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Abstract: The agricultural practices of breeding, farm management and cultivation have improved
production, to a great extent, in order to meet the food demands of a growing population. However,
the newer challenges of climate change, global warming, and nutritional quality improvement
will have to be addressed under a new scenario. Plant biotechnology has emerged as a reliable
tool for enhancing crop yields by protecting plants against insect pests and metabolic engineering
through the addition of new genes and, to some extent, nutritional quality improvement. Plant tissue
culture techniques have provided ways for the accelerated clonal multiplication of selected varieties
with the enhanced production of value-added plant products to increase modern agriculture. The
in vitro propagation method has appeared as a pre-eminent approach for the escalated production of
healthy plants in relatively shorter durations, also circumventing seasonal effects. However, there are
various kinds of factors that directly or indirectly affect the efficiency of in vitro regeneration like the
concentration and combination of growth regulators, variety/genotype of the mother plant, explant
type, age of seedlings and other nutritional factors, and elicitors. Nanotechnology as one of the latest
and most advanced approaches in the material sciences, and can be considered to be very promising
for the improvement of crop production. Nanomaterials have various kinds of properties because
of their small size, such as an enhanced contact surface area, increased reactivity, stability, chemical
composition, etc., which can be employed in plant sciences to alter the potential and performance
of plants to improve tissue culture practices. Implementing nanomaterials with in vitro production
procedures has been demonstrated to increase the shoot multiplication potential, stress adaptation
and yield of plant-based products. However, nanotoxicity and biosafety issues are limitations, but
there is evidence that implies the promotion and further exploration of nanoparticles in agriculture
production. The incorporation of properly designed nanoparticles with tissue culture programs in a
controlled manner can be assumed as a new pathway for sustainable agriculture development. The
present review enlists different studies in which treatment with various nanoparticles influenced
the growth and biochemical responses of seed germination, as well as the in vitro morphogenesis of
many crop species. In addition, many studies suggest that nanoparticles can be useful as elicitors for
elevating levels of important secondary metabolites in in vitro cultures. Recent advancements in this
field also depict the suitability of nanoparticles as a promising carrier for gene transfer, which show
better efficiency than traditional Agrobacterium-mediated delivery. This review comprehensively
highlights different in vitro studies that will aid in identifying research gaps and provide future
directions for unexplored areas of research in important crop species.

Keywords: crops; genetic engineering; in vitro cultures; nanoparticles; regeneration; seedlings;
secondary metabolites
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1. Introduction

Owing to their minuscule size, NPs acquire novel and unique properties that differ
from their bulkier counterparts [1], giving rise to breakthrough technology with application-
based solutions in many sectors of agriculture and plant biotechnology. However, the
release of NPs into the environment has raised concern because of their toxic effects on the
environment and human health [2]. Moreover, the release of NPs into the environment
could result in their entry and accumulation in agricultural soils from bio-solids impreg-
nated with NPs through the application of sewage sludge for agricultural purposes [3].
Thus, the application of NPs in plant tissue cultures is promising, as this technique is
used to screen different aspects of plants’ growth and development, as well as to engage
in genetic manipulation, bioactive compound production and plant improvement [4]. It
has been noted that NPs have a positive impact because of their reduced size, elevated
reactivity, mass-to-area ratio and other physico-chemical properties, but the negative effects
of NPs have also been noted, which mainly depend on the type of metal, dissolution power
and plant species [5,6]. In recent years, the application of NPs has demonstrated a positive
effect on callus induction, organogenesis, somatic embryogenesis, genetic transformation
and secondary metabolite production. Although there are a number of reviews on the
application of nanomaterials in plants [7–10] and in agriculture [11,12] to mitigate various
stresses [13,14], reviews on their application in plant tissue culture are scant [15]. Thus, this
review comprises numerous studies that were conducted to explore the in vitro application
of NPs on commercially important crops with respect to various aspects like prevent-
ing contamination, impact on seed germination, production of metabolites, induction of
morphogenesis, biochemical and molecular changes, and genetic engineering.

2. Efficiency of NPs in Eliminating Contamination

The production of healthy plantlets is a prime concern behind the technique of plant
tissue culture but microbial contamination is a common problem faced during this proce-
dure. Conventionally, antibiotics are employed to eliminate microbes, but their frequent
application can negatively affect plant tissue growth, e.g., antibiotics like carbenicillin and
cefotaxime inhibit plant cell growth, organogenesis and embryogenesis [16,17]. Reports
suggest that streptomycin and chloramphenicol interact with protein synthesis, rifampicin
hinders nucleic acid synthesis and penicillin inhibits cell-wall membrane synthesis [18,19].
There is also the risk of a decreased genetic stability and lower regeneration capability of
plants when a high level of antibiotics is used [20]. Nanomaterials are an alternative because
of their distinctive features, which have been shown to possess antifungal and antibacterial
properties that restrict microbial growth in in vitro cultures resulting in the successful mass
propagation of selected species [21]. Silver nanoparticles (AgNPs) have been considered
one of the better options, as the anchoring and penetration of Ag ions into microbes alter
the cellular signals, via dephosphorylation, of key peptide substrates on tyrosine [22,23].
Another study suggested that Ag+ ions cause a reduction in DNA replication, as well
as inactivate the thiol group in proteins, that ultimately reduces microbial growth [24].
Similarly, Min et al. [25] reported that AgNPs restrict the growth of sclerotium-forming phy-
topathogenic fungi and, hence, can become an alternative to pesticides. AgNPs have been
employed to reduce contamination during in vitro cultures of Olea europaea L. [26], Nico-
tiana tabacum L. [27,28], Gerbera jamesonii Bolus ex Hook.f. [29], Solanum tuberosum L. [21],
almond x peach (G x N15) hybrid rootstock [30], Rosa hybrida L. [31], Vitis vinifera L. [32],
Vanilla planifolia Jacks. ex Andrews [33], and Phoenix dactylifera L. cv. Sewi and Medjool [34].
In addition, combined treatment with nanosilver and nano-iron particles was reported
to have a significant effect on decreasing the contamination rate in Fragaria × ananassa
L. cv. Roby Gem [35]. Similarly, biosynthesized silver, chitosan, and selenium NPs were
tested for their antimicrobial potential for the in vitro multiplication of three olive cultivars
(Koroneiki, Picual, and Manzanillo). Of all the three NPs, AgNPs showed the best antimi-
crobial properties in all cultivars [36]. However, some studies have also suggested that the
concentrations of AgNPs played a crucial role in culture growth as higher concentrations
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might induce adverse effects on explant response [3,21]. The phytotoxic effect of higher
AgNPs has been observed in crop plants of Phaseolus radiatus L. and Sorghum bicolor (L.)
Moench [37]. Whereas in tomato and potato plants, it has been reported that lower con-
centrations of AgNPs with longer exposure time effectively reduced the contamination
without hampering explant viability [38].

Titanium dioxide (TiO2) is another NP that has gained attention due to its antimicro-
bial potential, as it has photocatalytic properties to eliminate contamination from various
sources, but its toxicity against microbial growth depends on the intensity and wavelength
of light with concentration and particle size [19]. TiO2 reacts with water molecules and
forms free radicals like OH, HO2, and H2O2 which in turn results in the oxidation of
bacterial cells, suggesting that the photo-activation of TiO2 via UV irradiation retards
the bacterial growth [39,40]. It has been evaluated that the addition of TiO2NPs in the
Murashige and Skoog (MS) [41] medium enhanced the microbial resistance during the
micropropagation of tobacco [27], S. tuberosum [19], and Hordeum vulgare L. [42]. Zinc
oxide nanoparticles (ZnONPs) have eliminated nine strains of bacteria (Bacillus mega-
terium, Cellulomonas uda, C. flarigena, Corynebacterium panrometabolum, Erwinia cypripedii,
Klebsiella spp., Pseudomonas spp., Proteus spp., and Staphylococcus spp.) and four fungal
species (Aspergillus spp., Candida spp., Fusarium spp., and Penicillium spp.) which increased
difficulties during banana micropropagation [43]. Thus, it can be observed that although
nanomaterials at higher concentrations have been proven as toxic for plant growth, they can
be employed as disinfectant agents for the in vitro multiplication of various economically
important crops. The majority of the reports used Ag, TiO2, and Zn-based NPs for the
inhibition of microbial growth during in vitro propagation, but new types of NPs should
also be assessed. In this regard, various kinds of advanced nanomaterials like graphene,
graphite, quantum dots, carbon nanotubes, polymer dendrimers, and atomic clusters will
provide enough scope for the study; along with this, evaluations of concentrations, sizes,
and types of NPs on various crop species and type of explant are also needed [44].

3. Influence of NPs on Seed Germination

Seed germination is a crucial stage for crop development since young seedlings are
more vulnerable to biotic and abiotic stresses [45]. Therefore, lots of efforts to improve
the efficiency of seed germination are published from time to time with new technological
interventions. Studies to analyze the effect of NPs have been conducted during the last few
years, and it was observed that genotype, variety, seed age, and environmental conditions
determined the response to NPs [46]. Yasur and Rani [47] and Hatami [48] suggested that
the water uptake during seed germination is critical because seeds are relatively dry and
requires a substantial amount of water to initiate cellular metabolism and growth. The
positive effects of NPs on germination begin with the high capability of NPs to penetrate the
seed coat and promote water uptake along with the absorption of nutrients in the seed [49].
Mehrian et al. [50] documented that NP treatment accelerated seed germination from better
water uptake by the seeds during the initial days, whereas a decrease in germination
efficiency was noted as time passed because of the breakdown of stored nutrients or
alternations in permeability properties of the cell membrane. Similarly, Rizwan et al. [51]
noted that NPs can penetrate through the seed coat and affect the development processes
of embryos through stimulation of the enzymes of metabolic processes. During the radicle
appearance stage of seed germination, root apex tissues come in contact with NPs, which
then move into the rhizodermis through the apoplast with endocytosis. In the root, they
flow towards the plant secretory tissue using symplastic pathways and translocate to
other plant organs. However, it has been noted that NPs at a high concentration result
in a perforation of the cell wall and penetrate the protoplast and damage the root cell
vacuoles. This triggers more production of reactive oxygenspecies (ROS) and it causes
a blockage of electron transfer which induces oxidative stress. NPs also up-regulate the
genes involved in cell division and carbon/nitrogen metabolism, and the negative effects
observed in seedling growth are due to chromosomal aberrations and mitotic abnormalities.
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This leads to a decrease in cell division of the root meristem, hormonal imbalance, ROS
over-production, and increased levels of lipid peroxidation [52]. The increased oxidative
stress, in turn, increases hydrogen peroxide (H2O2) contents, activities of malondialdehyde
(MDA), catalases (CAT), peroxidases (POD), and superoxide dismutase (SOD), as well as the
production of compounds having antioxidant activities like phenolics and flavonoids [53].
Many studies have documented that NPs exert positive or negative influences on seed
germination, seedling biomass as well as biochemical and metabolite contents. In the
present review, we have taken only those examples where NPs were added into the media
and not where seeds were placed on filter paper or water agar media after sonication
treatment with NPs.

