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Abstract: Modeling phenological phases in a Mediterranean environment often implies tangible
challenges to reconstructing regional trends over heterogenous areas using limited and scattered
observations. The present investigation aimed to project phenological phases (i.e., sprouting, bloom-
ing, and pit hardening) for early and mid–late olive cultivars in the Mediterranean, comparing two
phenological modeling approaches. Phenoflex is a rather integrated but data-demanding model,
while a combined model of chill and anti-chill days and growing degree days (CAC_GDD) offers a
more parsimonious and general approach in terms of data requirements for parameterization. We
gathered phenological observations from nine experimental sites in Italy and temperature timeseries
from the European Centre for Medium-Range Weather Forecasts, Reanalysis v5. The best perfor-
mances of the CAC_GDD (RMSE: 4 days) and PhenoFlex models (RMSE: 5–9.5 days) were identified
for the blooming and sprouting phases of mid–late cultivars, respectively. The CAC_GDD model
was better suited to our experimental conditions for projecting pit hardening and blooming dates
(correlation: 0.80 and 0.70, normalized RMSE: 0.6 and 0.8, normalized standard deviation: 0.9 and
1.0). The optimization of the principal parameters confirmed that the mid–late cultivars were more
adaptable to thermal variability. The spatial distribution illustrated the near synchrony of blooming
dates between the early and mid–late cultivars compared to other phases.

Keywords: phenological modeling; olive cultivars; phenological stages; the Mediterranean
environment; CAC_GDD model

1. Introduction

Countries around the Mediterranean basin have a principal and traditional role in
olive production and its by-products. In fact, Spain, Italy, Greece, Turkey, Tunisia, and
Portugal all together account for more than 95% of olive oil production worldwide [1].

Olive (Olea europaea L.) is one of the most long-lived tree crops, cultivated for thou-
sands of years in the Mediterranean region. Its initial origin was identified in the eastern
Mediterranean, before it expanded over the other parts of the Mediterranean basin in
southern and southwestern Europe and northern Africa [2].

The olive tree’s growing area is mainly restricted to the region from 30◦ to 45◦ N [3].
This restriction suggests that climatic and particularly temperature conditions are the key
factors driving and limiting olive growth processes. However, there are other ecological
parameters affecting the suitability of different environments for olive growth, e.g., soil

Plants 2023, 12, 3181. https://doi.org/10.3390/plants12183181 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants12183181
https://doi.org/10.3390/plants12183181
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0009-0004-5698-1845
https://orcid.org/0000-0001-8460-6111
https://orcid.org/0000-0002-5661-0241
https://orcid.org/0000-0003-1914-260X
https://orcid.org/0000-0001-9050-746X
https://orcid.org/0000-0002-4773-8104
https://orcid.org/0000-0002-9089-0478
https://orcid.org/0000-0002-0743-3680
https://doi.org/10.3390/plants12183181
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants12183181?type=check_update&version=2


Plants 2023, 12, 3181 2 of 20

characteristics. An olive tree typically cannot withstand temperatures below −8 ◦C for more
than one week, and high summer temperatures may also damage its yield performance [4].

Temperature acts as the main driver of olive tree phenology by regulating the release
from the endo-dormancy period after the accumulation of adequate cold units during win-
tertime (chill units), and then the release from the eco-dormancy period, whose duration is
dependent on forcing/heating units accumulated from the ending point of endo-dormancy
to the bud breaking stage [5]. Hence, the breaking of winter rest and the onset of the
pursuant vegetative stages are highly dependent on temperature [6]. Chilling and heating
methods have presented different temperature ranges to account for chill and heat accu-
mulation. Indeed, these considered both the lower and upper thresholds beyond which
the temperature no longer affects the crop physiologically in terms of the growing and
rest periods. However, divergences and uncertainty surround the required chill and heat
accumulations and the period of time needed to complete phenological phases for different
cultivars [7]. Flowering dates for olive were modeled in [8] considering olive development
from the beginning of the season (i.e., the 1st of February) and the temperature sum reach-
ing a defined number of growing degree days (GDDs) for the onset of flowering. On the
other hand, GDD accumulation strongly depends on the specific olive cultivar and the
initial date for heat accumulation.

In addition to temperature, there are genotype and several physical-environmental
variables (e.g., distance from the sea, photoperiod, latitude, topography, and rainfall) that
also influence olive blooming and other phenological stages [8–12]. Several authors have
observed a delay in blooming with an increasing latitude and elevation and attributed this
trend to the lower heat accumulation in the cooler zones [10,13–15]. According to Aguilera
et al. [13], the earlier blooming dates of olive cultivars grown in southern Mediterranean
regions (e.g., Tunisia) resulted from tree adaptation, a defense mechanism against tempera-
tures above 30–35 ◦C occurring during the late spring months. Indeed, it was suggested
that high temperatures are detrimental to the development and fertility of flowers [16].

Despite the varietal-specific phenological behavior (both in terms of timing and annual
variability) of several tree species [17–19], only a few papers have proposed and compared
phenological models for specific cultivars [8,20]. Several crop phenological models have
already been developed and implemented by investigators in environmental and agricul-
tural sciences to project phenological stages [18,21–25]. Previous available studies on olive
phenology focused on modeling and estimating mainly the early phase in springtime (e.g.,
bloom). For instance, Rojo et al. [7] developed a study to define thermal accumulation to
fulfill the chilling and heating requirements for the budbreak stage of olive trees in Toledo,
central Spain; Lecce, southeastern Italy; and Chaal, central Tunisia. Considering both
chilling and forcing requirements, they developed a phenological model that confirmed the
highest performance in Toledo (with an error of about 2 days). Zouari et al. [20] applied
the growing degree day (GDD) model to estimate the heating requirements of four olive
cultivars for the flowering stage in southern Tunisia. They obtained a large inter-annual
variation in GDD number while comparing differences between cultivars (from 100 to
267 GDDs). Orlandi et al. [26] developed a study to find linkages between olive flower-
ing and heat accumulation using the GDD model in Mediterranean regions of Italy and
Tunisia. The results confirmed that the olive species showed various heat requirements for
flowering according to the latitudes of the experimental sites. Also, a phenological model
was implemented for olive cultivars in Italy with a reverse-modeling approach using the
developmental rate function, which was built on linear and nonlinear functions, to predict
phenological stages from budbreak to complete flowering [27] for single locations.

