomus versiforme Wheat (Triticum aestivum L.) Graminae Inoculation with AMF could increase Se bioavailability in
the rhizosphere. [384]

Funneliformis mosseae, Glomus versiforme Wheat (Triticum aestivum L.) Graminae
AMF combined with 48.76 mgkg−1 P applied in soil can

not only achieve high grain yield, but also fully exploit the
biological potential of Se uptake in wheat.

[385]

Funneliformis mosseae BGC HEB02, Rhizophagus
intraradices BGC HEB07D Wheat (Triticum aestivum L.) Graminae

Zn in wheat grain can be significantly increased by
inoculation with AMF, indicating the potential of AMF to

cope with Zn deficiency.
[386]

Glomus mosseae, Glomus hoi, Glomus etunicatum,
Acaulospora scrobiculata, Acaulospora spinosa White yam (Dioscorea rotundata) Dioscoreaceae AMF can increase yam tuber growth. [387]

Funneliformis mosseae, Laroideoglomus etunicatum,
Rhizophagus intraradices Willow (Salix viminalis) Salicaceae

Organic acids including arachidonic acid, octadecanedioic
acid, α-linolenic acid, 10,12,14-octadecarachidonic acid,
and 5-methoxysalicylic acid were significantly increased

under AMF inoculation treatment.
AMF inoculation also increased the levels of polyphenol

oxidase and dehydrogenase.

[388]

7. Modes of Action of Arbuscular Mycorrhizal Fungi (AMF)

AMF inoculation changed the biochemical procedures of lemongrass with a subse-
quent effect on growth and increased the suppression of Fusarium root rot under green-
house conditions; additionally, essential oils (EOs) from mycorrhizal lemongrass frequently
inhibited Fusarium Solani Fs4 development, notably more than the non-inoculated coun-
terpart [389]. AMF can form a symbiosis with most vegetable plants, including the main
crops from diverse families, such as Apiaceae (e.g., carrot), Amaryllidaceae (e.g., onion,
garlic, leek), Cucurbitaceae (cucumber), Asteraceae (e.g., lettuce), Fabaceae (e.g., pea and
bean), and Solanaceae (e.g., bell pepper, tomato) [390]. The most significant beneficial
impacts of AMF are the boosted capture of mineral elements such as calcium, phosphorus,
copper, zinc, sulfur, and iron, and the increased resistance to various types of abiotic and
biotic stress [391,392]. In one experiment, it was reported that the α-diversity of AMF
and diazotrophs communities, N-related enzymes, and sediment nutrition constituents
were the principle parameters driving the biological nitrogen fixation (BNF) process in
mangrove ecosystems [393]. The synchronous utilization of chitosan nanoparticles (CSNPs)
and AMF promoted the levels of carotenoids, polyphenols, and tocopherols in the roots,
thus increasing antioxidant capacity (33%); therefore, CSNPs can be used as effective biofer-
tilization tools to increase plant growth and fitness, exemplified by the improvement in the
health-promoting components in wheat [394]. In the presence of AMF inoculation strains
Rhizophagus irregularis and Funneliformis mosseae, phosphorous components in the leaves
of tomato plants were increased under both watering regimes, and even under limited
watering conditions, Ca, K, Zn, Mg, and Mn were increased to levels similar to those of non-
stressed plants [395]. AMF increased nutrient uptake, particularly phosphorus and other
less mobile elements, mostly by increasing the absorptive surface of hyphal exploration
in the rhizosphere, and acted as soil reclamation and biocontrol agents for contaminated
or polluted soil [396]. Sarkar et al. [397] reported the probability of using arbuscular my-
corrhizal fungi on symbiotic Miscanthus plants in phytoremediation and growing them
in Zn-deficient soils. AMF improved plant growth under toxic trace element (TE) stress.
The function of AMF in regulating heavy metal transport is concentration-dependent, and
the transport direction of Cd and Zn in plants regulated by AMF changes with TE. AMF
increased the absorption of Zn by growth dilution and Cd by biological enrichment, and
the interaction between Cd and Zn was affected by AMF and other components [398].