3.1. AgNPs

In the majority of the studies, NPs’ effect has been evaluated under in vivo condi-
tions [54], but few were tested under in vitro conditions on the culture media. It is also
observed that most reports suggested the usage of AgNPs (Table 1), e.g., Lee et al. [37]
recorded a negative effect of AgNPs on P. radiates and S. bicolour seedling growth. Similarly,
the growth of Physalis peruviana L. seedlings also decreased along with chlorophyll content,
but biomass in terms of fresh (FW) and dry weights (DW) was increased. It was also
revealed that the seedling growths were not much affected in soil as compared to the
agar-based medium. This might be due to changes in the physico-chemical properties
of NPs in the soil, as pore water harbours a range of electrolytes that increase the aggre-
gation of AgNPs in soil. These aggregates were larger than the pore size of plant root
cells and thus failed to pass through the cells. Greater aggregation may be the principal
reason for the reduced phytotoxicity of AgNPs in soil. Thus, the relative germination
index is extensively used as an indicator of phytotoxicity, and root growth is one of the
sensitive biomarkers for the phytotoxicity assay [55]. Zaka et al. [56] compared AgNPs,
gold nanoparticles (AuNPs), and copper nanoparticles (CuNPs) for Eruca sativa Mill. and
observed that AgNPs increased seed germination, shoot and root lengths, and seed vigour
index, whereas the other two adversely affected these parameters (Table 1). Further eval-
uation unveiled that all the NPs affected the biochemical milieu of the plants differently
(Table 2). In another study, green synthesized AgNPs using Curculigo orchioides Gaertn.
were found to exert a positive influence on seedling growth and biomass of Oryza sativa L.
cv. Swarna. When the germinated seedlings were biochemically analyzed, an increase in
chlorophyll, flavonol contents and enzymes (POD, SOD, CAT, APX, and GR) activities,
and a decrease in phenolics, flavonoids, H2O2, and MDA contents were observed. The
gene expression analyses revealed that the SOD gene was down-regulated, whereas genes
for CAT and ascorbate peroxidase (APX) were up-regulated after AgNP treatment [57].
Similarly, increased seed germination, seed vigour index, shoot and root lengths, and
fresh and dry biomass in Pennisetum glaucum (L.) R. Br. after the addition of AgNPs in
the medium was reported [58]. The maximum germination was recorded at 40 ppm; at
this concentration of AgNPs, mild activities of 2,2-Diphenyl-1-picrylhydrazyl (DPPH),
SOD activities and proline content were recorded that significantly increased at higher
dose of AgNPs. On the contrary, phenolic contents were higher at optimum germination
concentration (40 ppm) and lower at higher concentration, whereas flavonoids were lower
at 40 ppm and increased at high levels. AgNPs positively influenced the germination and
seedling traits of Brassica oleracea L. var. sabellica ‘Nero di Toscana’ and Raphanus sativus L.
var. sativus ‘Ramona’, whereas these traits were decreased in Solanum lycopersicum L. ‘Po-
ranek’. One of the reasons behind decreased growth S. lycopersicum might be due to the
presence of AgNPs in plasmodesmata, precluding the transport of nutrients that led to
a reduction in plant biomass [59]. Recently, Tomaszewska-Sowa et al. [60] observed the
effect of AgNPs and AuNPs on Brassica napus L., and revealed that application of both NPs
decreased shoot and root lengths of seedlings irrespective of treatment time. However,
total chlorophylls, carotenoids, anthocyanins, free sugars, and H2O2 contents were higher,
but no major change in phenolics was found. The seed germination of N. tabacum was
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carried out using CTAB- and PVP-coated AgNPs, and coating with CTAB showed a positive
influence whereas coating with PVP failed to show any positive effect on germination rate
and biomass [61]. Similarly, positive influences of AgNPs have been also documented in
Brassica juncea (L.) Czern. var. pusajaikisan [62], Hylocereus undatus (Haw.) Britton and
Rose [63], and P. vulgaris [64] (Table 1).

Table 1. Effects of various NP on seed germination ofdifferent crops under in vitro conditions.

Plant Nanoparticle (NP)
Treatment Parameters Reference

Brassica juncea
var. pusa jaikisan AgNPs Enhancement in the growth of seedlings in terms of

shoot FW, shoot and root length, and vigor index [62]

Brassica napus AgNPs/AuNPs Deceased shoot and root lengths, as well as shoot FW
and DW [60]

Brassica nigra ZnONPs Increased shoot length and shoot DW, decreased root
length, shoot FW, root FW and DW [65]

Brassica nigra CuONPs Delayed seed germination, decreased plantlet length,
and their FWs and DWs [5]

Brassica oleracea
var. sabellica ‘Nero di Toscana’ AgNPs Increased germination response, shoot and root lengths,

as well as biomass [59]

Cicer arietinum CuONPs Decreased shoot and root lengths, FWs and DWs of
shoot and root, increased lignifications in root cells [66]

Eruca sativa AuNPs, CuNPs
and AgNPs

AgNP-increased seed germination, shoot and root
lengths, and seed vigourindex;

AuNP-and CuNP-decreased seed germination, shoot
and root lengths, and seed vigour index

[56]

Glycine max
hybrid S42-T4 MWCNTs Early and better germination, increased shoot, root and

leaf lengths, shoot and root FWs and DWs [67]

Hylocereus undatus AgNPs Increased germination, shoot number, shoot, and root
lengths, cladode size, and FW [63]

Hordeum vulgare hybrid
Robust MWCNTs Early and better germination, increased shoot, root, and

leaf lengths, shoot and root FWs and DWs [67]

Linum usitatissimum cv.
Barbara ZnONPs Increased shoot and root length, as well as their FWs

and DWs [68]

Nicotiana tabacum AgNPs Increased germination and dry biomass [61]

Oryza sativa
cv. Swarna AgNPs Increased shoot and root length, FWs and DWs of shoot

and root [57]

Pennisetum glaucum AgNPs Increased germination, seed vigour index, shoot and
root lengths, and fresh and dry biomass [58]

Petroselinum
crispum TiO2NPs Increased germination, shoot and root lengths,

and their FWs [69]

Phaseolus radiatus AgNPs Adverse effect on seedling growth [37]

Phaseolus vulgaris AgNPs
Increased seed germination, shoot and root length, their
FWs and DWs, number of axillary buds, adventitious

buds and leaves
[64]

Physalis peruviana AgNPs Decreased shoot and root lengths, chlorophyll content,
but increased FW and DW [70]

Raphanus sativus
var. sativus ‘Ramona’ AgNPs Increased germination response, shoot and root lengths,

and seedling biomass [59]

Solanum lycopersicum var.
Poranek AgNPs Decreased germination response, shoot and root lengths,

and seedling biomass [59]
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Table 1. Cont.

Plant Nanoparticle (NP)
Treatment Parameters Reference

Sorghum bicolour AgNPs Adverse effect on seedling growth [37]

Vigna radiata CuONPs Decreased shoot and root lengths and their FWs,
increased lignifications in root cells [71]

Zea mays
hybrid N79Z 300GT MWCNTs Early and better germination, increased shoot, root and

leaf lengths, shoot and root FW and DW [67]

AgNPs: silver nanoparticles; AuNPs: gold nanoparticles; CuNPs: copper nanoparticles; CuONPs: copper oxide
nanoparticles; DW: dry weight; FW: fresh weight; MWCNTs: multi-walled carbon nanotubes; TiO2NPs: titanium
dioxide nanoparticles; ZnONPs: zinc oxide nanoparticles.

3.2. Other Metal and Metal Oxide NPs

Apart from AgNPs, other metal NPs are also used for seedling germination under
in vitro conditions; Dehkourdi and Mosavi [69] utilized TiO2NPs and documented a pos-
itive influence on seed germination as well as on chlorophyll synthesis in Petroselinum
crispum (Mill.) Fuss, whereas Nair et al. [71] observed that the application of copper oxide
nanoparticles (CuONPs) on Vigna radiata L. decreased seedling growth in terms of length
and biomass. They have also reported that CuONPs decreased chlorophyll and increased
proline contents, whereas it increased H2O2 and MDA contents in the root; however, no
change in carotenoid, H2O2, and MDA contents in the shoot and increased lignification of
root cells were detected (Table 2). The negative effect of CuONPs on seedlings of Cicer ariet-
inum L. was also documented where decreased growth and biomass have been recorded
at all the tried concentrations (50–500 mg/L), and elevated H2O2 generation, MDA level,
and POD activity along with increased lignifications in roots were observed. Further
expression analysis revealed that CuZn-SOD, CAT, and APX genes were up-regulated
in roots but no change was found in shoots [66]. Similarly, CuONPs, when used for the
treatment of Brassica nigra (L.) K. Koch, delayed the germination of seedlings and decreased
plantlet length and biomass significantly [65]. ZnONPs in the media containing seeds
of the same plant negatively influenced seedling growth, shoot FW, and reduced stem
diameter as the NP amount increased in the media. However, the treatment increased
free radical scavenging activity, total antioxidant capacity, total reducing power, phenolics,
and flavonoid contents in the shoot and root of the seedling (Table 2) [65]. Moreover, in
seeds of Linum usitatissimum L. cv. Barbara, different concentrations of ZnONPs (1, 10, 100,
500, and 1000 mg/L) were tried, and 100 mg/L concentrations proved beneficial in terms
of shoot and root lengths as well as seedling biomass, further higher concentrations ad-
versely affected seedling growth [68]. In another study, treatment with multi-walled carbon
nanotubes (MWCNTs) showed a positive influence on germination, seedling lengths, as
well as biomass in Glycine max (L.) Merr. hybrid S42-T4, H. vulgare hybrid Robust, and
Zea mays L. hybrid N79Z 300GT [67]. Unlike the spherical shapes of other NPs, MWCNTs
are the allotropes of carbon that are arranged in an elongated, tubular manner with many
rolled sheets. Its unique features like functional group, diameter, length, and solubility
make its penetration inside the seed coat convenient and it is efficiently translocated in
plants [72]. Similar observations have been well documented previously where MWCNTs
improve germination, plant growth, and agronomic traits by penetration, and increasing
the water and nutrient uptake [73,74].
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Table 2. Biochemical changes in seedlings and cultures after NP treatment.

Plant Nanoparticle (NP)
Treatment and Culture Type Biochemical Changes Reference

Brassica juncea
var. pusa jaikisan AgNPs, shoots Increased chlorophyll and decreased MDA, H2O2, and

proline content, increased CAT, GPX, and APX activities [62]

Brassica napus AgNPs/AuNPs, shoots Increased chlorophylls, carotenoids, anthocyanins, free
sugars, H2O2 contents, no change in phenolic content [60]

Brassica nigra ZnONPs, shoots and roots
(seedling), callus

Increased free radical scavenging activity, total
antioxidant capacity, total reducing power, phenolic,

and flavonoid contents
[65]

Brassica nigra
CuONPs, seedling and roots

(from leaf and stem
derived callus)

Seedlings increased free radical scavenging activity,
total phenolic, and flavonoid content, decreased total

antioxidant and reducing potential;
Roots increased free radical scavenging activity, total

antioxidant and reducing potential, total phenolic, and
flavonoid contents

[5]

Brassica oleracea var.
sabellica ‘Nero di Toscana’ AgNPs, leaves

Decreased chlorophyll, carotenoid, and anthocyanin
contents, no change in phenolic, protein contents and

SOD activities, increased GPOX activity
[59]

Campomanesia rufa AgNPs, shoots No significant difference in SOD activity [75]

Caralluma tuberculata AgNPs, callus
Increased PAL and free radical scavenging, SOD, POD,

CAT, APX activities, total phenolics, and
flavonoid contents

[76]

Cicer arietinum CuONPs, seedling Increased H2O2 generation, MDA content, POD activity,
and lignification in roots [66]

Cichorium intybus Fe2O3NPs, hairy roots Increased hairy root growth, total phenolic, and
flavonoid contents [77]

Corylus avellana
cv. Gerd Eshkevar AgNPs, cell suspension

Increased CAT, APX, H2O2, PAL activities, decreased
SOD and POD activities, and total soluble

phenol content
[78]

Corylus avellana
cv. Gerd Eshkevar AgNPs, cell suspension Increased MDA, total phenolic, anthocyanin, and

flavonoid contents [79]

Cucumis anguria AgNPs, hairy roots Increased total phenolic and flavonoid contents, and
antioxidant activities [80]

Eruca sativa AuNPs, CuNPs, and
AgNPs, seedling

AuNPs decreased total antioxidant capacity, total
phenolic and flavonoid contents, increased DPPH, SOD

and POD activities, no change in protein content;
CuNPs decreased total antioxidant capacity, DPPH

activity, protein content, increased total phenolic, and
flavonoid contents, SOD and POD activities;

AgNP decreased total antioxidant capacity, DPPH
activity, decreased total phenolics and flavonoid

contents, POD activity, increased SOD activity, no
change in protein

[56]

Fragaria × ananassa
cv. Queen Elisa FeNPs, shoots

Increased chlorophyll a, chlorophyll b, total chlorophyll,
carotenoid, total carbohydrates, total protein, and total

free proline and iron contents, decreased H2O2 and
MDA content, higher SOD and POD activities

[81]

Linum usitatissimum
cv. Kerman Shahdad

ZnONPs/TiO2NPs, cell
suspension

Increased PAL and CAD activities, and total
phenol content [82]
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Table 2. Cont.