The PhenoFlex model [24] was developed recently to predict the phenological stage of
deciduous fruit trees in spring (e.g., budburst). It links both the dynamic model (for chill
accumulation) and the growing degree hours model (for heat accumulation) with a very
large number of parameters that offer high flexibility in simulating dormancy breaking.
However, such an extensive parameterization usually requires a high number and many
years of observations, which are not available for many sites.
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The above-mentioned studies were mainly carried out separately at single locations
that were characterized by specific environmental conditions and well-adapted local culti-
vars, and so the spatial projection of the phenological phases and validation over a wide
region based on their results could have several limitations, since they did not cover a
comprehensive range of environmental conditions.

Modeling the phenological stages of olive trees at regional or global scales (e.g., the
Mediterranean basin) is highly challenging due to the limited and scattered observations
across heterogenous environments. Some complex phenology models that are suitable
for a single phenological stage, e.g., Phenoflex, which was built upon many parameters,
and dependent on long-term phenological observations and hourly temperature time
series would be unable to project comprehensively reliable phenological dates in the
above-mentioned challenging experimental conditions. Thus, a general approach with
a less parameter-demanding structure and flexible projection capability may perform
better in modeling the successive phenological phases of the olive crop over a complex
Mediterranean environment and consequently assist producers, particularly in a changing
climate context, with crop cultivation management, planning crop practices in orchards,
and mitigating climate-induced risks [28].

This study aimed to model and validate simulated dates for three main phenological
phases, namely the sprouting, blooming, and pit hardening of early and mid–late bud-
break olive cultivars, over the Mediterranean environment. To this end, we integrated
observations from several experimental sites with different environmental characteristics
in Italy and designed an innovative method to combine chilling and sequentially forc-
ing for each phenological phase. Hence, to estimate the sprouting phenological phase,
we first implemented the chill and anti-chill days model [18], and then, to estimate the
blooming and pit hardening stages, we applied the growing degree days model [23] as a
complementary method to accumulate only heat units beginning from the sprouting dates.
Simultaneously, we also applied the PhenoFlex model, which is a complex process-based
approach. The modeling performance of both approaches was compared by applying
some statistics, including the root mean square error (RMSE), correlation, and standard
deviation, according to the phenological phase and cultivar. The spatial implementation
and projections of the modeling outputs were developed over Italy by phenological phase
and cultivar type.

2. Materials and Methods
2.1. Data Collection

Phenological observations were obtained from different sources, including the
PHENAGRI project (1996–2003) [29], the national network of CREA, and the Agricul-
tural Department at the University of Sassari. We collected phenological data of four olive
cultivars as the representatives of early and mid–late sprouting cultivars from nine experi-
mental sites in Italy. The distinction of the two cultivar types was based on the observed
mean phenological dates. The phenology date difference between our selected early and
mid–late budbreak cultivars reached the peak at about 32 days for the sprouting phase, and
then the pit hardening and blooming phases showed differences of about 28 and 10 days,
respectively (Table 1). Figure 1 shows the geographical distribution of each experimental
site in Italy. Most of these sites were good representatives of a wide range of Mediterranean
climate types, spanning from the southern areas (Belice Mare, Sicily) with higher annual
mean temperatures (18.9 ◦C), to the temperate climatic zone [30], i.e., the northern sites
(Montepaldi and Sant Apollinare) characterized by lower mean annual temperatures of
around 15 ◦C. The observation datasets in Julian day (JDay) format included three main
phenological phases: sprouting, blooming, and pit hardening. The number of phenological
observations/records to establish a timeseries list varied for each phenological phase and
cultivar, e.g., from 11 to 32 records (Table 2).
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Table 1. Mean observed dates (in JDay) of investigated phenological phases for selected early and
mid–late budbreak olive cultivars.

Phenological Phase
Cultivar Sprouting Blooming Pit Hardening

Carolea/early 96 (6 April) 138 (18 May) 186 (5 July)

Picholine/early 97 (7 April) 140 (20 May) 187 (6 July)

Frantoio/mid–late 124 (4 May) 148 (28 May) 214 (2 August)

Moraiolo/mid–late 134 (14 May) 151 (31 May) 215 (3 August)

Table 2. Experimental sites in Italy, with available phenological monitoring and number of years
of phenological observations for early (i.e., Carolea and Picholine) and mid–late (Frantoio and
Moraoiolo) olive cultivars.

Location/Site
Latitude
(Decimal
Degrees)

Longitude
(Decimal
Degrees)

Tm Cultivar Years of Data
Availability

Length
(Years)

Montepaldi
(Tuscany, FI) 43.66◦ 11.14◦

15.8 ◦C Carolea 1997–1999 3

Picholine 1997–1999 3

Frantoio 1997–1999 3

Moraiolo 1997–1999 3

Villasor (Sardinia,
CA) 39.38◦ 8.91◦

16.9 ◦C Carolea 1997–1999 3

Picholine 1997–1998 2

Oristano (Sardinia,
OR) 39.9◦ 8.62◦ 17 ◦C

Carolea 2014–2019 6

Frantoio 2014–2020 7

Valenzano (Apulia,
BA) 41.03◦ 16.85◦

16.5 ◦C Carolea 1997–2000 4

Picholine 1997–2000 4

Torre Allegra (Sicily,
CT) 37.41◦ 15.00◦

16.6 ◦C Carolea 1997 and 1999 2

Picholine 1997 and 1999 2

Belice Mare (Sicily,
TP) 37.60◦ 12.85◦

18.84 ◦C Carolea 1997–1998 2

Picholine 1997–1998 2

Rende (Calabria, CS) 39.36◦ 16.23◦
16.3 ◦C Carolea 1999 1

Picholine 1997 and 1999 2

Saint Apollinare
(Perugia, PG) 43.04◦ 12.25◦

14 ◦C Carolea 1997–1999 3

Picholine 1997–1999 3

Frantoio 1997–1999 3

Moraiolo 1997–1999 3

Mirto Crosia
(Cosenza, CS) 39.72◦ 16.75◦

18.14 ◦C Carolea
2001–2003, 2015,
2018, 2019, and

2021
8

Moraiolo 2001, 2002, 2003,
2019, and 2021 5

Frantoio 2001, 2002, 2003,
and 2019 4
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Figure 1. Experimental sites in Italy with olive phenological observations and associated dates.