Mycorrhizal fungi respond to metal contamination in different ways. Funneliformis
mosseae in pepper can promote the dry mass production photosynthesis rate under Cu
stress [399], Glomus versiforme and Rhizophagus intraradices can increase P nutrition and
antioxidant activity of Lotus japonica under Cd stress [400], Rhizophagus intraradices can
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accumulate Cr in roots and decrease its translocation towards shoots of Brachiaria mutica
under Cr stress, Rhizophagus irregularis may immobilize Cu and Pb in soil for the cultivation
of willows [401], Rhizophagus intraradices can regulate As transporter in root epidermis cells
and decrease its uptake in pea seedlings [402], and Claroideoglomus and Rhizophagus spp.
can decrease Cd accumulation in wheat grains [403]. Funneliformis mosseae is a famous
mycorrhiza among different AMF species for its symbiosis with the roots of various plant
species, and it may facilitate the exchange of nutrients via the expansion of roots through
the outer membrane of the mycelia and by boosting root development [404]. Some of the
most important examples of mycorrhizal fungi mitigating soil nutrient deficiencies are
Rhizophagus irregularis reducing soil nutrient deficiencies of P and Zn in Medicago truncatula
by increasing MtZIP5 and MtPT4 gene induction [405], Rhizophagus irregularis boosting
root absorption area and soil P availability in maize, Rhizophagus irregularis modifying
the ZIP transporter response in barley and boosting grain Zn bioavailability [406], Fun-
neliformis mosseae promoting the uptake of nutrients such as Mn, Mg, Zn, Fe, Ca, S, N, P,
and K in cucumber [407], and Rhizophagus irregularis stimulating MtZIP6 gene expression
and boosting the root absorption area in Medicago truncatula [406]. Various biochemical
and physical mechanisms have been reported to play important roles in the enhancement
of common bean plant stress resistance by AMF inoculation against Rhizoctonia solani or
Rhizoctonia root rot disease, namely improved plant growth, increased plant nutrition,
cytoplasmic granulation, improved cell wall thickening, and the accumulation of some
antimicrobial components such as defense-related enzymes and phenolic substances [408].
Li et al. [409] reported that AMF promoted the accumulation of Cd in the roots of wheat
but significantly decreased the amount of Cd in the grains and shoots. Moreover, stom-
atal conductance, photosynthetic rates, chlorophyll content, transpiration rates, and the
accumulation of carbohydrates under Cd stress were elevated by AMF symbiosis. Pro-
teomic analysis showed that AMF led to the expression of two enzymes that have signif-
icant functions in the chlorophyll biosynthesis pathway, namely Mg-protoporphyrin IX
chelates and coproporphyrinogen oxide; increased the expression of two proteins related to
CO2 assimilation, namely malic enzyme and ribulose-1,5-bisphosphate carboxylase; and
boosted the expression of S-adenosylmethionine synthase. Under salinity stress, glomus
mosseae can increase total proline and phenol content, leaf area, and root and shoot dry
weights and lengths in Triticum aestivum [410]; Funneliformis mosseae can increase nutrient
uptake, the photosynthetic rate, and the stand establishment rate of Cucumis sativus [411];
and Rhizobium irregularis and Funneliformis mosseae can increase plant biomass and de-
crease oxidative burst by strengthening the antioxidant enzymatic activities of Cajanus
cajan [412]. Yu et al. [413] reported that AMF have ecological functions in decreasing Cd loss,
with positive effects on maize growth because of leaching from polluted soil, as the AMF
changed Cd migration by boosting the contents of glomalin-related soil protein (GRSP),
exudates, and root morphology. Selvaraj et al. [414] observed that Glomus intraradices can
improve both nutrient use efficiency and increase the defense response against herbivorous
insects (Spodoptera litura) in blackgram. AMF symbiosis reduces temperature stress in
host plants by improving the osmotic adjustment [415], increasing the photochemistry of
PSII and the photosynthetic rate [416], increasing the uptake of nutrients [417], improving
reproductive capacity, and enhancing antioxidant activity [418,419]. Farghaly et al. [420]
reported that AMF inoculation can decrease the adverse impacts of alkalinity stress on
wheat plants by decreasing Na concentration and pH and improving the availability of P
and the productivity of wheat yield.