Plant Nanoparticle (NP)
Treatment and Culture Type Biochemical Changes Reference

Linum usitatissimum
cv. Barbara

ZnONPs, seedling
and callus

Increased ROS production, membrane lipid
peroxidation, protein carbonylation and 8-oxo guanine

formation, SOD, POD, radical scavenging activities,
total phenolics, and flavonoid contents

[68]

Maerua oblongifolia AgNPs, shoots Higher chlorophyll, total protein and proline contents,
and increased activities of antioxidant enzymes [83]

Momordica charantia AgNPs, cell suspension Increased MDA, H2O2, total phenolics and flavonoid
contents, and antioxidant activity [84]

Musa paradisiacal
cv. Grand Nain ZnNPs and ZnONPs, shoots Higher proline, chlorophyll, and antioxidant

enzymes activities [43]

Musa spp. AgNPs, shoots Increased chlorophyll content [85]

Nicotiana benthamiana CH-ZnO, callus Increased chlorophyll, carotenoid, proline contents and
PAL and AO activities, decreased MDA and H2O2 levels [86]

Nicotiana tabacum
cv. Bright Yellow-2 ZnONPs, cell suspension

Decreased dehydrogenase, oxidoreductase SOD, POD
and APX activities, increased GR, PAL, protease,

caspase-like and acid phosphatases activities, and total
phenolic content

[87]

Oryza sativa cv. Swarna AgNPs, seedling leaves
Increased chlorophyll and flavonol contents and POD,

SOD, CAT, APX and GR activities, decreased phenolics,
flavonoids, H2O2 and MDA contents

[57]

Oryza sativa cv. IR64 AgNPs, shoot Decreased MDA, proline and H2O2 levels [88]

Pennisetum glaucum AgNPs, seedling Increased DPPH, proline, SOD, POD, and CAT activities,
total phenolics and flavonoid contents [58]

Phoenix dactylifera MWCNTs, shoots
Increased flavonoid, chlorophylls and carotenoid,
nutrient contents, decreased phenolics and tannin

contents, SOD, GPOX, and GR activities
[89]

Phoenix dactylifera
cv. Hayani AgNPs, somatic embryos Increased chlorophyll content [90]

Physalis peruviana AgNPs, seedling derived
shoots and shoots

Seedling derived shoots- increased CAT and APX
activity, and decreased chlorophyll content, SOD and
MDA activities;Shoots- no change in SOD, APX and

MDA levels, decreased CAT activity

[70]

Raphanus sativus
var. sativus ‘Ramona’ AgNPs, leaves

Increased carotenoid, phenolic contents, and SOD
activity, decreased chlorophyll, anthocyanins, protein

contents, and GPOX activity
[59]

Saccharum spp.
cv. Mex 69-290 AgNPs, leaves

Increased N, Ca, Mg, Fe, Cu, Zn, Mn, and decreased P,
K, and B content, higher total phenolics, ROS and lipid

peroxidation contents, and antioxidant activity
[91]

Simmondsia chinensis MWCNTs, shoots Increased total tannin content and antioxidant activities,
decreased phenolics and flavonoid contents [92]

Solanum lycopersicon Fe3O4NPs, shoots Increased proline content and osmotic potential [93]

Solanum lycopersicum ZnONPs, callus Increased Na, N, P, K, and Zn ionic, protein contents,
SOD and GPX activity [4]

Solanum lycopersicum
var. Poranek AgNPs, leaves

Increased chlorophyll, anthocyanins, phenolics, protein
contents and SOD and GPOX activities, decreased

carotenoid content
[59]
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Table 2. Cont.

Plant Nanoparticle (NP)
Treatment and Culture Type Biochemical Changes Reference

Solanum tuberosum SiO2NPs, leaves Increased antioxidant enzymes activity and expression
of proteins [94]

Solanum tuberosum
cv. White Desiree AgNPs, shoots

Increased total chlorophyll, carotenoids, proline, total
flavonoids, phenolics, lipid peroxidation and H2O2

contents, decreased anthocyanins
[95]

Vanilla planifolia AgNPs, shoots

Higher chlorophyll, increased elements like N and B, no
change in P, Ca and Mg, and decreased K, Fe, Cu, Zn,
Mn, and B contents, higher total phenolics, ROS and
lipid peroxidation contents, and antioxidant activity

[33]

Vigna radiata CuONPs, seedling
Decreased chlorophyll and increased proline contents,

H2O2 and MDA contents in root, no change in
carotenoid, H2O2 and MDA contents in shoots

[71]

AgNPs: silver nanoparticles; APX: ascorbate peroxidase; AO: ascorbate oxidase; AuNPs: gold nanoparticles;
CAT: catalase; CH-ZnO: chitosan-zinc oxide nano-bioformulation; CuNPs: copper nanoparticles; CuONPs: copper
oxide nanoparticles; DPPH: 2,2-diphenyl-1-picrylhydrazyl, FeNPs: iron nanoparticles; Fe2O3NPs/Fe3O4NPs:
iron oxide nanoparticles; GPX: guaiacol peroxidase; GPOX: glutathione peroxidase; GR: glutathione reductase;
H2O2: hydrogen peroxide; MDA: melondialdehyde; MWCNTs: multi-walled carbon nanotubes; PAL: phenylala-
nine ammonia lyase; POD: peroxidase; ROS: reactive oxygen species; SiO2NPs: silicon dioxide nanoparticles;
SOD: superoxide dismutase; TiO2NPs: titanium dioxide nanoparticles; ZnNPs: zinc nanoparticles; ZnONPs: zinc
oxide nanoparticles.

4. Modulation of In Vitro Morphogenesis by NPs

The ions supplemented into the culture medium are transported via phloem cells [96]
and the apoplastic pathway [97]. In a similar manner, as NPs have extremely small sizes,
they enter the explants in a similar way, but their effect mainly depends on NP type,
concentration, exposure time, and plant species [98]. Many studies have reported the
influence of different types of NPs on the in vitro morphogenesis of various crops which
are listed in Table 3.

4.1. Metal NPs

In a study on in vitro cultures of L. usitatissimum, BAP was coated with different
nanoparticles (AuNPs and AgNPs), and AuNPs proved better than AgNPs for callus
formation and somatic embryogenesis [99]. On the contrary, the positive effect of AgNPs
on the in vitro regeneration of S. tuberosum cv. White Desiree has been documented where
most of the morphological traits showed improvement (Table 3) along with contents of
total chlorophyll, carotenoids, proline, total flavonoids, phenolics, lipid peroxidation, and
H2O2, whereas anthocyanin content was decreased (Table 2). They have concluded that
this beneficial effect is possibly due to the inhibition of ethylene perception by AgNPs [95].
In vitro cultures are known to produce ethylene during the culture period but their excess
production inhibits cell division [100]. The adverse effect causes the mortality of cultures,
and over-accumulation of ethylene induces senescence, abscission of leaves, and eventual
leaf drop [101]. It is well known that Ag+ ions inhibit the physiological actions and
production of ethylene because of its properties, easy uptake, and mobility in cells [102].

The number of reports suggested the application of AgNPs for improved regeneration;
e.g., Bello-Bello et al. [91] documented positive influence of AgNPs on shoot formation in
Saccharum spp. cv. Mex 69-290. They have reported that the better shoot induction might
be due to an increase in nutrient elements suchas N, Mg, and Fe which are essential for
plant growth. Similarly, a temporary immersion system with fortification of AgNPs has
evoked a profuse multiplication in V. planifolia [33]. Mustafa et al. [64] used nano-priming
of P. vulgaris seeds using CuNPs and AgNPs, and utilized seedling-derived hypocotyls
as an explant for callus formation. They have documented that the callus formation was
better when seeds were treated with AgNPs in comparison to control and CuNP treat-
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ment. In another study on Musa spp., it was confirmed that the addition of AgNPs into
media increased the number of shoots, their length, leaf number, shoot FW/DW, and
total chlorophyll content [85]. Also, AgNPs have been used at different stages such as
callus formation, shoot induction, shoot multiplication, and rooting in Musa spp. [103] and
O. europaea cv. Picual [104]. Three NPs, i.e., AgNPs, selenium (SeNPs), and chitosan
(CSNPs), were utilized in different cultivars of O. europaea (Manzanillo, Picual, and Ko-
roneiki), and AgNPs showed positive effect on shoot growth, whereas CSNPs and control
media had less effectiveness and SeNPs exerted a negative effect [36]. The toxic effect of
Se metal may be due to the replacement of sulfur atoms in sulfur-containing amino acids
by Se, which results in changes in protein structure and function; simultaneously, it can
cause oxidative stress, cellular damage and disrupt the plant’s metabolism [105,106]. The
addition of nano-iron instead of traditional iron along with silver nitrate nanoparticles
(AgNO3NPs) increased the shoot regeneration, leaf number/shoot, shoot FW and DW in
F. ananassa cv. Ruby Gem [35]. El-Kosary et al. [34] had observed that callus formation
was optimum at a higher concentration of AgNPs (500 µg/L) but a lower concentration
(125 µg/L) was favorable for globular embryo formation as well as for the multiplication
of embryos in P. dactylifera cv. Medjool and Sewi. The positive effect of AgNPs on somatic
embryogenesis has been well documented in the same plant [90]. Whereas a negative effect
of AgNPs was recorded in Campomanesia rufa (O. Berg) Nied, as a decreased shoot number
was found as compared to control, no change in shoot biomass was noted [75]. The efficacy
of silver thiosulfate, silver nitrate, and AgNPs was analyzed on the micropropagation of
Citrus australasica F. Muell. and it was reported that AgNPs were less effective as compared
to silver thiosulfate in terms of leaf abscission as well as shoot number and length, but were
better than AgNO3 [101] (Table 3).

In vitro cultures of rice cells, when treated with MWCNTs, exhibited decreased cell
density at higher concentration of NPs, and it was suggested that this might be due to
self-defense response [107]. Later on, Taha et al. [89] reported a positive effect of MWCNTs
on somatic embryo germination and elongation in P. dactylifera. In accordance, the positive
influence of MWCNTs on the nodal culture of Simmondsia chinensis (Link) Schneider has
been well documented [92]. In in vitro cultures of O. sativa ssp. indica cv. KDML105, a
comparison of activated charcoal and nanocarbon on callusing and plant regeneration
was carried out, which confirmed that the addition of nanocarbon proved better for callus
induction frequency, its size, callus FW/DW, and ratio of no. of seedlings to calli [108].
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Table 3. Effect of various NPs on in vitro morphogenesis in crops.

Plant Explant Nanoparticle (NP)
Treatment

Callus/Number of Shoots or
SEs/Explant

(% Response)
Shoot Length (cm) Root Induction

Media

Number of
Roots/Explant
(% Response)

Root
Length (cm) Effect Reference

Alternanthera
sessilis Node GFAgNPs

(2.0 mg/L) 153.6 ± 2.3 (100%) - - - -
In vitro cultures are

genetically uniform with
mother plant

[109]

Brassica napus
cv. Hayola 401 Hypocotyl ZnONPs (10 mg/L)

Callus-
300 mg (FW),

29 mg (DW) (88%)
- - - - Improved callus FW

and DW [110]

Brassica nigra Stem ZnONPs (1 mg/L)
Callus-

11.95 ± 1.7 g (FW)
0.70 ± 0.2 g (DW)

- - - -

Induced roots and few
shoots from callus,

decreased FW and DW
of callus

[65]

Brassica nigra Leaf and stem CuONPs (1 mg/L)

Callus (leaf)-
8.5 ± 1.9 g (FW),

0.3 ± 0.01 g (DW);
Callus (stem)-

8.7 ± 1.8 g (FW),
0.4 ± 0.06 g (DW)

- - - - Decreased FW and DW
of callus [5]

Campomanesia rufa Node AgNPs (1.54 mg/L) 17 1.1 - - -

Less shoots in presence of
NPs, but no significance
difference in fresh mass

of the shoots

[75]

Cicer arietinum

Embryo axes (EA) and
embryo axes with
adjacent part of
cotyledon (EXC)

IONPs (15 mg/L)

EA- 51.6 ± 0.9 (86%), EXC-
53.0 ± 1.5 (88%) (var.

Punjab-Noor 09);
EA- 47.4 ± 0.4 (79%), EXC-

45.7 ± 2.5 (76%) (var. Bittle-98)

EA- 9.9 ± 0.3, EXC-
11.8 ± 0.5 (var.
Pujab-Noor 09);

EA- 7.5 ± 0.3, EXC-
8.5 ± 0.4

(var. Bittle-98)

IONPs (15 mg/L)

EA- 45.0 ± 1.2 (75%),
EXC- 49.8 ± 0.9 (83%)

(var. Pujab-Noor 09); EA-
41.5 ± 1.5 (69%),

EXC-
47.0 ± 2.6 (78%)
(var. Bittle-98)

- Higher iron content [111]

Citrus australasica Node AgNPs (40 µM) 17.4 3.53 ± 0.02 - - - Less shoot regeneration [101]

Daucus carota
cv. Berlicum Hypocotyl Fe3O4NPs

(4.02 mg/L) - - - - -
Decreased SEs formation,

mitotic index of
cell culture

[112]

Fragaria × ananassa
cv. Queen Elisa Runner tips FeNPs (0.8 ppm) 4 (Branch number) 2.80 ± 0.03

(Branch length) - - 3.40 ± 0.20

Increased biomass,
higher percentage of

relative water content
(RWC), and membrane

stability index (MSI)

[81]

Fragaria × ananassa
cv. Ruby Gem Runner tips AgNO3NPs

(10 mg/L) 11.00 4.17 - - -

Increasedpercentage of
open buds, shoot
regeneration, leaf

number, shoots FW
and DW

[35]
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Table 3. Cont.