For each year where the dates of phenological observations were available, the daily
maximum, minimum, and mean temperatures were retrieved. The temperature timeseries
were gathered from the European Centre for Medium-Range Weather Forecasts (ECMWF)
Reanalysis v5 (ERA5) [31], since weather stations were not available near all the experimen-
tal sites. Also, some of them provided fragmentary timeseries. Indeed, the use of reanalysis
products facilitates the parameterization and validation of model assessments more closely
linked to climate model products employed for regional projections. Meanwhile, a previous
study [32] found that olive phenological modeling using the ERA5 reanalysis temperature
data series provided fairly accurate phenological projections. This dataset was based on
the hourly ECMWF ERA5 reanalysis data at 2 m above surface level with a horizontal
resolution of 0.1◦ and aggregated at a daily temporal scale.

Figure 2 shows the dispersion of daily mean temperature between all experimental
sites and the selected years for which phenology was monitored. The temperature distri-
bution confirmed the lowest and highest median ranks in February (6.7 ◦C) and August
(27.5 ◦C), respectively. During winter and summer, the temperature percentiles (25th–75th
and 5th–95th) were more stretched, which indicated higher temperature variability between
the experimental sites in the cold and warm seasons. Figure 2 also shows box plots of the
distributions of phenological dates from the experimental sites for sprouting (A), blooming
(B), and pit hardening (C).

2.2. Phenological Models

The chill and anti-chill days model (CAC model), or chilling and forcing model [18],
is a sequential model that accumulates chill days until the chill requirement is fulfilled
and endo-dormancy is over. Then, the accumulation of anti-chill days starts during the
eco-dormancy stage to overcome the quiescence. Indeed, the dormancy stage is divided
into two phases: (1) the endo-dormancy phase, in which the plant reaches the peak of
chilling accumulation once meeting its chill requirements, and (2) the eco-dormancy phase,
in which the crown buds are in suspension and their growth is influenced by environmental
factors, i.e., temperature/heating [33].
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90th percentile, respectively.

To calculate chill days (Cd) and anti-chill days (Ca), we implemented a set of equa-
tions using the single triangle degree day computation method for different temperature
conditions (Table 3). In the original reference (citation), there were five cases, to which
we added one more based on temperature data peculiarity (i.e., max daily temperature
below 0 ◦C). Indeed, to calculate chill and anti-chill days, this model included two basic
parameters: a temperature threshold (Tc) and chilling requirement (Cr). To find the best
values or optimize these parameters, we developed an error function in the R computer
language (version: 2022.02.3+492) to employ the fitness function of the genetic algorithm
(GA) package [34]. A GA was implemented for stochastic optimization and to optimize the
provided error function in terms of fitness, binary, real-valued, and premutation representa-
tions, which were available in the package. This package needed some inputs: temperature
timeseries (min, max, mean); phenological observation data; and the pre-selected lower
and upper bounds of the parameters (Tc: 7–14, Cr: −80–−200). We changed these bounds
in the optimization process to find the lowest possible errors. After arranging all inputs in
the code, we set the number of iterations to 1000.

Table 3. Chill days (Cd) and anti-chill days (Ca) equations, accounting for mean (Tm), maximum
(Tx), and minimum (Tn) daily temperatures and threshold temperatures (Tc).

Case Temperature Conditions Chill Days Anti-Chill Days

1 0 ≤ Tc ≤ Tn ≤ Tx Cd = 0 Ca = Tm − Tc

2 0 ≤ Tn ≤ Tc < Tx Cd = − ((Tm − Tn) − ([Tx − Tc]2/2[Tx − Tn])) Ca = ((Tx − Tc)2/2(Tx − Tn))

3 0 ≤ Tn ≤ Tx ≤ Tc Cd = − (Tm − Tn) Ca = 0

4 Tn < 0 ≤ Tx ≤ Tc Cd = − (Tx2/2(Tx − Tn)) Ca = 0

5 Tn < 0 < Tc < Tx Cd = − (Tx2/2(Tx − Tn)) − ((Tx − Tc)2/2(Tx − Tn)) Ca = ((Tx − Tc)2/2(Tx − Tn))

6 Tn < Tx < 0 < Tc Cd = 0 Ca = 0

Since the CAC model was developed to estimate only the first phenological stage,
the end of dormancy, a combined method of the chill and anti-chill days model + the
growing degree days model (CAC_GDD model) was developed to include and estimate
blooming and pit hardening stages. If the CAC model was used to assess two or three
consecutive phases of a particular cultivar, different chill requirements per phase would
be accounted for, which is per se against the principles of crop physiology. Indeed, the
starting dates to accumulate heating would be different spatially (point by point) and
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temporally (year by year), and thus we present a dynamic method for GDD accumulation.
The main parameters that the GDD model requires to calculate heat accumulation for
subsequent phenological stages include the temperature base (Tb), maximum temperature
base (Tx.base), and heating requirement (Hr).

The GDD equation is as follows:

GDD = (Tx + Tn)/2 − Tb

where Tx is the daily maximum temperature, Tn is the daily minimum temperature, and
Tb is the base temperature. The daily minimum and maximum temperatures should be
set to Tb if less than Tb and set to an upper temperature threshold (Tx.base) when greater
than that threshold, because most plants cannot grow efficiently beyond these thresh-
olds [23]. To run the calibration using this method, an error function was again developed
based on the GDD model to include in the GA function in order to optimize the param-
eters. The inputs included temperature timeseries (min, max); phenological observation
data; sprouting observation data, such as the pervious phenological date; and the pre-
selected lower and upper bounds of the three above-mentioned parameters (i.e., Tb: 4–10,
max Tb: 25–35, Hr: 300–1400).