8. Practical Application of Microbial Biostimulants on Crops

Culture-dependent approaches have allowed the isolation of various bacteria taxa
from the mycorrhizosphere of Glomus margarita, Glomus versiforme, Rhizobium irregular,
Rhizobium clarus, and Funneliformis mosseae [421–423]. Microbial inoculants in horticulture
and agriculture systems have different effects; for example, Pseudomonas putida can increase
iron uptake in rice, and Pseudomonas fluorescens can improve grain yield, plant height, and
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biomass in rice, sweet potato, and rapeseed [424–426]. The Streptomyces strain shows posi-
tive effects on the plant growth of tomato and rice [427,428]. Improved dry shoot weight
and a significant increase in leaf length were reported after the application of Azospirillum
brasilense Sp245, and Aeromonas spp. increased the root area of rice [429]. Comamonas acidovo-
rans and Bacillus subtilis have significantly improved plant growth and increased cytokinin
constituents in shoots and roots [430,431]. Bacillus licheniformis application increased fresh
weight, enhanced cell division, and raised the chlorophyll content in cucumber [432], and
Azospirillum lipoferum improved the root hair density of maize seedlings [433]. Azospirillum
lipoferum increased tolerance to salinity stress in wheat [434], and Pseudomonas putida appli-
cation led to increased shoot and root biomass and water content of white clover [435]. The
utilization of Alternaria sp. stimulated drought tolerance in wheat [436,437]. It has also been
reported that Azoarcus sp. increased plant nitrogen nutrition and root growth and reduced
nutrient deficiency in wheat [438], and Azorhizobium sp. boosted plant nitrogen nutrition
and root growth and alleviated nutrient deficiency [438]. Rhizobium meliloti improved plant
growth, nitrogen use efficiency, and the quality of pods of peanuts [439,440], and Rhizobium
leguminosarum boosted growth and yield performance under drought stress in soybean
seedlings [441]. Azotobacter chroococcum and Azotobacter vinelandii increase root and shoot
length, chlorophyll content, and root and leaf number [442]. Application of Bacillus halotol-
erans, Pseudomonas frederiksbergensis RG2, and Enterobacter hormaechei increased germination,
growth, and yield; induced better drought resistance; and improved uptake of P, N, and
Zn [443]. Rhizoglomus irregulare Aoufous consortium enhanced growth traits and physio-
logical characteristics that have functions in the absorption of N and P content, increased
protein and sugar content, reduced MDA and H2O2, alleviated soil pH, and increased the
electrical conductivity, organic matter, and total organic carbon of date palm under drought
conditions [444]. Glomus spp. increased root fresh weigh, root length, shoot height, shoot
fresh weight, and germination index and improved the root basal diameter, dry biomass,
and seedling length of date palm under heavy metal stress conditions [445]. AMF also can
interact with PGPR [446,447]; for example, a positive and significant synergistic interaction
has been reported between Bacillus subtilis and AMF regarding nitrate, nitrate reductase,
and nitrogenase properties and the components of phenols, lipids, fiber, and osmoprotec-
tants such as proline, betaine, and glycine [448]. Zamljen et al. [449] reported that microbial
biostimulants added to the nutrient solution showed better results in the volatile content
as well as primary metabolism and yield of basil. Anton-Herrero et al. [450] concluded
that the origin and composition of microbial biostimulants determine their physiological
impacts on pepper plants. Microbial biostimulants increased lipophilic antioxidants and
yield and reduced sugars in cherry tomato cultivars [451–463].

9. Conclusions and Future Remarks

Biostimulants are sustainable and eco-friendly products that may promote metabolic
and enzymatic processes in plants to enhance their yield, productivity, and crop quality
and increase resistance to abiotic stresses. Biostimulants contain substances or products
containing special formulations, natural components, or microorganisms that can naturally
improve plant growth. The most important categories of biostimulants are humic and
fulvic acid, fungi, bacteria, amino-acid-containing products, hormone-containing products,
etc. Biostimulants are not only considered important alternatives to mineral fertilizers,
but are also distinguished in organic farming systems under sustainable crop production
management. Increased shoot and root growth, better root growth potential, improved re-
sistance to stressors, and reduced nitrogen fertilizer inputs are some of the most noteworthy
effects of biostimulant application in sustainable agriculture systems.

Arbuscular mycorrhizal fungi are widespread root colonization fungi associated with
the roots of higher plants. The current multiplication methods of mycorrhizal species under
root organ culture (ROC) have become efficient alternatives for the cultivation of specific
secondary metabolite compounds. Several kinds of studies have shown that AMF lead
to significant changes in the quality and quantity of secondary metabolites that originate
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from medicinal and aromatic plants of economic interest. AMF can only be grown in the
presence of host plants and are extensively used in agriculture and horticulture, especially
Rhizophagus (formerly known as Glomus) intraradices and Funneliformis (formerly known
as Glomus) mosseae. AMF make a positive contribution to growth, yield, stress tolerance,
pathogen protection, and the maintenance of agricultural ecosystem sustainability. The
increased activities of secondary metabolite production and antioxidant defense system
enzymes related to plant defense have been extensively reported in mycorrhizal plants.

In conclusion, AMF play a key role in plant nutrition and performance due to their
capacity to improve plant mineral uptake. AMF, like other microbial biostimulants, can
increase the sustainability of agricultural and horticultural production systems as well as
improve the quality and quantity of food for the ever-growing world population. Moreover,
studying the molecular mechanisms behind the observed activities will help to reveal the
physiological and plant metabolism pathways involved in these processes and provide
farmers with tailor-made products suitable for various conditions. However, further stud-
ies are needed to improve the reproducibility of the positive effects and to standardize
the production processes from the lab to an industrial scale. This review article concludes
that inoculation with specific arbuscular mycorrhizal fungi can increase the concentration
of secondary metabolites in plants. However, future studies are needed to increase the
reproducibility of the positive impacts, and more in-depth research is needed to iden-
tify the influence of interactions between AMF and biostimulants for promoting plants’
physiological characteristics.
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