Plant Explant Nanoparticle (NP)
Treatment

Callus/Number of Shoots or
SEs/Explant

(% Response)
Shoot Length (cm) Root Induction

Media

Number of
Roots/Explant
(% Response)

Root
Length (cm) Effect Reference

Fragaria × ananassa Leaf

Shoot induction-
Explants were
treated with

200 mg/L AgNPs
solution (20 min),

shoot multiplication-
AgNPs (0.20 mg/L)

Regeneration- 21.00 (64.44%),
multiplication- 12.67 (100%) 3.93 AgNPs (0.50 mg/L) 6.67 3.40

Increased regeneration
and rooting response,
and biomass of plants

[113]

Hordeum vulgare
cv. Nosrat Mature embryos TiO2NPs

(60 µg/mL) - Callus diameter-
21 mm2 - - - Increased number and

size of callus [42]

Linum
usitatissimum
‘Blue di Riga’

Stem of in vitro
seedling CNPs (1×10−3 g/L)

Callus- 83%,
0.5 ± 0.1 g (FW), indirect

embryogenesis- 25%

Callus diameter-
8.5 ± 0.3 mm - - -

Reduce callus formation,
embryogenesis, and

organogenesis
[114]

Linum
usitatissimum

Stem of in vitro
seedling

BAP (1 mg/L)
(coated with AgNPs

or AuNPs)

Callus regeneration zone-
1.40 ± 0.65, rhizogenesis (50%),
embryogenesis (50%) (AgNPs);

Callus regeneration zone-
3.40 ± 1.22, rhizogenesis (30%),
embryogenesis (70%) (AuNPs)

Callus length and
width-

5.38 ± 1.30 and
5.00 ± 2.14 mm

(AgNPs),
8.38 ± 1.60 and

5.38 ± 1.06 (AuNPs)

- - -
Increased callus
formation and
embryogenesis

[99]

Linum
usitatissimum

Stem of in vitro
seedling

Experiment A-
Fe3O4NPs
(1.5 mg/L),

Experiment B-
Fe3O4NPs (1 mg/L)

Experiment A-
100% somatic embryogenesis,

Experiment B-
100% rhizogenesis

Callus length and
width-

1.4 ± 0.38 and
1.11 ± 0.26 cm (Exp.
A), 1.17 ± 0.55 and

0.98 ± 0.32 cm
(Exp. B)

- - -

Increased callus size and
embryogenesis, NPs
induced genotoxicity

incallus cultures

[115]

Maerua oblongifolia Node AgNPs (20 mg/L) 16.67 ± 0.57 10.43 ± 0.45 - - -
Increased shoot number
and length, leaf number,

shoot FW and DW
[83]

Mentha longifolia Node CuNPs (0.5 mg/L) - 6.83 ± 0.74 - - - Increased regeneration
and shoot formation [116]

Musa paradisiacal
cv. Grand Nain Shoot tip (Suckers) ZnNPs/ZnONPs

(100 mg/L) Callus- 92%, shoot- 2.5 (92%) - ZnNPs/ZnONPs
(100 mg/L) 6.57 (89%) 2.93

Reduced contamination
and increased callus

formation, shoot
regeneration, shoots and

roots FW, and rooting

[43]

Musa paradisiacal Shoot tip (Suckers) FCNTs (100 µg/mL) 12.5 5.2 - - - Increased shoot
formation [117]

Musa spp. In vitro shoot tip AgNPs (1 ppm) 8.40 2.45 AgNPs (3 ppm) 7.10 7.70

Increased number of
shoot, its length, leaf

number, shoot FW
and DW

[85]
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Table 3. Cont.

Plant Explant Nanoparticle (NP)
Treatment

Callus/Number of Shoots or
SEs/Explant

(% Response)
Shoot Length (cm) Root Induction

Media

Number of
Roots/Explant
(% Response)

Root
Length (cm) Effect Reference

Musa spp. Pseudo-stem

Callus formation-
AgNPs (8 ppm),

shoot regeneration-
AgNPs (4 ppm),
multiplication-

AgNPs (6 ppm)

Callus- 97.78%,
multiplication coefficient- 4.22

(100%)
3.44 AgNPs (4 ppm) 5.22 (98.33%) 4.26

Increased callus
formation, shoot

induction and
multiplication as well as

rooting response

[103]

Olea europaea
cv. Picual Node AgNPs (5 mg/L) 1.72 5.44 - - -

Increased bud sprouting,
shoot length, shoot

number, and number of
leaves/shoot

[104]

Olea europaea Node AgNPs (10 mg/L)

4.3 ± 0.17
(cv. Manzanillo);

4.0 ± 0.00
(cv. Picual);
5.0 ± 0.00

(cv. Koroneiki)

7.0 ± 0.00 (cv.
Manzanillo);

8.0 ± 0.57
(cv. Picual);
10.0 ± 0.00

(cv. Koroneiki)

- - -

Higher number of shoots,
shoot length, leaf number,

and
multiplication rate

[36]

Oryza sativa
cv. KDML105 Seed TiO2NPs (25 mg/L) 2.80 ± 0.03

(56.46 ± 0.82%) - - - - Better regeneration [118]

Oryza sativa Seed

Callus- CuONPs
(10 mg/L),

regeneration-
CuONPs (20 mg/L)
(var. Basmati 2000,

Basmati 370, Basmati
385); Callus-

CuONPs (10 mg/L),
regeneration-

CuONPs (15 mg/L)
(var. Super Basmati)

Callus- 74%, regeneration- 80%
(var. Basmati 2000);

Callus- 86%, regeneration- 42%
(var. Basmati 370); Callus- 90%,

regeneration- 92%
(var. Basmati 385); Callus- 94%,

regeneration- 65%
(var. Super Basmati)

- - - - Increased callogenesis
and regeneration [119]

Oryza sativa ssp.
indica cv. RD49 Seed TiO2NPs (20 mg/L) Callus- 97.73 ± 0.17%,

regeneration- 67% - - - - Better regeneration [120]

Oryza sativa ssp.
indica Seed

Callus- TiO2NPs
(50 mg/L),

regeneration-
TiO2NPs (40 mg/L)

Callus- 94.67 ± 1.01%,
regeneration- 3.11

(61.89 ± 1.13%) (cv.
Suphanburi1); Callus-

93.25 ± 1.02%, regeneration-
3.06 (60.25 ± 1.13%) (cv.

Suphanburi90)

- - - - Better regeneration [121]

Oryza sativa
cv. KDML105 Seed

Callus- NCNPs
(5 mg/L),

regeneration-
NCNPs (20 mg/L)

Callus- 94.70 ± 0.86%,
regeneration-
3.16 ± 0.04

(62.75 ± 0.89%)

- - - -

Increased callus
frequency, FW and DW,
ratio of no. of seedlings

to no. of
regenerated calli

[108]
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Table 3. Cont.

Plant Explant Nanoparticle (NP)
Treatment

Callus/Number of Shoots or
SEs/Explant

(% Response)
Shoot Length (cm) Root Induction

Media

Number of
Roots/Explant
(% Response)

Root
Length (cm) Effect Reference

Oryza sativa
cv. IR64 Seeds

Callus- AgNPs
(10 mg/L),

regeneration-
AgNPs (5 mg/L)

Callus- 82.4 ± 5.2%,
regeneration- 61 ± 6.3% - AgNPs

(10 mg/L) 11.2 ± 0.6 4.9 ± 0.3 Increased regeneration
and rooting [88]

Panicum virgatum Seed/
internode

ZnONPs (20 and
30 mg/L)

Callus induction-
90% (seed), 96% (internode),

shoot regeneration- 23.10 ± 2.1
(76%) (seed),

24.00 ± 0.01 (80%) (internode)

- - - - Enhanced plant growth
and development [122]

Phaseolus vulgaris Hypocotyl AgNPs (50 mg/mL) Callus- 97% - - - - Increased callus
formation, FW and DW [64]

Phoenix dactylifera Leaflets

Callus—MWCNTs
(0.05 mg/L), SE
formation and
elongation—

MWCNTs
(0.1 mg/L)

Callus- 3.80 g, SE- 24.0 4.3 MWCNTs
(0.1 mg/L) 5.3 6.0 Increased embryogenesis

and elongation of shoots [89]

Phoenix dactylifera Immature
inflorescences

Callus
establishment-

AgNPs (500 µg/L),
callus differentiation-
AgNPs (125 µg/L),

SE formation-
AgNPs (125 µg/L)

(cv. Medjool); Callus
establishment-

AgNPs (500 µg/L),
callus differentiation-
AgNPs (500 µg/L),

SE formation-
AgNPs

(125 µg/L)(cv. Sewi)

Callus- 76.66%,
globular SE- 16.00,
direct SE- 68.33%,
germination- 0.81,

multiplication- 1.00 (cv.
Medjool);

Callus- 73.33%
globular SE- 17.33,

direct SE- 68.33%, germination-
0.92, multiplication- 1.00

(cv. Sewi)

- - - - Increased SE formation [34]

Phoenix dactylifera
cv. Hayani Shoot tip AgNPs (1 mL/L) Callus- 4.60 g (FW), SE initiation-

9.39, SE development- 35.30 1.80 - - -

Increased SE length, no.
and length of leaves,

shoots were
genetically uniform

[90]

Rhizoma polygonati Tuber Fe3O4NPs
(0.4 mg/L) 4 - Fe3O4NPs

(0.5 mg/L) 9.5 - Increased number of
shoots and roots [123]

Rubus adenotrichos In vitro shoot - - - SWCNTs-COOH
(4 µg/mL) 8.60 ± 5.75 0.6

Increased rooting of
shoots and growth

of plants
[124]
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Table 3. Cont.

Plant Explant Nanoparticle (NP)
Treatment

Callus/Number of Shoots or
SEs/Explant

(% Response)
Shoot Length (cm) Root Induction

Media

Number of
Roots/Explant
(% Response)

Root
Length (cm) Effect Reference

Saccharum spp.cv.
Mex 69-290 In vitro Shoot AgNPs (50 mg/L) 47.28 ± 1.69 5.55 ± 0.24 - - -

Improved regeneration
and shoot length in

temporary immersion
bioreactors

[91]

Simmondsia
chinensis Node MWCNTs

(0.002 g/L) 16.00 1.36 - - - Improved regeneration [92]

Solanum
lycopersicon

Hypocotyl (For
callus),

cotyledonary nodes
(For regeneration)

Fe3O4NPs (3 mg/L)

Callus- 64.26 ± 0.38%, shoot-
8.2 ± 0.09 (cv. Nora);

Callus- 83.28 ± 0.94%, shoot-
10.8 ± 0.09 (cv. PS-10); Callus-

74.48 ± 0.39%, shoot-
9.7 ± 0.09 (cv. Peto);

Callus- 56.32 ± 0.47%, shoot-
6.6 ± 0.12 (cv. Roma)

- - - -

Better callus and shoot
formationshowing

resistance to
salinity stress

[93]

Solanum
lycopersicum
cv. Edkawy

Cotyledon ZnONPs (15 mg/L)

Regeneration-
83.34 ± 0.23%
(cv. Edkawy),

64.58 ± 0.15% (cv. Anna Aasa),
78.16 ± 0.23% (cv. Australische
Rosen), 67.7 ± 0.47% (cv. Sankt

Ignatius), 87.64 ± 0.58%
(cv. Sandpoint)

- - - -
Improved salinity stress

and regeneration
frequency

[4]

Solanum tuberosum Leaf SiO2NPs (50 mg/L)

Callus-
1.1 g (FW),
0.07 g (DW)

(cv. Proventa);
Callus-

1 g (FW),
0.05 g (DW)
(cv. Sante)

9 (cv. Proventa);
8 (cv. Sante) - 6 (cv. Proventa);

4 (cv. Sante)

10 (cv.
Proventa);

8 (cv.
Sante)

Increased resistance to
salinity stress in terms of

various
morphological traits

[94]

Solanum tuberosum
cv. White Desiree Node AgNPs (2 mg/L) - 7.8 - - 12

Increased shoot and root
DW, root length and leaf

area, decreased
shoot length

[95]

Solanum tuberosum
cv. Spunta Sprout CSNPs (250 mg/L) 90.97 ± 1.41 12.40 ± 0.38 - - - Production of potato

virus Y (PVY) free plants [125]
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Table 3. Cont.