The PhenoFlex model was based on the structure of the dynamic model and the
growing degree hours model (GDH) for chilling and heating accumulations [24]. This
model fit the main parameters of both the dynamic and GDH models for the phenological
observation dates. A generalized simulated annealing algorithm (GSA) was applied to
calibrate the model. The principal parameters to fit the PhenoFlex model were as follows:

yc—Chilling requirement: critical value of y, which defines the end of chill accumulation.
zc—Heating requirement: critical value of z, which defines the end of heat accumulation.
s1—Slope parameter that determines the transition from the chill accumulation to the heat
accumulation period in PhenoFlex.
Tu—Optimal temperature of the growing degree hours (GDH) model.
E0—Time-independent activation energy of forming the precursor to the dormancy-breaking
factor (PDBF).
E1—Time-independent activation energy of destroying the precursor to the dormancy-
breaking factor (PDBF).
A0—Amplitude of the (hypothetical) process involved in forming the precursor to the
dormancy-breaking factor in the dynamic model.
A1—Amplitude of the (hypothetical) process involved in destroying the precursor to the
dormancy-breaking factor (PDBF) in the dynamic model.
Tf—Transition temperature parameter of the sigmoidal function in the dynamic model,
also involved in converting the PDBF to chill portions.
Tc—Upper threshold in the GDH model.
Tb—Base temperature of the GDH model.
slope—Slope parameter of the sigmoidal function in the dynamic model, which determines
what fraction of the PDBF is converted to chill portions.

Thus, the PhenoFlex package [35] needs several inputs to fit the model parameters
with observations, including: the observed dates of the desired phenological phase; a
function called PhenoFlex_GDHwrapper, which uses a heating model considering the
GDH concept; a season-based timeseries of maximum and minimum temperatures in an
hourly scale corresponding to the observed phenology years; and, finally, the default initial
estimates and upper and lower changeable bounds of the 12 aforementioned parameters.

2.3. Data Preparation

Daily temperature data series from the ERA5 repository were extracted as NetCDF
over a spatial window (5–20◦ E and 35–47◦ N) at a spatial resolution of 0.1 degree for
the period 1985–2015, with an additional list of yearly vectors (November of the previous
year to October) for the coordinates of each experimental site. For the basic processing
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of the temperature data series, the Climate Data Operator (CDO) was used. Observed
phenological data series per cultivar and phenological stage were imported in R as vector
lists. We made data frames for all weather and phenological observation data series to use
in the model fitting functions.

2.4. Calibration and Validation of Phenological Models

We developed error functions for the CAC model and GDD model separately. CAC’s
error function worked based on the computation method of chill and anti-chill units. Still,
the growing degree days error function was built on the GDD function in the pollen
library [36] using the sprouting dates as the starting point. Both developed error functions
were nested in the GA function to optimize the parameters. Providing all above-mentioned
parameters and inputs with each of the models using the maximum number of iterations
of the algorithm (i.e., 1000), the GA function found the best-fitted parameters with the
lowest RMSE.

The PhenoFlex model fit the data based on the generalized simulated annealing algo-
rithm (GSA). To run the phenology fitter, we used seasonally arranged weather timeseries
(November–October) and phenological observation data series. Daily maximum and mini-
mum temperature timeseries were converted to hourly timeseries based on the idealized
daily temperature curve presented by Linvill [37]. The number of iterations was set to 1000,
with five search steps in the algorithm (as recommended in the default).

To validate the results, we performed a leave-one-out cross-validation (LOOCV), which
is considered suitable when the number of observations is limited [38]. We coded and
applied an LOOCV in R to calculate the RMSE values from both approaches (CAC_GDD
and PhenoFlex) per cultivar and phenological phase. LOOCV iteratively uses one observa-
tion to test the performance of the model (i.e., the RMSE) calibrated with all the remaining
observations. Thus, the mean and standard deviation of these values were used to assess
the strength and variability of the performance of each model.

After obtaining the calibration and cross-validation results for each phenological
model, the observations versus estimated values were statistically tested using the root
mean square error (RMSE) and coefficient of correlation. Furthermore, a Taylor diagram
was plotted to show additional measures of model performance by phenological stage
comparing the modeled and observed values. The phenological dates were spatially
projected using the CAC_GDD model, focusing on Italy. For the spatial implementation, a
mapping code was developed in R, and then the optimized parameters were used along
with the long-term mean daily temperature timeseries over 30 years (1985–2015) from the
ERA5 repository with a spatial resolution of 0.1 degree over a window of 5–20◦ E and
35–47◦ N, including Italy.

3. Results

The RMSE values obtained from the calibration of the CAC_GDD model by phenolog-
ical phase showed the lowest errors for the blooming (4–12 days) and then pit hardening
(5–13 days) stages, while the errors were approximately doubled (6–24 days) for the esti-
mates of the sprouting stage. The PhenoFlex model found similarity with the chill and
anti-chill days model in the sprouting phase, with errors ranging from 5 to 24 days. How-
ever, PhenoFlex produced larger errors in the blooming (14–18 days) and pit hardening
(13–42 days) stages. Comparing the models’ functionality based on the cultivars, higher
errors were generally observed for early-budbreak representatives (i.e., Carolea and Pi-
choline) regardless of the phenological model for all three phenological phases, ranging
from 9 days for the CAC_GDD model in the blooming phase to 42 days for the PhenoFlex
model in the pit hardening phase. In contrast, the estimated errors were lower for the mid–
late budbreak cultivars, Frantoio and Moraiolo, ranging from 4 days for the CAC_GDD
model in the blooming phase to 23 days for the PhenoFlex model in the pit hardening phase
(Table 4).
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Table 4. The root mean square error (RMSE, in days) from the calibration of the phenological models
(CAC, CAC_GDD, and PhenoFlex) by phenological phase and cultivar.

Phase
Olive

Cultivar

Sprouting Blooming Pit Hardening

PhenoFlex CAC PhenoFlex CAC_GDD PhenoFlex CAC_GDD

Carolea 22 20 14 9 40 10

Picholine 24 24 14 12 42 13

Frantoio 9.5 9 18 4 13 5

Moraiolo 5 6 16 4 23 6
Note: CAC, chill and anti-chill days model; CAC_GDD, chill and anti-chill days and growing degree days model.