Plant Explant Nanoparticle (NP)
Treatment

Callus/Number of Shoots or
SEs/Explant

(% Response)
Shoot Length (cm) Root Induction

Media

Number of
Roots/Explant
(% Response)

Root
Length (cm) Effect Reference

Triticum aestivum Mature embryo

Callus- 1X-3X of all
NPs (ZnO/CuO/γ-

Fe3O4), embryogenic
callus- 1x

(CuO/γ-Fe3O4), SE
formation- 3X
γ-Fe3O4NPs

(genotypeKırik);
Callus- 2XZnONPs/

3XZnONPs/
3XCuONPs,

embryogenic
callus-3XZnONPs,
regeneration- 3X

ZnONPs
(genotype ES-26)

Callus- 100%, embryogenic callus-
97.5%, SEs- 1.69, plantlet- 9.00

(genotypeKırik); Callus- 97.50%,
embryogenic callus- 41.38%,

SE- 1.70,
plantlet- 6.75

(genotype ES-26)

- - - -

Genotype Kırik: higher
callus, SE and

plantlet formation;
Genotype ES-26: same
frequency of callus but

less SE and
plantlet formation

[126]

Triticum aestivum Mature embryo CuNPs (0.015 mg/L)
+ AgNPs (4 mg/L)

Callus- 90.00%, embryogenic
callus- 84.67%, regeneration-
71.67% (genotype AS-2002);

Callus- 95.00%, embryogenic
callus- 78.00%, regeneration-

68.33% (genotype Wafaq-2001)

- - - - Increased callus and
regeneration frequency [127]

Vanilla planifolia In vitro shoot AgNPs (50 mg/L) 14.89 ± 0.40 4.71 ± 0.23 - - -
Increased regeneration,

shoot length,
and biomass

[33]

Vigna unguiculata
cv. Ülkem

Plumule of embryo MgONPs
(555 mg/L) 10.00 (82.50%) 1.45 MgONPs

(370 mg/L) 0.75 (22.50%) 0.72
Increased shoot number,

frequency, and
rooting response

[128]

AgNPs: silver nanoparticles; AgNO3: silver nitrate; AgNO3NPs: silver nitrate nanoparticles; AuNPs: gold nanoparticles; CH-ZnO: chitosan–zinc oxide nano-bioformulation;
CNPs: carbon nanoparticles; CSNPs: chitosan nanoparticles; CuNPs: copper nanoparticles; CuONPs: copper oxide nanoparticles; DW: dry weight; FCNTs: functionalized carbon
nanotubes; FeNPs: iron nanoparticles; Fe3O4NPs: iron oxide nanoparticles; FW: fresh weight; GFAgNPs: Gracilariafoliifera coated silver nanoparticles; IONPs: iron oxide nanoparticles;
MgONPs: magnesium oxide nanoparticles; MWCNTs: multi-walled carbon nanotubes; NCNPs: nanocarbon nanoparticles; SE(s): somatic embryo(s); SiO2NPs: silicon dioxide
nanoparticles; SWCNTs: single-walled carbon nanotubes; TiO2NPs: titanium dioxide nanoparticles; ZnNPs: zinc nanoparticles; ZnONPs: zinc oxide nanoparticles.



Plants 2023, 12, 3126 17 of 40

4.2. Metal Oxide NPs

Metal oxide NPs are another type of NP that has proven results on many crops
(Table 3). In O. sativa ssp. indica cv. KDML105, comparisons of two NPs (ZnO and TiO2)
suggested that ZnONPs showed toxic effects whereas TiO2NPs enhanced the regeneration
frequency [118]. Later on, Chutipaijit and Sutjaritvorakul [121] also documented a posi-
tive influence of TiO2NPs on the indirect regeneration of rice cultivars Suphanburi1 and
Suphanburi90. Zafar et al. [65] observed the negative influence of ZnONPs on B. nigra
stem explant as only a few shoots and roots were emerged from the callus. Later on, when
the CuONP fortification of NPs in media was performed, it caused root emergence from
callus from both leaf and stem explants of B. nigra; also, the biochemical potency of the
roots which were emerged from the callus was different as compared to the seedlings, and
this is due to lower concentrations of NPs used for leaf and stem explants as compared to
seeds [5]. Similar to rice cultivar KDML105, TiO2NPs displayed a beneficial effect as com-
pared to ZnONPs on callus induction and plant regeneration in another cultivar RD49 [120].
Later on, the negative effect of ZnONPs on N. tabacum cv. Bright Yellow-2 (BY-2) cells
with respect to viability, packed cell volume, and FWs were also reported. There was a
significant decrease in mitotic index and changes in cell structure such as endoplasmic
reticulum, mitochondrial dysfunction, and Golgi apparatus, along with an increase in ROS
and reactive nitrogen species (RNS) [87]. Further, to evaluate the programmed cell death,
an increase in plasma membrane integrity, and activities of protease, caspase-like, and acid
phosphatases were observed along with nuclear cell morphology and DNA fragmentation,
suggesting the phytotoxic effect of ZnONPs. Some studies suggested that metal and metal
oxide NPs showed similar effects on cultures, e.g., zinc nanoparticles (ZnNPs) and ZnONPs
both increased regeneration and rooting responses in Musa paradisiacal L. Upon analysis, it
was confirmed that treatment with both types of NPs elevated total proline and chlorophyll
contents as well as increased the activities of antioxidant enzymes in shoots [43]. The com-
parison between ZnO bulk and NPs on B. napus cv. Hayola 401 showed that the application
of ZnONPs improved the formation of calli in terms of FW and DW in comparison to bulk
ZnO [110]. Irum et al. [111] documented that the callus of C. arietinum var. Punjab-Noor 09
and Bittle-98 showed good callus proliferation from embryo axes and embryo axes with the
adjacent parts of cotyledon explant on media containingiron oxide nanoparticles (IONPs) in
comparison to control. However, transferring this callus on regeneration medium showed
only an increase in callus size which failed to undergo redifferentiation.

The effect of iron oxide nanoparticles (Fe3O4NPs) on hypocotyls of Daucus carota L. cv.
Berlicum revealed that its lower concentrations facilitated somatic embryo formation, but
higher concentrations ceased its differentiation [112]. Li et al. [123] compared Fe3O4NPs
and micro-cube on the in vitro morphogenic response of Rhizoma polygonati Odorati, and
confirmed the positive influence of the former than later on shoot and root formation. In
L. usitatissimum cultures, augmentation of the medium with Fe3O4NPs during the culture
initiation phase induced somatic embryogenesis, but its addition after callus formation led
to rhizogenesis [115]. An interesting study was carried out on two genotypes of Triticum
aestivum L. Kırik and ES-26, where Fe, Cu, and Zn of MS media were replaced by NP
versions of elements (ZnO, CuO, and γ-Fe3O4) in the same concentration (1X) and two and
three times higher amount (2X and 3X). The results suggested that the overall response in
terms of callus, somatic embryo, and plantlet formation was less for the ES-26 genotype
in comparison to the control and Kırik genotypes, suggesting variation in NPs’ effect
between the genotypes [126]. In the same way, Malik et al. [127] compared CuSO4 and
AgNO3 with their NP counterpart and evaluated their effect on the in vitro response of
two genotypes of T. aestivum cv. AS-2002 and Wafaq-2001. They have suggested that the
combined application of both the NPs was more beneficial than their individual usage,
also the response was better for cv. AS-2002 than Wafaq-2001. The majority of studies
suggested that the enhancement in growths of plants in response to NPs might be due
to the up-regulation or down-regulation of different hormonal pathways, especially the
cytokinin, which evoked culture growth [110].
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4.3. Role of Green NPs

Rapid progress in the field of nanotechnology has enabled the synthesis of NPs of
different types, sizes, and morphologies; and, NPs generated using plants are reported to
have a less toxic and more stable effects [129]. CuONPs synthesized utilizing Azadirachta
indica leaf extracts were used to evaluate its effect on four varieties of O. sativa (Super
Basmati, Basmati 2000, Basmati 370, and Basmati 385). They have suggested that the
augmentation of NPs in the media improved callogenesis and organogenesis; however,
variation has been detected between the varieties [119]. In another study, AgNPs coated
with marine red alga Gracilaria foliifera (GFAgNPs) showed growth-stimulating properties in
comparison to the traditionally used hormones like 6-benzylaminopurine (BAP) and kinetin
(Kn) on Alternanthera sessilis L. regeneration [109]. In line with this, AgNPs synthesized
using Parthenium hysterophorus extract when augmented into the media have promoted
callus formation, shoot regeneration, and rhizogenesis in O. sativa cv. IR64, and also
suggested the inhibitory effect of AgNPs on ethylene perception [88]. Likewise, AgNPs
synthesized using leaf extract of Ochradenus arabicus increased the shoot number, length, FW,
DW, chlorophyll, total protein, and total proline contents as well as activities of enzymes
like SOD and CAT in cultures of Maerua oblongifolia (Forssk.) A. Rich [83]. Green synthesis
of ZnONPs using Cymbopogon citrates extract enhanced callus induction and regeneration
from seed and internode explants of Panicum virgatum L. [122]. They have observed that
ZnONPs have a positive influence on both the explant, but a 20 mg/L concentration was
suitable for the seed explant whereas, for the internode explant, 30 mg/L was better. In
addition, the application of manganese oxide nanoparticles (MgONPs) synthesized using
walnut shell extract increased the regeneration response in Vigna unguiculata L. Walp cv.
Ülkem [128] (Table 3).

5. Ramifications of NPs on In Vitro Cultures
5.1. NPs to Mitigate Stress and Virus Resistance

The application of nanomaterials can help in improving tolerance against biotic and
abiotic stresses via in vitro cultures that help in the micropropagation of stress-resistant
crops. In five cultivars of S. lycopersicum, the salinity stress provided using NaCl was used to
evaluate the effect of ZnONPs, and results showed that the treatment significantly improved
callus growth and regeneration frequency (Table 3), as well as the content of different
elements, protein, and antioxidant enzymes (Table 2), which justifies the resistance towards
salinity-induced stress [4]. In another study to improve salinity stress in potato cv. Sante and
Proventa, Gowayed et al. [94] utilized silicon dioxide nanoparticles (SiO2NPs) and observed
better morphological traits when SiO2NPs along with NaCl were used, signifying the
improved plant growth under salinity stress. A comparative study was carried out in four
cultivars of S. lycopersicon in which the effect of NPs like Fe3O4 and ZnO was seen and it was
observed that the aforesaid treatments significantly eliminated the salinity stress in callus
and shoot formation, and the maximum response for cv. PS-10 and least for cv. Roma was
recorded [93]. Drought stress has been a serious concern for the crops and thus in F. ananassa,
a combination of iron nanoparticles (FeNPs, 0.8 ppm) + salicylic acid (SA, 0.01 mM) proved
beneficial as an increased biomass of plantlets with a higher percentage of relative water
content (RWC) and membrane stability index (MSI) was observed, which confirmed that the
cultures withstand drought stress [81]. Another concern for crop productivity is infection
with virus, and potato virus Y (PVY) causes serious loss in the yield and quality of potatoes.
Recently, to overcome this, Elsahhar et al. [125] evaluated the role of CSNPs and suggested
that their treatment proved effective in producing virus-free plants.

5.2. NPs’ Influence on Induction of Somaclonal Variation

The addition of NPs in the culture media is known to affect the plant cells at biochem-
ical and/or molecular levels; thus, there are chances that it might produce somaclonal
variations. Somaclonal variation is one of the consequences of in vitro cultures which is as-
sociated with any changes in chromosome number, chromosome structure, DNA sequence,
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DNA methylation, mitotic crossing over, and activation of transposable elements [130].
However, it has advantages as well as disadvantages, and the main advantages are the
development of useful characteristics like plant size, flower colour, leaf variegation, fruit
ripening, resistance to biotic and abiotic stresses, and elevated secondary metabolites pro-
duction [131]. Sometimes, the higher concentrations of NPs cause toxicity in plants which
affects the mitotic index, DNA integrity, and alters the protein and DNA expression [54].
Some studies reported the change in ploidy levels, e.g., L. usitatissimum calli grown on
media containing carbon NPs (CNPs) showed an increased number of tetraploid cells and
level of DNA methylation [114]. In another study, Kokina et al. [132] observed a high
rate of somaclonal variation in calli and regenerated shoots of L. usitatissimum when the
medium consisted of AuNPs and less variation in the presence of AgNPs. Hence, it has
been suggested that the regenerated plants need to be investigated if the study aims to
induce true-to-type plants.

5.3. NPs as an Elicitor for In Vitro Production of Secondary Metabolites

Earlier studies have suggested that NPs act as signal components and modify the
physiological and metabolic responses of plants. This has opened an alternative strategy
for the production of targeted secondary metabolites in plant cell cultures using NPs as
an elicitor [133]. The effectiveness of NPs is due to their small size, as they can easily
attach to the plant cell walls, destroy them or change their permeability, and thus signif-
icantly affect the cellular metabolism [134]. This is due to the dual role played by NPs,
first by acting as an efficient nutrient and second by acting as an elicitor, which enhances
secondary metabolite production [135]. Recently, the exploitation of NPs for the production
of economically and commercially important secondary metabolites from crop species has
been well documented (Table 4). Al-Oubaidi and Mohammed-Ameen [136] found that
AgNO3NPs increased callus formation in Calendula officinalis L. at a 0.3 mg/L concentra-
tion, but its higher concentration (1.2 mg/L) favored the synthesis of various essential
oils. Hairy root cultures are one of the promising ways for secondary metabolite pro-
duction and in Datura metel L. hairy roots, the addition of AgNPs proved beneficial for
the enhancement of biomass as well as atropine content in comparison to AgNO3 and
biotic elicitors (Bacillus cereus and Staphylococcus aureus) [137]. In Cucumis anguria L. hairy
roots, AgNPs significantly elevated the content of different metabolites in comparison to
its bulk counterpart (AgNO3) [80]. In a cell suspension of Corylus avellana L. cv. Gerd
Eshkevar, augmentation of media with AgNPs increased the taxol [78] as well as taxane
contents [79]. AgNPs obtained via green synthesis using an extract of Bacillus marisflavi
increased the contents of different groups of compounds like hydroxybenzoic acids, hy-
droxycinnamic acids, and flavonols in the cell suspension of Momordica charantia L. [84].
A comparison between AuNPs and AgNPs has been carried out for the shoot culture of
Lavandula angustifolia Mill. cv. Munstead where shoots grown in the presence of both
NPs significantly affected the composition of essential oil. Their addition in media de-
creased the content of low-molecular-weight compounds (α- and β-pinene, camphene,
δ-3-carene, p-cymene, 1,8-cineole, trans-pinocarveol, and camphoriborneol), which were
replaced with high-molecular-weight compounds (τ- and α-cadinol 9-cedranone, cadalene,
α-bisabolol, cis-14-nor-muurol-5-en-4-one, and (E,E)-farnesol) [138]. In callus cultures
of Allium sativum L., the contents of allicin, di-allyldisulfide, and vinyldithiin have been
elicited using AgNPs and NaCl [139].