The principal model parameters to estimate phenological dates were optimized by
phenological phase, cultivar, and phenological model (Table 5). The use of the CAC model
to estimate sprouting dates suggested that the best temperature thresholds (Tc) for the early
budbreak cultivars ranged from 8.2 to 9.5 ◦C, whereas for the mid–late budbreak cultivars
they ranged from 9.7 to 11.2 ◦C. The optimized chill requirements (Cr) for early budbreak
cultivars ranged from −115 to −122 chill units, while for the mid–late representatives the
range was −133 to −137 chill units. The CAC_GDD model optimized three parameters,
including base temperature (Tb), maximum base temperature (Tx), and heat requirements
(Hr), to estimate both the blooming and pit hardening dates. The derived best Tb and Tx
parameters ranged from 4.5 to 7 ◦C and 26.3 to 31.5 ◦C, respectively, and varied according
to phase and cultivar. The optimized Hr parameter presented higher values for early
compared to mid–late budbreak cultivars in the blooming phase (437–568 GDD◦ versus
370–388 GDD). Using the same calibrated Tb and Tx of the blooming stage, we tried to
optimize the Hr for the pit hardening phase, but then the mid–late cultivars obtained higher
heat requirements (1275–1315 GDD versus 1003–1073 GDD).

Table 5. Optimized parameters for the chill and anti-chill and growing degree days phenological
models by phenological phase and cultivar using the genetic algorithm method.

Phenological
Phase Cultivar

CAC CAC_GDD

Tc Cr Tb Tx Hr

Sprouting

Carolea 9.5 −115 - - -

Picholine 8.2 −122 - - -

Moraiolo 11.2 −133 - - -

Frantoio 9.7 −137 - - -

Blooming

Carolea - - 5.9 31.5 437

Picholine - - 7 28.3 568

Moraiolo - - 4.5 29.5 370

Frantoio - - 5.3 26.3 388

Pit
hardening

Carolea - - 5.9 31.5 1074

Picholine - - 7 28.3 1003

Moraiolo - - 4.5 29.5 1315

Frantoio - - 5.3 26.3 1275
Note: CAC, chill and anti-chill days model; CAC_GDD, chill and anti-chill days and growing degree days model;
Tb, estimated base temperature; Tx, estimated max temperature; Hr, estimated heating requirement; Tc, estimated
temperature threshold; Cr, estimated chilling requirement.

The results of the leave-one-out cross-validation (Table 6) verified the model calibration.
As expected, this validation showed similar results for the CAC and PhenoFlex models in
the sprouting phase, particularly for the late cultivars, by indicating mean RMSEs ranging
from 5.74 to 11 and 5.65 to 12.48 days, respectively. However, the differences between
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the two phenological approaches increased for blooming (CAD_GDD: 3.47–12.23 days,
PhenoFlex: 29.9–36.4 days) and grew substantially for the pit hardening phase (CAD_GDD:
4.5–14 days, PhenoFlex: >40 days). In regards to the standard deviation values of the
RMSEs obtained through cross-validation, the PhenoFlex model indicated the highest
variability, from 0.5 to 5.87, versus CAC_GDD, with a range of 0.4–1.4.

Table 6. The results obtained from the cross-validation analysis (LOOCV) of the two phenological
models for each phenological phase and olive cultivar, including the mean and standard deviation
values (in days) and the number of samples/observations.

Phase
Olive Cultivar

Sprouting Blooming Pit Hardening

PhenoFlex CAC PhenoFlex CAC_GDD PhenoFlex CAC_GDD

Carolea

Mean 22.4 20.43 29.9 8.82 >40 9.8
Stdv. 1.5 0.87 0.5 0.61 3 1

Sample
Number 22 21 13

Picholine

Mean 26.8 24.94 36.4 12.23 >40 14
Stdv. 1.1 1.3 4.2 0.83 1.9 0.97

Sample
Number 16 16 14

Frantoio

Mean 12.48 11 31 6 >40 4.5
Stdv. 1.4 1.5 2.2 0.4 3.35 0.5

Sample
Number 12 12 6

Moraiolo

Mean 5.65 5.74 34 3.47 >40 5.6
Stdv. 1.3 1.16 4.5 1 3.27 0.72

Sample
Number 6 6 6

Using the optimized parameters and temperature timeseries, the modeled dates and
phenological phases were determined for different cultivars. Figure A1 (Appendix A)
shows the accumulation of chill and anti-chill units for the sprouting stage and the GDD
accumulation for both the blooming and pit hardening stages as an example for the Carolea
cultivar over the years with available phenological data for different sites. After the
fulfillment of the chill requirements (i.e., −115 chill units), anti-chill units accumulated
until zero (i.e., the chill units balanced out), at which point in time sprouting occurred. For
the blooming and pit hardening dates, GDD units accumulated until the heat requirements
were fulfilled (e.g., 437 GDD for blooming and 1074 GDD for pit hardening).

The estimated dates for all phenological phases and cultivars were compared to
observations. The CAC_GDD model values showed significant correlation coefficients
(p-value < 0.05) for the three phenological phases (0.55, 0.71, and 0.80, respectively), higher
than for the bloom and pit hardening phases estimated from the PhenoFlex model (0.53,
0.28, and 0.49, respectively by phenological phase) (Figure A2 (Appendix B)).

The estimated phenological dates considering both models exhibited the lowest vari-
ability in the blooming phase during the spring season, coping with a narrower distribution
of temperature and observed phenological dates, as shown in Figure 2. For both models, the
estimated sprouting dates had distributions more similar to the observations, or a higher
predictability, than for blooming or pit hardening (Figures 2 and 3): the median values of
the sprouting stage (observation = 12 April, CAC = 15 April, and Flex = 20 April) versus
the median values of the blooming stage (observation = 25 May, CAC_GDD = 29 May,
Flex = 15 May) and the median values of the pit hardening stage (observation = 15 July,
CAC_GDD=17 July, Flex = 10 June). Using a normalized Taylor diagram, the applied
phenological models’ performances were compared through the standard deviation, RMSE,
and correlation coefficient (Figure 4). For the experimental results and data available in
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our study, the CAC_GDD models showed higher consistency with observed phenological
dates than the PhenoFlex model for the blooming and, in particular, pit hardening phases.
In particular, CAC_GDD showed higher correlation coefficients compared to the PhenoFlex
model (i.e., blooming: 0.7 vs. 0.28, pit hardening: 0.8 vs. 0.49); a lower RMSE (i.e., blooming:
0.8 vs. 1, pit hardening: 0.6 vs. 1.3); and standard deviations closer to the observations
(i.e., blooming: 1 vs. 0.5, pit hardening: 0.9 vs. 1.5). For the sprouting phase, both models
indicated similar behavior and predictability skills (r = 0.54, Sd = 0.4, and RMSE = 0.9).
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To verify the model’s functionality for spatial distribution, we implemented the
CAC_GDD model over Italy using ERA5 reanalysis data for the 1985–2015 period, which
was evaluated as providing better performance under the available training conditions.
The spatial patterns (Figure 5) clearly identified later estimated phenological development
dates under a colder climate, i.e., higher latitudes and mountainous regions, and earlier
estimated dates over southern regions and lowlands for any phenological phase or cultivar
type. For the sprouting, blooming, and pit hardening phases, the estimated dates over
highlands (i.e., mountainous areas) and northern regions showed JDay values >130, >160,
and >210, respectively. However, the aforementioned phenological dates were the latest
estimates in the southern regions and lowlands, e.g., around coastal areas. Comparing the
estimated dates of the late and early budbreak cultivars (diff = late − early) over the study
area, we mostly found differences greater than 15 days for the sprouting and pit hardening
stages. Still, a smaller difference was observed for the blooming stage, as the late cultivars
reported general delays of less than 15 days compared to the early cultivars.
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Figure 5. Spatial implementation of the CAC_GDD model to estimate olive phenological
phases/dates (in JDays), including sprouting (a–c), blooming (d–f), and pit hardening (g–i) for
early (a,d,g) and late (b,e,h) budbreak cultivars over Italy. The right column (c,f,i) shows the spatial
difference between late and early cultivars (diff = late − early) for estimating phenological dates.
Calculations were carried out with long-term daily mean temperature timeseries from ERA5 over a
30-year historic period (1985–2015).
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4. Discussion

The present study compared two approaches to derive and evaluate estimates of
olive phenological phases by applying chilling- and forcing-based models, which could be
inferred from scattered monitoring over a large Mediterranean environment. Our results
suggested that generalized projections of olive phenology might be possible under the
available modeling setup, especially with the CAC_GDD model, which could support the
strategic management of olive cultivation and the anticipation of long-term changes (e.g.,
under climate change projections) for more structural adaptation at the regional scale.

Overall, the CAC_GDD approach, which was based on both the single triangle
method [18] and heat accumulation [23], provided more feasible results under our scat-
tered experimental setup than the PhenoFlex model [24], which was based on the dynamic
model [39] and the growing degree hours model [40,41]. The CAC_GDD approach required
fewer parameters for calibration while avoiding overfitting, especially with inadequate
data. The present approach used daily climate data, preventing the implementation of
artifacts to transform them into hourly climate data. In addition, CAC_GDD reported
fewer model projection failures under the wide climatic range in a large-scale spatial im-
plementation, and the approach required less computational effort and processing time,
which might facilitate its implementation on a large scale for management tools. PhenoFlex
provided a more complex process-based representation considering many parameters but
also required more processing time and suffered to a certain extent from model assessment
failure in a comprehensive spatial implementation. PhenoFlex is an open-source model
that can flexibly adapt to various species and cultivars based on its strong biological and
experimental structure for dormancy dynamics. This integrated model may easily outper-
form other models in reconstructing complex phenology-related dynamics at the local scale
and especially in relation to dormancy [24]. However, such a detailed workflow with a
large number of parameters and degrees of freedom may undermine the more articulated
and accurate representation of phenological phases by PhenoFlex given the more limited
and scattered number of observations available, which is unfortunately often the status of
many tree crops in Mediterranean areas, and thereafter compromise the feasible projections
at the regional scale.

The RMSE values indicated the better performance of the CAC_GDD model for the
blooming stage of the mid–late budbreak cultivars, while PhenoFlex performed best for the
sprouting stage of the mid–late cultivars. Both models performed better for the mid–late
budbreak cultivars than the early ones, regardless of the phenological stages. These findings
suggest that the cultivars differed in their sensitivity to weather conditions, with the mid–
late cultivars being more sensitive. In the framework of climate change and the increasing
uncertainty of weather events, the possibility of selecting between cultivars characterized by
different degrees of sensitivity to seasonal weather might be a useful decision-making tool
for producers. The best performance of the phenological model was found for the blooming
stage of the mid–late budbreak representative cultivars through our approach, with an
error of around 4 days. The reason behind this finding was likely that the mid–late cultivars
showed similar behavior or parameters in terms of the threshold temperatures (Tc, Tb, and
Tx) and Hr. In contrast, Carolea and Picholine, selected as early budbreak cultivars, showed
differences between each other. These findings highlight the importance of considering
the varietal factor to create reliable and reproducible phenological models. Moreover, it is
worth noting that Moraiolo and Frantoio, as mid–late cultivars, are native to the same area
(Central Italy), while this was different in the case of Carolea (South Italy) and Picholine
(France) [42,43]. These findings encouraged us to formulate the following hypotheses:
(1) cultivars from similar historical growing areas with similar environmental conditions
have developed common adaptive capacities and features; and (2) environments charac-
terized by several limiting factors for olive tree species’ growth, related to both extreme
temperatures and short-term periods suitable for achieving certain critical phenological
phases (e.g., blooming), might have selected cultivars that present high sensitivity to tem-
perature changes and thus allow better predictions. However, these hypotheses were based
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on limited data from just four cultivars; the enlargement of the study to other cultivars is
needed to verify these hypotheses and investigate possible common varietal patterns.