The addition of CuNPs and cobalt nanoparticles (CoNPs) in shoot cultures of Mentha
longifolia L. revealed that they have positively influenced linalool synthesis and nega-
tively affected linalyl acetate content. Their results also confirmed that CuNPs were better
for regeneration, but maximum essential oil synthesis was observed in the presence of
CoNPs [116]. Contrarily, CuONPs significantly enhanced the contents of glucosinolates,
phenolic compounds, hydroxy-benzoic acids, hydroxycinnamic acids, and flavonols in
hairy roots of B. rapa spp. pekinensis. They have also confirmed the up-regulation of differ-
ent pathway genes such as MYB34, MYB122, MYB28, MYB29, PAL, CHI, and FLS after the
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exposure of hairy roots with NPs [140]. Al-Oubaidi and Al-Khafagi [141] compared the
effectiveness of MgONPs and CuONPs on Punica granatum L. callus cultures for metabolite
synthesis, and reported that the contents of metabolites varied according to concentration
and type of NPs augmented in the media. They have observed that the level of gallic
acid, tannic acid, ellagic acid, chlorogenic acid, acacetin, cinnamic acid, and geniste in was
increased in the presence of MgONPs, whereas CuONPs elevated the levels of brevifolin-
carboxylic acid, catechin, rutin, coumaric acid, ferulic acid, benzoic acid, and kaempferol.
Al-Khafagi and Al-Oubaidi [142] studied the contents of similar metabolites of the same
species after treatment using NPs on shoot tip culture. However, their results differed as
compared to an earlier report as the majority of the compounds were elicited after MgONP
treatment except for catechin and kaempferol which were increased with CuONPs. Simi-
larly, TiO2NPs stimulated higher lignin content in the cell suspension of L. usitatissimum
cv. Kerman Shahdad as compared to ZnONPs [82]. In another cultivar (Barbara) of L. usi-
tatissimum, different lignans (secoisolariciresinoldiglucoside and lariciresinoldiglucoside)
and neolignans (dehydrodiconiferyl alcohol glucoside and guaiacylglycerol-β-coniferyl
alcohol ether glucoside) were detected in seedlings and calli, and it was noted that a
higher concentration (500 mg/L) of ZnONPs proved beneficial in elevating the contents
in seedlings, whereas a lower concentration (10 mg/L) favoured metabolite synthesis in
callus [68]. The effectiveness of the chitosan–zinc oxide nano-bioformulation (CH-ZnO)
combination proved better in comparison to ZnONPs not only for callus biomass but also
for tannin content, whereas nicotine content was better when ZnONPs were used in media
containing leaf-derived callus of Nicotiana benthamiana Domin [86]. In a recent study, CuO
and ZnO NPs were synthesized using Nigella sativa L. extract, and their effect on three
varieties of V. radiate (var. NCM-13, MgAT-7, and MgAT-4) was assessed. Their results
confirmed that both the NPs affected different metabolites in all three varieties as increased
phenolics were recorded in the presence of CuONPs, whereas increased glycoside was
detected in the presence of ZnONPs [135]. Recently, Abu-Al hayl and Al-Oubaidi [143]
carried out an experiment using SiO2NPs on the callus of Tagetes erecta L. where amounts
of gallic acid, syringic acid, ellagic acid, quercetin, quercetagetin, lutein, and kaempferol
increased significantly at a higher concentration in comparison to the lower concentration
of NPs (Table 4).
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Table 4. Effects of various NPs on elicitation of metabolites in in vitro cultures of different crops.

Plant Metabolite(s) Culture Type Nanoparticle (NP)
Treatment and Time Remarks Reference

Allium sativum Allicin, di-allyldisulfide and vinyldithiin Callus AgNPs (2 mg/L),
time- 4 w Increased content of all metabolites [139]

Brassica rapa spp.
pekinensis

Glucosinolates (gluconasturtiin, glucobrassicin,
4-methoxyglucobrassicin, neoglucobrassicin,

4-hydroxyglucobrassicin, glucoallysin,
glucobrassicanapin, sinigrin, progoitrin, and
gluconapin), phenolic compounds (flavonols,
hydroxybenzoic and hydroxycinnamic acids),

hydroxy-benzoic acids (vanillin, p-hydroxybenzoic,
protocatechuic, syringic, gentisic acids),

hydroxycinnamic acids (chlorogenic, p-coumaric,
ferulic, and t-cinnamic acids) and flavonols

(myricetin, quercetin, catechin, kaempferol, rutin,
naringenin and hesperidin)

Hairy roots CuONPs (100 mg/L),
time- 48 h

Increased content of all metabolites and
expression of genes [140]

Calendula officinalis
α-Pinene, β-pinene, ρ-cymene, α-thujene,
calendulaglycoside, α-cadinene, cadinol,

t-muurolol, 1,8-cineole and limonene
Callus AgNO3NPs (1.2 mg/L),

time- 4 w Increased contents [136]

Capsicum annum and
C. frutescens Capsaicin Cell suspension AgNO3NPs (3 mg/L),

time- 6 d Increased content [144]

Corylus avellana cv.
Gerd Eshkevar Taxol Cell suspension AgNPs (5 ppm),

time- 1 w Increased content, decreased cell viability [78]

Corylus avellana cv.
Gerd Eshkevar Taxol and baccatin III Cell suspension AgNPs (5 ppm),

time- 24 h Increased contents [79]

Cucumis anguria

Hydroxybenzoic acids (p-Hydroxybenzoic acid,
gallic acid, protocatechuic acid, syringic acid,

gentisic acid, salicylic acid, vanillic acid,
β-resorcylic acid, hydroxycinnamic acids (Caffeic

acid, p-coumaric acid, o-coumaric acid, ferulic acid,
chlorogenic acid, t-cinnamic acid), flavonols

(Myricetin, quercetin, kaempferol, catechin, rutin,
naringenin, biochanin A), phenolics (vanillin,
veratric acid, homogentisic acid, hesperidin)

Hairy root AgNPs (1 mg/L),
time- 21 d Increased biomass and content [80]
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Table 4. Cont.

Plant Metabolite(s) Culture Type Nanoparticle (NP)
Treatment and Time Remarks Reference

Datura metel Atropine Hairy roots Nanosilver (conc.- NM),
time- 48 h Increased biomass and content [137]

Lavandula
angustifolia

cv. Munstead
Essential oils Shoots

AgNPs and AuNPs
(10 mg/dm3),

time- NM

Decreased content of low-molecular-weight
compounds (e.g., α- and β-pinene, camphene,

δ-3-carene, p-cymene, 1,8-cineole,
trans-pinocarveol, camphoriborneol), and

increased content of high-molecular-weight
compounds (τ- and α-cadinol 9-cedranone,

cadalene, α-bisabolol,
cis-14-nor-muurol-5-en-4-one, (E,E)-farnesol)

[138]

Linum
usitatissimum

cv. Kerman Shahdad
Lignan Cell suspension TiO2NPs (150 mg/L),

time- 72 h Increased content [82]

Linum
usitatissimum
cv. Barbara

Lignans (secoisolariciresinoldiglucoside,
lariciresinoldiglucoside) and neolignans

(dehydrodiconiferyl alcohol glucoside and
guaiacylglycerol-β-coniferyl alcohol ether

glucoside)

Seedlings and callus
ZnONPs

(500 mg/L)/(10 mg/L),
time- 30 d

Higher ZnONPs increased contents in
seedling; lower ZnONPs increased contents

in callus
[68]

Mentha longifolia Essential oils (Linalool and linalyl acetate) Shoots CoNPs (0.8 mg/L),
time- 30 d

Increased linalool and decreased linalyl
acetate contents [116]

Momordica
charantia

Hydroxybenzoic acids (p-Hydroxybenzoic acid,
gallic acid, protocatechuic acid, syringic acid,

gentisic acid, salicylic acid, vanillic acid,
β-resorcylic acid), hydroxycinnamic acids (Caffeic
acid, p-coumaric acid, o-coumaric acid, ferulic acid,

chlorogenic acid, t-cinnamic acid), flavonols
(Myricetin, quercetin, kaempferol, catechin, rutin,

naringenin, biochanin A)

Cell suspension AgNPs (5 mg/L),
time- 48 h Increased contents [84]
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Table 4. Cont.

Plant Metabolite(s) Culture Type Nanoparticle (NP)
Treatment and Time Remarks Reference

Nicotiana
benthamiana Tannin and nicotine Callus

CH-ZnO (400
ppm)/ZnONPs (200 ppm),

time- 7 d

CH-ZnOincreased tannin content;
ZnONPs increased nicotine content [86]

Olea europaea Oleuropein, OH-tyrosol, ligustroside and oleacein Shoot tips AgNO3NPs (1 and 2 mg/L),
time- 30 days Increased contents [145]

Oryza sativa
cv. Swarna Carotenoids Seedling leaves AgNPs (40 ppm),

time- 14 d Increased content [57]

Punica granatum

Tannins (Gallic acid, tannic acid, ellagic acid,
brevifolincarboxylic acid), phenols (chlorogenic
acid, catechin, rutin, coumaric acid, ferulic acid,

benzoic acid, acacetin, cinnamic acid,
genistein, kaempferol)

Callus, shoot tip

MgONPs
(2.5–10 mg/L)/CuONPs

(5–20 mg/L),
time- 21 d

Callus: MgONPs, gallic acid, tannic acid,
ellagic acid, chlorogenic acid, acacetin,

cinnamic acid, genistein;
CuONPs: brevifolincarboxylic acid, catechin,

rutin, coumaric acid, ferulic acid, benzoic
acid, kaempferol;

Shoot tip- MgONPs- gallic acid, tannic acid,
ellagic acid, brevifolincarboxylic acid, chlorogenic

acid, rutin, coumaric acid, ferulic acid, benzoic
acid, acacetin, cinnamic acid, genistein;

CuONPs: catechin, kaempferol

[141,142]

Tagetes erecta Gallic acid, syringic acid, ellagic acid, quercetin,
quercetagetin, lutein and kaempferol Callus SiO2NPs (200 mg/L),

time- 30 d Increased contents [143]

Vigna radiata
var. NCM-13, MgAT-7,

and MgAT-4
Phenolic and glycosides Callus and shoots

CuONPs (0.5 mg/L)/
ZnONPs (0.5 mg/L),

time- NM

Overall, callus synthesized more metabolite
than shoots, CuONPs-increased phenolics,

ZnONPs increased glycoside content
[135]

AgNPs: silver nanoparticles; AgNO3NPs: silver nitrate nanoparticles; AuNPs: gold nanoparticles; CH-ZnO: chitosan–zinc oxide nano-bioformulation; CoNPs: cobalt nanoparticles;
CuONPs: copper oxide nanoparticles; MgONPs: magnesium oxide nanoparticles; TiO2NPs: titanium dioxide nanoparticles; ZnONPs: zinc oxide nanoparticles. NM: not mentioned.
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NPs, when acting as elicitors, either bind directly to elicitor-binding sites or produce
endogenous messenger molecules that will bind to the sites and initiate the responses. This
is due to NPs’ interaction with some of the plant cell-wall and membrane components [146].
Initially, NPs involve an active exchange of ions like Na+/K+/Cl− effluxes and Ca2+/H+

influxes through the plasma membrane into the cytosol. Among all these, Ca2+ influxes are
considered asthe most important event due to their involvement in various physiological
and cellular pathways, and it plays a pivotal role in the first steps of the elicitation mecha-
nism [147]. In another hypothesis, a cascade of events has been described where Ca2+ flux
movements and ROS produced by oxidative burst act as messengers that led to the up-
regulation/phosphorylation of mitogen-activated protein kinase (MAPK) [146] or affected
ATPase activity and increase the cytoplasmic acidity, leading to metabolite synthesis [148].
The structure of the plant cell wall is consistent with the size of the NPs for entry into the
cell where the ROS accumulation can be triggered [149]. This ROS will interfere with the
plasma membrane and affect the permeability of the cells; thus, as a result, more NPs enter
into cells, causing more stress and stimulating the production of stress-induced secondary
metabolites [21]. Other studies suggested that NADPH and other oxidases also become acti-
vated through Ca2+ movements and they are responsible for the generation of ROS in plant
cells [150,151]. This ROS generation results in the activation of cGMP-dependent protein
kinase and the phosphorylation of MAPKs, which results in transcriptional reprogramming
events of genes of secondary metabolite pathways [152]. Kohan-Baghkheirati and Geisler-
Lee [153] stated that the G-proteins (Guanine nucleotide-binding proteins) can also activate
the metabolite accumulation through de novo biosynthesis of stress-signaling compounds
such as SA, jasmonic acid (JA), and methyl jasmonic acid (MeJA). Similarly, it is also sug-
gested that the expression of genes involved in oxidative stress and the accumulation of
ROS acts as a signal for metabolite synthesis [154,155].