The CAC_GDD model calibrated for each distinct cultivar resulted in optimal tem-
perature thresholds that aligned with their early and mid–late phenological behavior. The
optimized base temperature (Tc) and the corresponding chilling requirements (Cr) were
lower for the early cultivars as opposed to their counterparts. The Tc and Cr values derived
from the models underscored the substantial distinctions among the cultivars, with differ-
ences of about 3 ◦C (e.g., Tc = 8.2 ◦C for Picholine compared to Tc = 11.2 ◦C for Moraiolo)
and approximately 20 chill days (e.g., Cr = −115 for Carolea compared to Cr = −137 for
Frantoio). Given the projections of escalating temperatures in future climate scenarios,
particularly impacting the winter seasons, coupled with the fact that distinct cultivars
exhibited specific threshold temperatures and chill prerequisites, challenges pertaining to
the productivity of traditional cultivars and their corresponding geographical domains
are likely. Notably, a significant number of these well-established cultivars have evolved
over centuries through selective breeding and adaptation to specific microclimates [43].
Furthermore, the determination of such critical values will assume even greater significance
in aiding producers’ decisions regarding the most appropriate cultivars in response to
anticipated shifts in climatic conditions. Analogous observations could potentially extend
to threshold temperature parameters (Tb and Tx) for heat accumulation, which in this
context could increase concerns of risks such as late frost events or heatwaves coinciding
with critical flowering phases.

Our obtained RMSE values were in accordance with those of some previous publica-
tions, e.g., [8,13,27,44], which showed errors of modeling for the blooming/flowering stage
of olives ranging from 3 to 8 days in different areas.

The results obtained by Cesaraccio et al. [18] in estimating the budbreak/sprouting
stage using the chill and anti-chill days model for the olive crop in Oristano (Sardinia)
showed an error of about 8 days, which could approximately confirm (of course, depending
on the cultivar) our obtained RMSEs for the sprouting stage, which ranged from 6 to
24 days, as we found lower errors (6–9 days) for mid–late and higher errors (20–24 days)
for early budbreak cultivars.

Overall, the cross-validation confirmed the validity of the calibration results with much
smaller differences for the CAC_GDD model than PhenoFlex, which showed extremely
high RMSEs, particularly over the pit hardening phase. These large differences might
have been due to the method, as PhenoFlex accumulated heating and chilling starting
from November first to predict pit hardening dates in the summer. This represented a
longer prediction period, using greater time spans where the model could be particularly
prone to errors. Notably, PhenoFlex is a model that is basically qualified to project only
a single phenological phase, e.g., flowering [24], and it has not yet been adapted to work
over successive phases. In contrast, CAC_GDD accumulated heating to predict the pit
hardening stage beginning from the already estimated sprouting dates and using the new
parametrizations based on the growing degree days model, and accordingly it avoided
high errors with consecutive phenological phases.

Comparing the functionality of the above-mentioned approaches in terms of the
prediction of the three phenological phases, we found that CAC_GDD demonstrated
better modeling performance for two phases, namely pit hardening and blooming, while
for sprouting the PhenoFlex and CAC_GDD models were quite similar, with relatively
poor modeling performance. We could then refer mainly to the blooming phase to more
accurately assess the performance results. Most previous phenology studies have projected
and focused on olive’s flowering/blooming stage, as reported in the following examples.
The findings of de Melo-Abreu et al. [8], using a thermal time method to estimate flowering
dates, showed an RMSE range of about 2–5 days and a margin of error of 0.57–0.74,
indicating acceptable model performance. Rojo et al. [7] predicted olive pollination dates
(which would be considered to represent the flowering stage) in Toledo (Spain), Lecce
(Italy), and Chaal (Tunisia) using chilling and heating accumulations; the results displayed a
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mean absolute error of about 4.5 days on average, which confirmed the accurate prediction
of the flowering stage. Moriondo et al. [22], using the Unichill model, demonstrated a
good simulation of flowering with RMSEs of around 3 and 3.8 days for calibration and
validation, respectively. Although the previous studies indicated lower errors, they were
developed and established over separate single sites. Hence, these model assessments were
not suitable to project phenological phases over a large area for a spatial analysis, while
our approach tried to consider an extensive range of environmental and bio-physiological
conditions combining observations from eight experimental sites in Italy.

The optimization of the principal parameters to estimate sprouting dates suggested
higher Tc (average ~10 ◦C) and Cr (average ~−135 chill units) values for the mid–late
budbreak cultivars than for the early representatives (Tc: average ~8.8 ◦C, and Cr: average
~−118 chill units). On average, we found differences of 1.2 ◦C in the Tc and −17 chill units
in the Cr. Indeed, the temperature thresholds and chill requirements optimized by the chill
and anti-chill days model varied by cultivar type. Similar results, particularly considering
our findings for mid–late olive cultivars, were reported by Orlandi et al. [45] for threshold
temperature estimation (6–12 ◦C) and by Cesaraccio et al. [18] for threshold temperature
(10.6 ◦C) and chill requirements (−138 chill units). The higher Tc and Cr values of the
mid–late cultivars suggest an adaptation feature to avoid early spring frosts, consistent
with the typical environmental conditions of the Frantoio and Moraiolo areas of origin [30].

Using the CAC_GDD model, we optimized the principal parameters for the blooming
and pit hardening stages. The observed Tb (average 6.5 ◦C) and Tx (average 29.9 ◦C)
values for early budbreak cultivars were higher than those estimated for the mid–late
representatives (Tb: average 4.9 ◦C, and Tx: average 27.9 ◦C) with a difference of around
1.6 ◦C in Tb and 2 ◦C in Tx. The heat requirements optimized to represent the blooming
stage for early cultivars were about 128 GDD higher than for the mid–late ones (means
of 502 versus 379 GDD). As the GDD accumulation started from sprouting, the mid–late
budbreak cultivars with delayed sprouting dates accumulated heating later than the early
ones and needed fewer GDD till blooming. On the other hand, for the pit hardening stage,
the early budbreak representatives showed lower heat requirements than the mid–late
sprouting cultivars (i.e., means of 1038 versus 1295 GDD). Therefore, the pit hardening
event also occurred earlier for them. Previous studies about heat requirements, e.g., [8,10]
confirmed our results, indicating a range of 180–560 GDD in the heat requirements for the
flowering of olive cultivars and Tb values from 5 to 12.5 ◦C. Using a machine learning model,
Oses et al. [46] found base temperatures below 10 ◦C, similar to our optimized Tb values,
to predict olive phenology, resulting in better model performance. Notably, the above-
mentioned threshold values varied with the experimental sites’ climatic characteristics
and the cultivar type. Warmer regions and early budbreak cultivars could have a higher
base temperature. In contrast, cooler regions and late budbreak cultivars, e.g., highlands
and higher latitudes or late budbreak cultivars, could have a lower base temperature.
Consequently, differences in the estimated principal parameters could depend on bio-
geographical characteristics [10]. Considering the optimized Tb values, the mid–late olive
cultivars seemed more resistant under cold climates. Bio-physiologically, temperature
changes could disturb olive’s phenological process, quality, and yield, as low temperatures
could cause bark cracking and the death of thick branches. On the other hand, high
temperatures shrink the fruit body and its pulp [47].

Because of the lower temperature variability during the blooming season between the
experimental sites in Italy, the observed and modeled dates were similar, with a mean range
of about 21 days between the 25th and 75th percentiles. Therefore, with the increasing
temperature variability during the sprouting and pit hardening phases (cold and warm
seasons, respectively), the corresponding range of phenological dates was stretched, with a
mean range of about 35 days for both sprouting and pit hardening between the 25th and
75th percentiles. di Paola et al. [27] found a similar consistency between temperature and
olive phenological date distributions in Italy. Despite the higher temperature variability
in the warm season, the CAC_GDD model demonstrated the best performance for the pit
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hardening phase regardless of the cultivar type. Due to the limited number of previous
studies on phenological phases other than blooming, these findings may be particularly
relevant to improve estimates of the pit hardening phase, which would be applicable for
different olive cultivars and other species. Pit hardening is considered a critical phase of
olive fruit development that usually corresponds to the end of the first phase of fruit growth,
which is characterized by intense cell division and the sinking of assimilates in endocarp
tissues [48]. This indicates the beginning of oil accumulation in the fruit [49]. Forecasting
the pit hardening date is a useful tool for irrigation management [50], the application of
phytosanitary products [51], the further estimation of the peak of oil accumulation, and the
determination of the optimal harvest period [49].

The CAC_GDD’s implementation and projections were also verified spatially over
Italy. All three phenological phases showed the earliest estimated dates under warm
climates, including southern regions and lowlands (e.g., around coastal areas). However,
the late phenological dates were estimated over mountainous areas (e.g., the Alps and
Apennine mountains). This result demonstrated the relationship between spatial changes in
temperature and the fulfillment of different cultivars’ heat requirements and, consequently,
olive phenological dates [7]. In summary, in a warmer climate, forcing units or growing
degree days accumulate faster to reach the required threshold than in cold areas. However,
the chilling requirements can also be met earlier in a warm climate if daily temperatures
do not exceed Tc during endo-dormancy. In some hyper-cold regions (i.e., in the Alps),
the model failed to accurately estimate the phenological dates. This result was likely due
to the lower temperatures, i.e., below the temperature thresholds, which prevented the
model from accumulating adequate chilling or heating to fulfil the defined requirements.
Consequently, no phenological dates were obtained.

The spatial results confirmed that the model produced smaller differences between
the blooming dates of the early and late cultivars than for both sprouting and pit hardening
phases over most of the study area, i.e., less than 15 versus more than 15 days. This
projection was likely due to the optimized parameters of the CAC_GDD varietal model.
Indeed, in warmer climates, sprouting advanced, and the differences in phenological
dates between the two varietal types were smaller. Moreover, the earlier sprouting dates
occurring during the year with a lower probability of days with temperatures exceeding the
Tx.base thresholds and lower Hr requirements could advance the blooming dates for the
mid–late cultivars. Relative to projected climate change, a marked advance in the blooming
date caused by warming would be beneficial, since it might avoid production losses due to
flower damage caused by heat waves [52], particularly in a warm climate. However, the
preliminary nature of these spatial projections would encourage a new investigation with
more data from more cultivars in olive-growing regions (e.g., North Africa) to improve
parametrization and validation.

5. Conclusions

Two approaches applying chilling- and forcing-based models were compared to de-
termine the performance for predicting olive phenology. This investigation presented a
combined method (CAC_GDD) to estimate olive phenological phases and compared results
using a more complex and data-demanding model (PhenoFlex). Under our experimental
conditions, over a large Mediterranean environment with scarce and scattered observations,
the CAC_GDD model, with a lower parameter demand and simple approach, demon-
strated more reliable performance than the PhenoFlex model to generalize projections at
the regional scale in at least two phenological phases, i.e., the blooming and pit hardening
stages. However, in terms of cultivar type, both models performed better for the mid–late
than the early budbreak cultivars.

CAC_GDD showed some advantages for modeling the phenological phases. For ex-
ample, CAC_CDD (1) required less parameterization; (2) used daily temperature timeseries
with no artifacts, i.e., no transformation into hourly data; (3) needed less computation
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effort; (4) demonstrated faster processing; and (5) reduced model projection failures in a
spatial implementation.

Considering the bio-geographical characteristics that determined the temperature
thresholds, i.e., the heat and chill needs for each species, the principal parameters optimized
through the present approach showed clear differences by olive cultivar type. The mid–late
budbreak representatives were more adaptable than early cultivars to the cold climate
when considering sprouting. Still, they could also adapt to warmer climates by anticipating
earlier blooming dates.

For the model calibration and validation, the present investigation considered a
more comprehensive range of environmental and bio-physiological conditions combining
phenological observations from nine experimental sites. The CAC_GDD model could
project phenological phases over a large area, demonstrating the spatial pattern of olive
phenology. The model only failed to accurately project phenological dates over very high
areas (i.e., in the Alps mountain region). Indeed, the model failures occurred only when the
daily maximum and minimum temperatures were beyond the thresholds. These conditions
prevented the model from accumulating sufficient chilling and heating units to meet the
requirements. From a spatial point of view, we found smaller differences in phenological
dates between the early and mid–late cultivars for the blooming phase over most parts of
the study area, revealing the higher phenological plasticity of the mid–late cultivars.

Our approach will support olive producers’ responses to future climate change through
the resilient strategic management of olive cultivation, varietal choice, cultural practices,
and mitigating climate-induced risks based on the reliable projections of different pheno-
logical dates. As a future research direction, the CAC_GDD model could support spatial
upscaling to a large region, e.g., the Euro-Mediterranean region, in order to display the en-
vironmental differences in phenological projections under future climate change scenarios.
Nevertheless, collecting more phenological observations for additional olive cultivars and
other olive-growing regions would support our approach to producing more integrated
and comprehensive validation results and promote our model’s performance.
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