5.4. NPs’ Uptake, Biochemical and Molecular Attributes in Plant Cell

The pore size of plant cell walls is usually in the range of a few nanometers which acts
as a barrier to foreign materials [156]. However, the diameters of NPs are usually smaller
in comparison to the diameters of the cell-wall pores; hence, they can easily penetrate and
reach the plasma membrane. On the other hand, if the size of NPs is higher than the pore
size, they enter the cell either by changing the size of existing pores or by inducing new
larger pores in the cell wall [7]. After crossing the cell wall, NPs reach the cell membrane
and are then internalized towards cytosol or other organelles either by endocytosis, specific
membrane-bound transporter proteins (aquaporins), or through the induction of new
pores using ion-carrier substances [157,158]. NPs help in the regulation of processes
like cell signaling and the regulation of the plasma membrane; they bind with different
cytoplasmic organelles and interfere with the metabolic processes at the site [159,160]. The
translocation of NPs also depends on the concentration and the nature of the plant species,
but usually, the passages of uptake and transportation are via the xylem [161], and it was
also found that NPs followed the stomatal pathway in the leaf [162]. Further, they can be
transported from one cell to another either by the apoplastic or symplastic pathway or via
plasmodesmata [163,164]. Nair et al. [165] suggested that NPs, after crossing the membrane,
stick with the membrane and interfere with different organelles. It has been reported in
many studies that the uptake of NPs is closely associated with the absorption of moisture
and nutrients from the media [166,167]. In addition, few in vitro studies have reported the
uptake of NPs via clathrin-independent and -dependent pathways in N. tabaccum [168]
or the endosomal pathway in Catharanthus roseus (L.) G. Don [169]. Kokina et al. [99]
documented that the plant cells take up plant growth regulators (PGRs) for differentiation
and redifferentiation, and the metal NPs are transported along with PGRs. It is also
suggested that NP internalization becomes different in the case of cell-suspension cultures,
where endocytosis in the vacuole occurs from the apoplast through vesicles formed from the
plasma membrane [170,171], e.g., carbon nanotubes (CNTs) entered the cell wall through
endocytosis and moved towards the cell membrane in tobacco cell suspension [172]. In
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comparison, NPs enter through parenchymatous intercellular spaces which assist the
diffusion of liquid solution to cotyledon in seeds [173,174]. Physiologically, they affect the
plant metabolism by delivering micronutrients [175], along with this, they regulate various
gene functions [176] and interfere with different oxidative processes [177]. Further, they
take part in electron transfer in plants, thus increasing the activity of many enzymes and
influencing plant mineral nutrition [178,179]. As the size of NPs accumulates in intracellular
spaces, their higher concentration renders toxicity [37,180,181]. However, it is noted that
the toxic effects of NPs are dose-dependent [182], and a negative response is due to injury
in the cell wall and membrane [183].

Plants induce various responses to combat stress such as the production of various
ROS like singlet oxygen, superoxide, hydrogen peroxide, and hydroxyl radical, which
are the main oxidative outbursts in plant cells after stress induction [177]. Depending
on their concentration, ROS can work positively or negatively. At low concentration,
they act as secondary messengers in intracellular signaling that induce several responses
in plant cells including stress tolerance [62,184], whereas a higher concentration of ROS
causes damage to biomolecules by apoptosis or necrosis, a disruption of the metabolic
pathway through inactivation of the enzyme thatresults in plant cell death [185,186]. ROS
are involved in many stress adaptations in plants [187,188], and therefore robust defense
mechanisms have been developed by plants, viz, enzymatic (SOD, POD, CAT, APX, etc.),
non-enzymatic (ascorbate, glutathione, carotenoids, tocopherols, phenolics, etc.), and
antioxidant production [189]. Plants also activate the MAPK pathway that boosts the plant
antioxidant elements to come in contact with ROS [190]; also, H2O2 and MDA are the
measures to evaluate the stress in plants as they modulate the unstable ROS [189,191].
Proline is also a well-accepted stress marker as it has ameliorative properties suggesting its
involvement in mitigating oxidative stress [192]. Its accumulation is reported to act as an
antioxidant for neutralizing the toxic effects of ROS and it is also known to maintain the
structure of proteins and membranes of cells [193]. Similarly, the activities of enzymes are
also evaluated and the most commonly analyzed is phenylalanine ammonia-lyase (PAL). It
is the first enzyme of the phenylpropanoid pathway that synthesizes many compounds
which are the major protectants against stress, and hence its evaluation can be correlated
with the effect of stress on plants [194]. Pigments like chlorophyll and carotenoids are
attributed as precursors of abscisic acid (ABA) that modulates stress responses [195]. The
loss in chlorophyll causes a surplus of electrons to combine with molecular oxygen and
eventually form ROS [196]. The chlorophyll donates an electron to a series of molecular
intermediates called an electron transport chain [197], whereas carotenoids are structural
components of the photosynthetic antenna and reaction center complexes that protect
photosynthetic organelles against harmful photo-oxidative processes [198].

The enzymes require metallic ions as a co-factor to complete the function during pho-
tosynthesis [199], and due to the physical properties of NPs, they dissociate quickly in the
cytosol and aid enzymes at the cellular level to facilitate photosynthesis [200]. The addition
of NPs increases the activities of enzymes like POD, CAT, and nitrate reductase, that also
favours regeneration by affecting important physiological and biochemical processes [201].
Parida and Das [202] documented that the treatment of cultures with NPs induced a better
chlorophyll a/b ratio indicating the activeness of PS-I and PS-II, which might be beneficial
for regeneration. Various biochemical parameters are being analyzed to observe the stress
imposed on plant cells or tissues after the application of various NPs (Table 2). It has been
suggested that Fe and Zn stimulates the antioxidant enzyme activity in plants, and helps
in the reduction of the free radical effect [203]; FeNPs are also reported to increase the
gene expression of enzymes involved in photosynthesis and thus assist in enhancing the
process [204]. Likewise, ZnONPs improved plant growth by affecting the electron transfer
chain and increasing enzymatic antioxidants, reducing ion leakage, and improving the
Hill reaction [205]. Zn also plays a vital role as a co-factor for several enzymes comprising
superoxide, catalase, and dismutase, which inhibit ROS stress [206]. In seedling and callus
of L. usitatissimum cv. Barbara, the gradual increase in ROS production was observed as
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the concentration of ZnONPs increased and it elevated the formation of membrane lipid
peroxidation, protein carbonylation, and 8-oxo guanine [68]. Similarly, in B. nigra callus
and seedling ZnONP treatment, increased antioxidant activity, phenolic, and flavonoid con-
tents [65] were observed, whereas in cell suspension cultures of cultivar Kerman Shahdad
of L. usitatissimum, increased PAL and CAD activities, and levels of total phenols [82] were
observed. Likewise, in in vitro cultures of different crops like M. paradisiacal cv. Grand
Nain [43], different cultivars of S. lycopersicum [4], N. tabacum cv. BY-2 [87], etc., augmen-
tation of media with ZnONPs changes the biochemical parameters. In N. benthamiana, a
combination of chitosan–zinc oxide nano-bioformulation (CH-ZnO) increased chlorophyll,
carotenoid, proline contents, and enzyme (PAL and AO) activities, but decreased MDA and
H2O2contents [86] (Table 2). In addition, iron oxide nanoparticles (Fe2O3NPs) changed the
activities of different enzymes and antioxidant compounds in Cichorium intybus L. [77] and
S. lycopersicon [93], and FeNPs in F. ananassa [81].

Cu is another important metal element, but at a higher level, it induces toxicity due
to its binding with sulfhydryl groups in proteins which eventually inhibit enzyme ac-
tivity [207]. Similarly, higher concentrations of CuONPs adversely affected the growth
as Cu ions released from NPs are impermeable to the plasma membrane, thus causing
a deficiency of essential nutrients [208]. CuONPs inside the cell taken up by lysosomes
increase the release of Cu ions that ultimately produce intracellular ROS [209,210]. It also in-
duces oxidative stress by catalyzing the formation of OH− radicals from the non-enzymatic
chemical reactions between superoxide and H2O2 [211]. Alternatively, the positive effect of
CuONPs at an optimum concentration on callus induction can be explained as Cu being
an essential nutrient in plant growth and acting as a co-factor in many metalloproteins.
Cu also acts as a structural element in regulatory proteins and is involved in important
physiological processes like the electron transport chain, hormone signaling, and cell wall
metabolism [212]. Studies revealed that the application of CuONPs counteracts stress by
changing various biochemical reactions in V. radiate [71], C. arietinum [66], and B. nigra [5]
(Table 2). Ti is another essential element that also increases the nutrient absorption of metals
like Ca, Mg, Zn, and P [213]. It has been reported that TiO2NPs at a proper concentration
promotes plant growth by assisting water absorption inplant cells and inducing cellular
metabolism [214], by activating photosynthetic complexes, Rubisco carboxylase activity and
nitrogen metabolism in the plant cell [215,216]. Mandeh et al. [42] reported that TiO2NPs
facilitated plant growth as they play a role similar to PGRs like cytokinin and gibberellic
acid (GA3), whereas SiO2NPs had increased the levels of GA3 in the cells, having a plant
hormone-like property and play a vital role in cell division, and consequently increased the
elongation [217]. TiO2NPs showed an influence on cultures of L. usitatissimum cv. Kerman
Shahdad for variation in enzyme activities [82]. Gowayed et al. [94] studied S. tuberosum cv.
Sante and Proventa under SiO2NPs influence and observed that it increased the number
of protein bands in both cultivars compared to control and NaCl treatment. This increase
in bands indicated that SiO2NPs activated genes which are important proteins associated
with salt-stress resistance. Elevated activities of antioxidant enzymes (GPX and SOD) were
also observed (Table 2).

The role of ethylene in in vitro plant regeneration has been well documented [218], and
Ag+ ions are known to inhibit ethylene action by replacing Cu+2 ions with Ag+ and blocking
ethylene receptor (ETR1) [219]. The beneficial effect of Ag can also be attributed to enhance
polyamine biosynthesis rather than reduce ethylene production [220], and an increase in
auxin efflux independent of ethylene response that affects plant growth [221]. The supple-
mentation of AgNPs can enhance the plant cell’s nutrient and water uptake from culture
media by mutilating the cell wall [222]. Another hypothesis suggested that AgNPs modify
the structural components of cellular membranes, and macromolecules, influence cell divi-
sion and defense systems, and interfere with the physiological and biochemical processes of
plants by altering the gene expression [223]. But, the higher concentration of AgNPs cause
lipid peroxidation because of the ROS generation, inhibition of ethylene production, and
restriction in the electron transport chain of mitochondria and chloroplast, which all lead
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to oxidative burst, rise in ROS concentration, and eventual cell death [200,224]. Whereas at
low concentrations, it modulates the redox status of plants, because of its efficient catalytic
activity in redox reactions by acting as electron relay centers [225] and its ability to support
electron exchange with Fe2+ and Co3+ [226]. Vannini et al. [227] observed that AgNPs cause
changes in proteins involved in redox regulation and sulfur metabolism; they also alter
some proteins related to the endoplasmic reticulum and vacuole. In B. juncea var. pusa
jaikisan, they have increased chlorophyll content and the activities of enzymes, but MDA,
proline, and H2O2 content were decreased [189]. Similarly, decreased MDA, proline, and
H2O2 levels were also observed after AgNP treatment in cultures of O. sativa cv. IR64 [88].
In addition, variation in response has been well documented between crop species, as in
some crops the contents were found to be decreased, e.g., B. oleracea var. sabellica ‘Nero
di Toscana’ [59]. On the contrary, increased metabolites and enzyme activities have been
reported in M. charantia [84], Caralluma tuberculata N.E.Br. [76], and Maerua oblongifolia
(Forssk.) A. Rich [83]. Jamshidi et al. [78] had observed that AgNPs in the cell suspension
culture of C. avellana cv. Gerd Eshkevar showed a positive influence on the contents of
ascorbate peroxidase (APX), CAT, H2O2, and PAL, but they decreased SOD and POD
activities, and total soluble phenol content. Recently, in B. napus shoots, they increased
metabolites and H2O2 levels but no change in phenolics was found [60]. The examples
of different NPs on biochemical changes in seedlings and different cultures of important
crops are given in Table 2.

NPs after internalization evoked changes at molecular levels as metal NPs are known
to induce systemic stress, and to overcome this stress, they alter the expression of genes [228].
CNT treatment is known to affect the expression of the water channel proteins (aquapor-
ins) [229] that are considered to be crucial for the process of seed germination and plant
growth [230]. The expression of water channel genes (aquaporin, LeAqp2) is reported to
be activated in response to MWCNTs in tomato seedlings [73,229] and tobacco cells [231].
Villagarcia et al. [73] revealed that MWCNTs affect the expression of genes regulating
cell division and cell wall extension in treated cells, resulting in faster growth than the
unexposed control cells. However, a few in vitro studies that were carried out on gene
expression analysis, e.g., Nair and Chung [66] analyzed the effect of CuONPs on seedlings
of C. arietinum and correlated the biochemical changes with oxidative stress response genes
such as SOD and CAT, but there was no significant change in the expression of APX. Like-
wise, on seedlings of B. rapa ssp. rapa, AgNPs up-regulated the expression of different genes
related to antioxidant defense (catalase, CAT; peroxidase, POD; glutathione S-transferase,
GST), biotic and abiotic stresses (pathogenesis-related gene 1, PR1; lipoxygenase 2, LOX2),
carotenoids (β-cyclase, CYB; zeaxanthinepoxidase-1, ZEP1), anthocyanins (production of
anthocyanin pigment 1, PAP1; anthocyanin synthase, ANS; phenylalanine ammonia-lyase,
PAL), and glucosinolates (BrMYB28; BrMYB29; BrMYB34; BrMYB51; sulfotransferase, St5C;
and superroot1, SUR1). Further, over-expression of the Geranyl diphosphate synthase gene
(GPPS gene), a key gene involved in the thymoquinonebiosynthesis pathway, has been
observed in N. sativa after TiO2 and SiO2NPs [232]. Manickavasagam et al. [88] depicted
AgNPs in media containing O. sativa L. cv. IR64 seeds showed up-regulation of ethylene
(ERF063), ABA (OsRab16), auxin (OslAA1), cytokinin (RR2), and gibberellic acid (PBZ1)
responsive genes, justifying the stress induced by NPs treatment. In addition, treatment
of M. charantia with selenium nanoparticles (SeNPs) showed a variation in methylation-
susceptible loci (MSL) between the control and treated group which suggested an epigenetic
modification in response to NPs. The results also revealed that there was significant up-
regulation of transcription factor WRKY1, and genes like PAL and 4-coumarate:CoA ligase
(4CL) [233].

6. NPs as a Tool for Genetic Engineering in Crops

Genetic engineering has proven useful in the face of climate change and the growing
global population by bestowing desirable genetic traits and enhancing crop productivity.
The delivery of genetic materials such as DNA and small interfering RNA (Si-RNA) is
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important for the development of pest, pathogen, and stress-resistant strains of crops by
altering the gene expression [234,235]. The bottleneck in genetic transformation is the plant
cell wall, which causes obstacles such as targeting the delivery system, transportation
through the cell membrane, uptake and degradation in endolysosomes, and intracellular
trafficking of DNA to the nucleus [236]. Similarly, the traditional delivery methods also
have some demerits like viral gene vectors have a narrow host range, allowing only a lim-
ited size of genetic material to be delivered, and they also face the possibility of inducing
viral symptoms. Other methods are microinjection, Agrobacterium-mediated transforma-
tion, and microprojectile bombardment. All these methods had either very low efficiency
(0.01–20%) or were mainly applied for dicotyledons [11]. Another concern behind Agrobac-
terium-mediated transformation is the usage of antibiotics such as carbenicillin, cefotaxime,
rifampicin, and timentin for the removal of bacteria after co-cultivation, which affected the
regeneration potential and genetic stability of the regenerated plantlets [15]. An alternative
method for genetic engineering like genome editing using CRISPR/Cas9 is comparatively
precise and can manipulate the genome, but it also relies on an Agrobacterium-mediated
pathway and thus has drawbacks like undesirable off-target effects and insertional muta-
tions in the genome [236]. To circumvent these obstacles, a technique that enables specific
horizontal gene transfer is required that allows the delivery of genes into abroad range of
plant species without the need of external force to induce desirable traits in commercially
important crops [237].

NPs having an extremely small size and easy uptake into plant cells are a potential
vehicle for passive gene transfer in different tissues like seeds, leaves, calli, roots, etc. [8,238].
The charge and shape of NP greatly influence the cell membrane translocation, and thus
these properties are central to nanocarrier optimization. Another benefit of NP-mediated
delivery is that it has high DNA-binding ability and thus has high transformation efficiency
without genome integration [239,240]. It has been commonly reported that the internaliza-
tion is faster and more efficient for cationic NPs as they easily bind with negatively charged
cell membranes in comparison to anionic NPs [241]. The conjugation of DNA with NPs and
transformation in the cell cytoplasm integrates DNA into the target genome, and develops
the transgenic plants with desired traits [242]. Nonetheless, fewer reports are available on
the usage of nanomaterials as carriers to deliver biomolecules into the in vitro cultures of
crops as compared to research available on morphogenesis. The first study on gene transfer
using NP has been documented by Torney et al. [243] where gold-capped mesoporous
silica nanoparticles (MSNs) were delivered to N. tabacum. Liu et al. [244] synthesized
starch NPs and coated them with poly-L-lysine and fluorescent material Ru(bpy)3

2+·6H2O.
To deliver the DNA, they conjugated NPs with pEGAD plasmid DNA and successfully
transformed the suspension culture of Dioscrea zigiberensis G H Wright. Furthermore, poly-
L-lysine-coated ZnS nanoparticles with an average size of 3–5 nm efficiently delivered the
β-glucuronidase (GUS)-encoding plasmid into young tobacco leaves using the ultrasonic
treatment. The efficiency of gene transfection of the treated tobacco plant under various
conditions indicated that the highest efficiency is achieved when an ultrasonic treatment
with intensity of 60 W for 20 min is applied. These results indicated that the optimum
condition for the ultrasonic treatment to achieve the highest gene transfection efficiency
depends on the plant type (protoplast, cells, leaves, roots, etc.) as well as nanocarriers and
their size [245].

The carbon-based NPs have also been proven as an efficient system; Vijayakumar et al. [246]
found that the carbon-supported AuNPs delivered GUS genes more efficiently as compared
to the gold particles using a gene gun into N. tabacum, O. sativa and Leucaena leucocephala
(Lam.) de Wit. Similarly, positive results have been obtained for fluorescein isothiocyanate
(FITC)-tagged SWCNTs and complexes of FITC-tagged DNA molecules with MWCNTs
in the suspension cultures of N. tabacum BY-2 cells [172]. In addition, the genetic trans-
formation of N. tabacum protoplasts with a plasmid construct pGreen 0029 having a yfp
reporter was carried out using SWCNTs and MWCNTs. It was found that SWCNTs were
able to transform both protoplasts and walled plant cells, whereas MWCNTs could only
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transform the protoplasts because of the presence of a cellulose wall which hindered NP
penetration [247]. Later on, FITC has been delivered into B. napus var. Jet Neuf and D. carota
var. Konservnaja 63 protoplast using SWCNTs [248] and magnetic AuNPs [249], suggesting
successful delivery of the molecules.

An interesting study was carried out to transfer pCambia 1301 having the GUS gene
into B. juncea cv. pusa jaikisan, where a better transformation efficiency was achieved
with calcium phosphate nanoparticles (CaPNPs, 80.7%), followed by A. tumefaciens (54.4%)
and naked DNA (8%) [250]. Similarly, the utilization of CaPNPs to deliver the pBI121-
harboring GFP gene into tobacco cells was reported by Ardekani et al. [251]. In corrob-
oration with these, usage of CaPNPs in C. intybus to deliver the HMGR gene showed a
positive transformation as higher chlorophyll, proteins, and esculin contents, as well as
higher HMGR activity, were detected [252]. For the efficient and stable transformation
of Jatropha curcas L. callus [253] and cell suspension [254], a complex of CdSe fluorescent
quantum dots (QDs) with L-cysteine and chitosan–DNA (CS-DNA) NP conjugate have
been reported. In many reports, MSNs have been documented as an efficient nanocarrier;
e.g., Martin-Ortigosa et al. [255] documented the usage of MSNs in different ways like gold
plating for MSNs, CaCl2/spermidine DNA coating, and NPs with gold microparticles and
gold nanorods to enhance the NP-mediated DNA delivery using the biolistic method in
onion, maize, and tobacco. In another study on the same plants, protein-loaded Au-MSNs
can be subsequently coated with plasmid DNA and introduced into plant tissues through
particle bombardment by which both protein and DNA can be transferred efficiently [256].
For instance, MSNs have been well documented as a carrier to deliver Cre recombinase
protein into the Z. mays [257], cryIAb gene in S. lycopersicum var. falat [258], and GUS gene
in N. tabacum [259].

Furthermore, layered double hydroxide (LDH) nanosheets have shown positive results
in transforming N. tabacum with fluorescent dyes such as tetramethyl rhodamine isothio-
cyanate (TRITC), FITC, and DNA molecules [260]. New polymeric dimethylaminoethyl
methacrylate (DMAEM)-based polymer NPs have been reported to carry the yfp gene
in N. tabacum protoplast with the help of polyethylene glycol (PEG) [261]. Similarly,
Zhao et al. [262] used magnetic Fe3O4NPs and documented the stable transformation of
the BT∆α-CPTI gene in Gossypium hirsutum Linn. pollen, which remained integrated into
the genome, which transcribed, expressed and produced an insect-resistant transgenic
progeny of cotton plants. Later on, S. tuberosum (cv. lady and spunta)-resistant varieties
were generated for pathogenic fungi like Alternaria alternate and Rhizoctonia solani, with the
help of two thionin genes delivered using NPs [263]. Gil-Humanes et al. [264] also success-
fully transformed Wheat dwarf virus (WDV)-derived replicons along with CRISPR/Cas9
to induce targeted mutagenesis in T. aestivum cv. Bobwhite. Recently, green synthesized
FeNPs using the leaf extract of Camellia sinensis were utilized for the successful and stable
transformation of pBIN.35s-mgfp5-ER carrying GFP gene to the Abelmoschus esculentus [265]
and UidA gene with the help of chitosan NPs to the in vitro plants of S. tuberosum [266].

7. Conclusions and Future Perspectives

The world population is expected to reach 9.6 billion by 2050 and to feed this ever-
increasing population, there will be increased pressure on land, which is not extendable.
A higher usage of fertilizers causes soil damage and environmental pollution. Recent ad-
vancements in the field of nanotechnology have demonstrated the potential to revolutionize
agricultural production. However, the concern raised behind the in vivo usage of NPs is
their release in the environment which might result in the accumulation of different NPs in
each trophic level of the ecological pyramid; therefore, we should use NPs judicially.

An alternative strategy to test the NPs is to use them in a tissue culture system which
is a powerful tool for the screening of plantlets; it also provides a unique opportunity for
studying many aspects of plant growth and development under well-defined and controlled
environmental conditions. NPs have been shown to enhance plant germination/production,
improve plant resistance to abiotic and biotic stress, assist efficient nutrient exploitation,
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and promote plant growth, with reduced environmental impact compared to traditional
approaches with bulk material. The main application of NPs under in vitro conditions is to
increase the crop yield, and ability of plantlets to cope with stressful conditions by which
it will adapt to the conditions before transplanting into the field. However, the reports
reviewed in the present manuscript suggested that the type and concentration of NPs,
as well as the crop species and even cultivar, showed variation in responses. Therefore,
the effect of different types and concentration ranges of NPs on plant tissue should be
optimized accordingly to determine the optimum dose, which usually ranges between
1–50 mg/L. This optimization will be useful in precision agriculture for individual crops.
Further, the usage of NPs as an elicitor has been explored which showed promising results
for many commercially valuable metabolites; hence, nano-elicitors may be exploited for the
commercial production of secondary metabolites at the bioreactor level.

Although many reports are available on NPs’ effect on plants under in vivo conditions,
to gain a clear understanding of the underlying mechanisms behind the role of NPs in
plant morphogenesis, these can be further astudied via in vitro routes. The advantage of
NPs is that they are promising materials for biomolecule delivery, owing to their ability to
traverse plant cells without external force, their tunability for diverse cargo conjugation,
and broad host range applicability. These qualities make them a promising tool for the
genetic engineering of plants for an easier delivery of genes and without injury to the
plant cells. They can also be used for targeted gene delivery to the nucleus, chloroplast,
and mitochondria to achieve transgenesis in plants. Reports on molecular mechanisms
of elicitation using NPs are scant; hence, systematic omics-based analyses (e.g., genomics,
transcriptomics, proteomics, and metabolomics) are necessary.
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